Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity
Abstract
:1. Introduction
2. Carbohydrates and the Role of Carbohydrates in Pregnancy
2.1. Carbohydrate Quality
2.1.1. Glycemic Index and Glycemic Load of Carbohydrates
2.1.2. Simple Carbohydrates (Sugars)
2.1.3. Complex Carbohydrates (Starches)
2.2. Carbohydrate Quantity
2.2.1. Sugar Reduction and the Popularity of Non-Nutritive Sweeteners
2.2.2. Ketone Physiology during Pregnancy
3. Dietary Carbohydrate and Pregnancy Complications
3.1. Low-Carbohydrate Diets and maternal health
3.2. High-Carbohydrate Diets and maternal health
3.2.1. Low-Quality Food Sources of Carbohydrate and Maternal Health
3.2.2. High-Quality Food Sources of Carbohydrate and Maternal Health
4. Dietary Carbohydrate and Offspring Health
4.1. Low-Carbohydrate Diets and offspring health
4.2. High-Carbohydrate Diets and offspring health
4.2.1. Low-Quality Food Sources of Carbohydrate and Offspring Health
4.2.2. High-Quality Food Sources of Carbohydrate and Offspring Health
5. Conclusions and Recommendations for Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Narayan, A.J.; Lieberman, A.F.; Masten, A.S. Intergenerational transmission and prevention of adverse childhood experiences (ACEs). Clin. Psychol. Rev. 2021, 85, 101997. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, T.L.; Mande, A.; Barbour, L.A. Nutrition therapy within and beyond gestational diabetes. Diabetes Res. Clin. Pract. 2018, 145, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, M.K. Nutrition for Pregnant and Lactating Women: The Latest Recommendations From the Dietary Guidelines for Americans 2020-2025 and Practice Implications. Am. J. Lifestyle Med. 2021, 15, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Ásbjörnsdóttir, B.; Ronneby, H.; Vestgaard, M.; Ringholm, L.; Nichum, V.L.; Jensen, D.M.; Raben, A.; Damm, P.; Mathiesen, E.R. Lower daily carbohydrate consumption than recommended by the Institute of Medicine is common among women with type 2 diabetes in early pregnancy in Denmark. Diabetes Res. Clin. Pract. 2019, 152, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, T.A.; Siega-Riz, A.M.; Mosley, B.S.; Meyer, R.E. Low carbohydrate diets may increase risk of neural tube defects. Birth Defects Res. 2018, 110, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, T.L.; Rozance, P.J. Re-examination of the estimated average requirement for carbohydrate intake during pregnancy: Addition of placental glucose consumption. Am. J. Clin. Nutr. 2023, 117, 227–234. [Google Scholar] [CrossRef]
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W., Jr.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Callaway, L.K.; McIntyre, H.D.; Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Tobin, J.M.; Wilkinson, S.; Kothari, A.; Morrison, M.; et al. Probiotics for the Prevention of Gestational Diabetes Mellitus in Overweight and Obese Women: Findings From the SPRING Double-Blind Randomized Controlled Trial. Diabetes Care 2019, 42, 364–371. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef]
- Hernandez, T.L. Carbohydrate Content in the GDM Diet: Two Views: View 1: Nutrition Therapy in Gestational Diabetes: The Case for Complex Carbohydrates. Diabetes Spectr. 2016, 29, 82–88. [Google Scholar] [CrossRef]
- Mathiesen, E.R. Pregnancy Outcomes in Women With Diabetes-Lessons Learned From Clinical Research: The 2015 Norbert Freinkel Award Lecture. Diabetes Care 2016, 39, 2111–2117. [Google Scholar] [CrossRef]
- Mustad, V.A.; Huynh, D.T.T.; López-Pedrosa, J.M.; Campoy, C.; Rueda, R. The Role of Dietary Carbohydrates in Gestational Diabetes. Nutrients 2020, 12, 385. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. NMCD 2015, 25, 795–815. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Hu, F.B.; Tappy, L.; Brand-Miller, J. Dietary carbohydrates: Role of quality and quantity in chronic disease. BMJ 2018, 361, k2340. [Google Scholar] [CrossRef] [PubMed]
- Looman, M.; Schoenaker, D.; Soedamah-Muthu, S.S.; Geelen, A.; Feskens, E.J.M.; Mishra, G.D. Pre-pregnancy dietary carbohydrate quantity and quality, and risk of developing gestational diabetes: The Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 2018, 120, 435–444. [Google Scholar] [CrossRef]
- Sievenpiper, J.L. Low-carbohydrate diets and cardiometabolic health: The importance of carbohydrate quality over quantity. Nutr. Rev. 2020, 78, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Thom, G.; Lean, M. Is There an Optimal Diet for Weight Management and Metabolic Health? Gastroenterology 2017, 152, 1739–1751. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Bao, W.; Li, S.; Chavarro, J.E.; Tobias, D.K.; Zhu, Y.; Hu, F.B.; Zhang, C. Low Carbohydrate-Diet Scores and Long-term Risk of Type 2 Diabetes Among Women With a History of Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes Care 2016, 39, 43–49. [Google Scholar] [CrossRef]
- Rayner, J.; D’Arcy, E.; Ross, L.J.; Hodge, A.; Schoenaker, D. Carbohydrate restriction in midlife is associated with higher risk of type 2 diabetes among Australian women: A cohort study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 400–409. [Google Scholar] [CrossRef]
- Pang, W.W.; Colega, M.; Cai, S.; Chan, Y.H.; Padmapriya, N.; Chen, L.W.; Soh, S.E.; Han, W.M.; Tan, K.H.; Lee, Y.S.; et al. Higher Maternal Dietary Protein Intake Is Associated with a Higher Risk of Gestational Diabetes Mellitus in a Multiethnic Asian Cohort. J. Nutr. 2017, 147, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Saldana, T.M.; Siega-Riz, A.M.; Adair, L.S. Effect of macronutrient intake on the development of glucose intolerance during pregnancy. Am. J. Clin. Nutr. 2004, 79, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Renault, K.M.; Carlsen, E.M.; Nørgaard, K.; Nilas, L.; Pryds, O.; Secher, N.J.; Olsen, S.F.; Halldorsson, T.I. Intake of Sweets, Snacks and Soft Drinks Predicts Weight Gain in Obese Pregnant Women: Detailed Analysis of the Results of a Randomised Controlled Trial. PLoS ONE 2015, 10, e0133041. [Google Scholar] [CrossRef] [PubMed]
- Schoenaker, D.A.; Soedamah-Muthu, S.S.; Mishra, G.D. Quantifying the mediating effect of body mass index on the relation between a Mediterranean diet and development of maternal pregnancy complications: The Australian Longitudinal Study on Women’s Health. Am. J. Clin. Nutr. 2016, 104, 638–645. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, Y.; Della Corte, K.; Yu, D.; Xue, H.; Shan, S.; Tian, G.; Liang, Y.; Zhang, J.; He, F.; et al. Relevance of dietary glycemic index, glycemic load and fiber intake before and during pregnancy for the risk of gestational diabetes mellitus and maternal glucose homeostasis. Clin. Nutr. 2021, 40, 2791–2799. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Rawal, S.; Bjerregaard, A.A.; Halldorsson, T.I.; Li, M.; Ley, S.H.; Wu, J.; Zhu, Y.; Chen, L.; Liu, A.; et al. A prospective study of artificially sweetened beverage intake and cardiometabolic health among women at high risk. Am. J. Clin. Nutr. 2019, 110, 221–232. [Google Scholar] [CrossRef]
- Hillesund, E.R.; Bere, E.; Haugen, M.; Øverby, N.C. Development of a New Nordic Diet score and its association with gestational weight gain and fetal growth—A study performed in the Norwegian Mother and Child Cohort Study (MoBa). Public Health Nutr. 2014, 17, 1909–1918. [Google Scholar] [CrossRef]
- Crowther, C.A.; Alsweiler, J.M.; Hughes, R.; Brown, J. Tight or less tight glycaemic targets for women with gestational diabetes mellitus for reducing maternal and perinatal morbidity? (TARGET): Study protocol for a stepped wedge randomised trial. BMC Pregnancy Childbirth 2018, 18, 425. [Google Scholar] [CrossRef]
- Hu, Z.G.; Tan, R.S.; Jin, D.; Li, W.; Zhou, X.Y. A low glycemic index staple diet reduces postprandial glucose values in Asian women with gestational diabetes mellitus. J. Investig. Med. 2014, 62, 975–979. [Google Scholar] [CrossRef]
- Wrottesley, S.V.; Pisa, P.T.; Norris, S.A. The Influence of Maternal Dietary Patterns on Body Mass Index and Gestational Weight Gain in Urban Black South African Women. Nutrients 2017, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Skreden, M.; Hillesund, E.R.; Wills, A.K.; Brantsæter, A.L.; Bere, E.; Øverby, N.C. Adherence to the New Nordic Diet during pregnancy and subsequent maternal weight development: A study conducted in the Norwegian Mother and Child Cohort Study (MoBa). Br. J. Nutr. 2018, 119, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Rosinger, A.; Herrick, K.; Gahche, J.; Park, S. Sugar-sweetened Beverage Consumption Among U.S. Youth, 2011–2014. NCHS Data Brief 2017, 1–8. [Google Scholar]
- Chazelas, E.; Srour, B.; Desmetz, E.; Kesse-Guyot, E.; Julia, C.; Deschamps, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Sugary drink consumption and risk of cancer: Results from NutriNet-Santé prospective cohort. BMJ 2019, 366, l2408. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Ugalde-Nicalo, P.; Welsh, J.A.; Angeles, J.E.; Cordero, M.; Harlow, K.E.; Alazraki, A.; Durelle, J.; Knight-Scott, J.; Newton, K.P.; et al. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys: A Randomized Clinical Trial. JAMA 2019, 321, 256–265. [Google Scholar] [CrossRef]
- Fu, T.; Chen, H.; Chen, X.; Sun, Y.; Xie, Y.; Deng, M.; Hesketh, T.; Wang, X.; Chen, J. Sugar-sweetened beverages, artificially sweetened beverages and natural juices and risk of inflammatory bowel disease: A cohort study of 121,490 participants. Aliment. Pharmacol. Ther. 2022, 56, 1018–1029. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Yang, H.; Li, H.; Zhou, L.; Zhang, M.; Wang, Y. Associations of sugar-sweetened, artificially sweetened, and naturally sweet juices with Alzheimer’s disease: A prospective cohort study. GeroScience 2023, 46, 1229–1240. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International tables of glycemic index and glycemic load values 2021: A systematic review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef]
- Sandberg, J.C.; Björck, I.M.E.; Nilsson, A.C. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutr. J. 2017, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Costabile, G.; Griffo, E.; Cipriano, P.; Vetrani, C.; Vitale, M.; Mamone, G.; Rivellese, A.A.; Riccardi, G.; Giacco, R. Subjective satiety and plasma PYY concentration after wholemeal pasta. Appetite 2018, 125, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Reverri, E.J.; Randolph, J.M.; Kappagoda, C.T.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. Assessing beans as a source of intrinsic fiber on satiety in men and women with metabolic syndrome. Appetite 2017, 118, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Narimatsu, H.; Li, X.; Nakamura, S.; Sho, R.; Zhao, G.; Nakata, Y.; Xu, W. Non-communicable diseases control in China and Japan. Glob. Health 2017, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Wang, C.; Wang, S.; Cao, G.; Jin, C.; Yu, J.; Li, X.; Yan, J.; Wang, F.; Yu, W.; et al. Carbohydrate Intake, Glycemic Index, Glycemic Load, and Stroke: A Meta-analysis of Prospective Cohort Studies. Asia-Pac. J. Public Health 2015, 27, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Turati, F.; Lagiou, P.; Trichopoulos, D.; La Vecchia, C.; Trichopoulou, A. Relation of dietary glycemic load with ischemic and hemorrhagic stroke: A cohort study in Greece and a meta-analysis. Eur. J. Nutr. 2015, 54, 215–222. [Google Scholar] [CrossRef]
- Gardner, C.; Wylie-Rosett, J.; Gidding, S.S.; Steffen, L.M.; Johnson, R.K.; Reader, D.; Lichtenstein, A.H. Nonnutritive sweeteners: Current use and health perspectives: A scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2012, 126, 509–519. [Google Scholar] [CrossRef]
- Clapp, J.F., 3rd. Maternal carbohydrate intake and pregnancy outcome. Proc. Nutr. Soc. 2002, 61, 45–50. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Non-nutritive Sweeteners and Glycaemic Control. Curr. Atheroscler. Rep. 2019, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Ravi, R.; Saraswathi, G.; Prakash, M. Development of low calorie snack food based on intense sweeteners. J. Food Sci. Technol. 2014, 51, 4096–4101. [Google Scholar] [CrossRef]
- John, B.A.; Wood, S.G.; Hawkins, D.R. The pharmacokinetics and metabolism of sucralose in the mouse. Food Chem. Toxicol. 2000, 38 (Suppl. S2), S107–S110. [Google Scholar] [CrossRef]
- Palatnik, A.; Moosreiner, A.; Olivier-Van Stichelen, S. Consumption of non-nutritive sweeteners during pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Hooper, N.M.; Hesp, R.J.; Tieku, S. Metabolism of aspartame by human and pig intestinal microvillar peptidases. Biochem. J. 1994, 298 Pt 3, 635–639. [Google Scholar] [CrossRef]
- Koyama, E.; Kitazawa, K.; Ohori, Y.; Izawa, O.; Kakegawa, K.; Fujino, A.; Ui, M. In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food Chem. Toxicol. 2003, 41, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Geuns, J.M.; Buyse, J.; Vankeirsbilck, A.; Temme, E.H. Metabolism of stevioside by healthy subjects. Exp. Biol. Med. 2007, 232, 164–173. [Google Scholar]
- Fitch, C.; Keim, K.S. Position of the Academy of Nutrition and Dietetics: Use of nutritive and nonnutritive sweeteners. J. Acad. Nutr. Diet. 2012, 112, 739–758. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Jin, Y.; Clark, E.J.; Welsh, J.A.; Rother, K.I.; Talegawkar, S.A. Consumption of Low-Calorie Sweeteners among Children and Adults in the United States. J. Acad. Nutr. Diet. 2017, 117, 441–448.e442. [Google Scholar] [CrossRef]
- Kille, J.W.; Ford, W.C.; McAnulty, P.; Tesh, J.M.; Ross, F.W.; Willoughby, C.R. Sucralose: Lack of effects on sperm glycolysis and reproduction in the rat. Food Chem. Toxicol. 2000, 38 (Suppl. S2), S19–S29. [Google Scholar] [CrossRef]
- Morahan, H.L.; Leenaars, C.H.C.; Boakes, R.A.; Rooney, K.B. Metabolic and behavioural effects of prenatal exposure to non-nutritive sweeteners: A systematic review and meta-analysis of rodent models. Physiol. Behav. 2020, 213, 112696. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.; Ziesenitz, S.C.; Siebert, G. Acesulfame K, cyclamate and saccharin inhibit the anaerobic fermentation of glucose by intestinal bacteria. Z. Ernahrungswiss 1985, 24, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Renwick, A.G. The disposition of saccharin in animals and man—A review. Food Chem. Toxicol. 1985, 23, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Sylvetsky, A.C.; Gardner, A.L.; Bauman, V.; Blau, J.E.; Garraffo, H.M.; Walter, P.J.; Rother, K.I. Nonnutritive Sweeteners in Breast Milk. J. Toxicol. Environ. Health A 2015, 78, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Rother, K.I.; Sylvetsky, A.C.; Walter, P.J.; Garraffo, H.M.; Fields, D.A. Pharmacokinetics of Sucralose and Acesulfame-Potassium in Breast Milk Following Ingestion of Diet Soda. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed]
- Adam-Perrot, A.; Clifton, P.; Brouns, F. Low-carbohydrate diets: Nutritional and physiological aspects. Obes. Rev. 2006, 7, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Newbern, D.; Freemark, M. Placental hormones and the control of maternal metabolism and fetal growth. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 409–416. [Google Scholar] [CrossRef]
- Tanner, H.; Barrett, H.L.; Callaway, L.K.; Wilkinson, S.A.; Dekker Nitert, M. Consumption of a Low Carbohydrate Diet in Overweight or Obese Pregnant Women Is Associated with Longer Gestation of Pregnancy. Nutrients 2021, 13, 3511. [Google Scholar] [CrossRef]
- Metzger, B.E.; Ravnikar, V.; Vileisis, R.A.; Freinkel, N. “Accelerated starvation” and the skipped breakfast in late normal pregnancy. Lancet 1982, 319, 588–592. [Google Scholar] [CrossRef]
- Riskin-Mashiah, S.; Damti, A.; Younes, G.; Auslander, R. Normal fasting plasma glucose levels during pregnancy: A hospital-based study. J. Perinat. Med. 2011, 39, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Phelps, R.L.; Metzger, B.E.; Freinkel, N. Carbohydrate metabolism in pregnancy. XVII. Diurnal profiles of plasma glucose, insulin, free fatty acids, triglycerides, cholesterol, and individual amino acids in late normal pregnancy. Am. J. Obstet. Gynecol. 1981, 140, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- North, S.; Zinn, C.; Crofts, C. Hyperinsulinemia during pregnancy across varying degrees of glucose tolerance: An examination of the Kraft database. J. Obstet. Gynaecol. Res. 2021, 47, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 14. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S200–s210. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Graham, A.; Hanley, S.J.; Blumenthal, S.; Sale, C. Modern dietary guidelines for healthy pregnancy; maximising maternal and foetal outcomes and limiting excessive gestational weight gain. Eur. J. Sport Sci. 2019, 19, 62–70. [Google Scholar] [CrossRef]
- Sweeting, A.; Mijatovic, J.; Brinkworth, G.D.; Markovic, T.P.; Ross, G.P.; Brand-Miller, J.; Hernandez, T.L. The Carbohydrate Threshold in Pregnancy and Gestational Diabetes: How Low Can We Go? Nutrients 2021, 13, 2599. [Google Scholar] [CrossRef]
- Butte, N.F.; Wong, W.W.; Treuth, M.S.; Ellis, K.J.; O’Brian Smith, E. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am. J. Clin. Nutr. 2004, 79, 1078–1087. [Google Scholar] [CrossRef]
- Ringholm, L.; Damm, P.; Mathiesen, E.R. Improving pregnancy outcomes in women with diabetes mellitus: Modern management. Nat. Rev. Endocrinol. 2019, 15, 406–416. [Google Scholar] [CrossRef]
- Walsh, J.M.; McGowan, C.A.; Mahony, R.; Foley, M.E.; McAuliffe, F.M. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): Randomised control trial. BMJ 2012, 345, e5605. [Google Scholar] [CrossRef]
- Szmuilowicz, E.D.; Josefson, J.L.; Metzger, B.E. Gestational Diabetes Mellitus. Endocrinol. Metab. Clin. N. Am. 2019, 48, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Blumer, I.; Hadar, E.; Hadden, D.R.; Jovanovič, L.; Mestman, J.H.; Murad, M.H.; Yogev, Y. Diabetes and pregnancy: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2013, 98, 4227–4249. [Google Scholar] [CrossRef] [PubMed]
- García-Patterson, A.; Balsells, M.; Yamamoto, J.M.; Kellett, J.E.; Solà, I.; Gich, I.; van der Beek, E.M.; Hadar, E.; Castañeda-Gutiérrez, E.; Heinonen, S.; et al. Usual dietary treatment of gestational diabetes mellitus assessed after control diet in randomized controlled trials: Subanalysis of a systematic review and meta-analysis. Acta Diabetol. 2019, 56, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Markussen, L.T.; Kivelä, J.; Lindström, J.; Ashrafi, R.A.; Heinonen, S.; Koivusalo, S.; Meinilä, J. Short-term effect of plant-based Nordic diet versus carbohydrate-restricted diet on glucose levels in gestational diabetes—The eMOM pilot study. BMC Nutr. 2023, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Ong, P.G.; Colega, M.T.; Han, C.Y.; Chen, L.W.; Man Eyn Kidd, R.; Lamoureux, E.; Gluckman, P.; Kwek, K.; Chong, Y.S.; et al. The Impact of Macronutrients on Retinal Microvasculature among Singapore Pregnant Women during the Mid-Late Gestation. PLoS ONE 2016, 11, e0160704. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.; Wu, W.; Tang, N.; Wang, D.; Chen, Y.; Jing, J.; Cai, L. Low-carbohydrate diet and maternal glucose metabolism in Chinese pregnant women. Br. J. Nutr. 2021, 126, 392–400. [Google Scholar] [CrossRef]
- Garbow, J.R.; Doherty, J.M.; Schugar, R.C.; Travers, S.; Weber, M.L.; Wentz, A.E.; Ezenwajiaku, N.; Cotter, D.G.; Brunt, E.M.; Crawford, P.A. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G956–G967. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Schwab, U.S. Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000, 150, 227–243. [Google Scholar] [CrossRef]
- Major, C.A.; Henry, M.J.; De Veciana, M.; Morgan, M.A. The effects of carbohydrate restriction in patients with diet-controlled gestational diabetes. Obstet. Gynecol. 1998, 91, 600–604. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Hernandez, M.; Bergua, M.; Alvarez, M.C.; Arce, M.A.; Rodriguez, K.; Martinez-Alonso, M.; Iglesias, M.; Mateu, M.; Santos, M.D.; et al. Low-carbohydrate diet for the treatment of gestational diabetes mellitus: A randomized controlled trial. Diabetes Care 2013, 36, 2233–2238. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, R.; Zhong, C.; Wu, J.; Li, X.; Li, Q.; Cui, W.; Yi, N.; Xiao, M.; Yin, H.; et al. Maternal dietary pattern characterised by high protein and low carbohydrate intake in pregnancy is associated with a higher risk of gestational diabetes mellitus in Chinese women: A prospective cohort study. Br. J. Nutr. 2018, 120, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Spanou, L.; Dalakleidi, K.; Zarkogianni, K.; Papadimitriou, A.; Nikita, K.; Vasileiou, V.; Alevizaki, M.; Anastasiou, E. Ketonemia and ketonuria in gestational diabetes mellitus. Hormones 2015, 14, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, K.; Bastani, P.; Gafarieh, R.; Mozafari, H.; Hashemi, S.H.; Ghotbi, M.H. The influence of maternal ketonuria on fetal well-being tests in postterm pregnancy. Arch. Iran. Med. 2006, 9, 144–147. [Google Scholar] [PubMed]
- Chez, R.A.; Curcio, F.D., 3rd. Ketonuria in normal pregnancy. Obstet. Gynecol. 1987, 69, 272–274. [Google Scholar] [PubMed]
- Skreden, M.; Bere, E.; Sagedal, L.R.; Vistad, I.; Øverby, N.C. Changes in beverage consumption from pre-pregnancy to early pregnancy in the Norwegian Fit for Delivery study. Public Health Nutr. 2015, 18, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Brantsaeter, A.L.; Haugen, M.; Julshamn, K.; Alexander, J.; Meltzer, H.M. Evaluation of urinary iodine excretion as a biomarker for intake of milk and dairy products in pregnant women in the Norwegian Mother and Child Cohort Study (MoBa). Eur. J. Clin. Nutr. 2009, 63, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Joo, N. The awareness level and needs for education on reducing sugar consumption among mothers with preschool children. Nutr. Res. Pract. 2016, 10, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, C.; Zicari, A.; Mandosi, E.; Scazzocchio, B.; Mari, E.; Morano, S.; Masella, R. Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives. Br. J. Nutr. 2016, 115, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Milner, A.J.; Luk, A.W.S.; Pulpitel, T.J.; Dodgson, T.; Facey, H.J.W.; Wahl, D.; Kebede, M.A.; Senior, A.M.; Sullivan, M.A.; et al. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat. Metab. 2021, 3, 810–828. [Google Scholar] [CrossRef]
- American Diabetes Association 14. 14. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S165–s172. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, T.L.; Farabi, S.S.; Fosdick, B.K.; Hirsch, N.; Dunn, E.Z.; Rolloff, K.; Corbett, J.P.; Haugen, E.; Marden, T.; Higgins, J.; et al. Randomization to a Provided Higher-Complex-Carbohydrate Versus Conventional Diet in Gestational Diabetes Mellitus Results in Similar Newborn Adiposity. Diabetes Care 2023, 46, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Zulyniak, M.A.; de Souza, R.J.; Shaikh, M.; Ramasundarahettige, C.; Tam, K.; Williams, N.; Desai, D.; Lefebvre, D.L.; Gupta, M.; Subbarao, P.; et al. Ethnic differences in maternal diet in pregnancy and infant eczema. PLoS ONE 2020, 15, e0232170. [Google Scholar] [CrossRef] [PubMed]
- Botto, L.D.; Krikov, S.; Carmichael, S.L.; Munger, R.G.; Shaw, G.M.; Feldkamp, M.L. Lower rate of selected congenital heart defects with better maternal diet quality: A population-based study. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F43–F49. [Google Scholar] [CrossRef] [PubMed]
- North, S.; Crofts, C.; Thoma, C.; Zinn, C. The role of maternal diet on offspring hyperinsulinaemia and adiposity after birth: A systematic review of randomised controlled trials. J. Dev. Orig. Health Dis. 2022, 13, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Kosiek, W.; Rauk, Z.; Szulc, P.; Cichy, A.; Rugieł, M.; Chwiej, J.; Janeczko, K.; Setkowicz, Z. Ketogenic diet impairs neurological development of neonatal rats and affects biochemical composition of maternal brains: Evidence of functional recovery in pups. Brain Struct. Funct. 2022, 227, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Viana, L.V.; Gross, J.L.; Azevedo, M.J. Dietary intervention in patients with gestational diabetes mellitus: A systematic review and meta-analysis of randomized clinical trials on maternal and newborn outcomes. Diabetes Care 2014, 37, 3345–3355. [Google Scholar] [CrossRef] [PubMed]
- Sussman, D.; Ellegood, J.; Henkelman, M. A gestational ketogenic diet alters maternal metabolic status as well as offspring physiological growth and brain structure in the neonatal mouse. BMC Pregnancy Childbirth 2013, 13, 198. [Google Scholar] [CrossRef]
- Yisahak, S.F.; Mumford, S.L.; Grewal, J.; Li, M.; Zhang, C.; Grantz, K.L.; Hinkle, S.N. Maternal diet patterns during early pregnancy in relation to neonatal outcomes. Am. J. Clin. Nutr. 2021, 114, 358–367. [Google Scholar] [CrossRef]
- Peraita-Costa, I.; Llopis-González, A.; Perales-Marín, A.; Diago, V.; Soriano, J.M.; Llopis-Morales, A.; Morales-Suárez-Varela, M. Maternal profile according to Mediterranean diet adherence and small for gestational age and preterm newborn outcomes. Public Health Nutr. 2021, 24, 1372–1384. [Google Scholar] [CrossRef]
- Zhu, Y.; Olsen, S.F.; Mendola, P.; Halldorsson, T.I.; Yeung, E.H.; Granström, C.; Bjerregaard, A.A.; Wu, J.; Rawal, S.; Chavarro, J.E.; et al. Maternal dietary intakes of refined grains during pregnancy and growth through the first 7 y of life among children born to women with gestational diabetes. Am. J. Clin. Nutr. 2017, 106, 96–104. [Google Scholar] [CrossRef]
- César, H.; Sertorio, M.N.; de Souza, E.A.; Jamar, G.; Santamarina, A.; Jucá, A.; Casagrande, B.P.; Pisani, L.P. Parental high-fat high-sugar diet programming and hypothalamus adipose tissue axis in male Wistar rats. Eur. J. Nutr. 2022, 61, 523–537. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Nowson, C.; Hure, A.J.; Smith, R.; Simpson, S.J.; Raubenheimer, D.; MacDonald-Wicks, L.; Collins, C.E. Lower Protein-to-Carbohydrate Ratio in Maternal Diet is Associated with Higher Childhood Systolic Blood Pressure up to Age Four Years. Nutrients 2015, 7, 3078–3093. [Google Scholar] [CrossRef]
- Nettleton, J.E.; Cho, N.A.; Klancic, T.; Nicolucci, A.C.; Shearer, J.; Borgland, S.L.; Johnston, L.A.; Ramay, H.R.; Noye Tuplin, E.; Chleilat, F.; et al. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut 2020, 69, 1807–1817. [Google Scholar] [CrossRef]
- Sideratou, T.; Atkinson, F.; Campbell, G.J.; Petocz, P.; Bell-Anderson, K.S.; Brand-Miller, J. Glycaemic Index of Maternal Dietary Carbohydrate Differentially Alters Fto and Lep Expression in Offspring in C57BL/6 Mice. Nutrients 2018, 10, 1342. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, Y.; Chen, M.; Hao, X.; Wang, S.; Yang, L.; Yin, Y.; Tan, C. A maternal high-fat/low-fiber diet impairs glucose tolerance and induces the formation of glycolytic muscle fibers in neonatal offspring. Eur. J. Nutr. 2021, 60, 2709–2718. [Google Scholar] [CrossRef] [PubMed]
- Sussman, D.; Germann, J.; Henkelman, M. Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring. Brain Behav. 2015, 5, e00300. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.S.; Johnson, C.A.; Rajan, R.; Owen, O.E. The metabolism of ketone bodies in developing human brain: Development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis. J. Neurochem. 1975, 25, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 2002, 19, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Shambaugh, G.E., 3rd. Fetal fuels. V. Ketone bodies inhibit pyrimidine biosynthesis in fetal rat brain. Am. J. Physiol. 1982, 243, E234–E239. [Google Scholar] [CrossRef] [PubMed]
- Shambaugh, G.E., 3rd; Angulo, M.C.; Koehler, R.R. Fetal fuels. VII. Ketone bodies inhibit synthesis of purines in fetal rat brain. Am. J. Physiol. 1984, 247, E111–E117. [Google Scholar] [CrossRef] [PubMed]
- Tanner, H.L.; Dekker Nitert, M.; Callaway, L.K.; Barrett, H.L. Ketones in Pregnancy: Why Is It Considered Necessary to Avoid Them and What Is the Evidence Behind Their Perceived Risk? Diabetes Care 2021, 44, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Churchill, J.A.; Berendes, H.W.; Nemore, J. Neuropsychological deficits in children of diabetic mothers. A report from the Collaborative Sdy of Cerebral Palsy. Am. J. Obstet. Gynecol. 1969, 105, 257–268. [Google Scholar] [CrossRef]
- Hassib, L.; de Oliveira, C.L.; Rouvier, G.A.; Kanashiro, A.; Guimarães, F.S.; Ferreira, F.R. Maternal microbiome disturbance induces deficits in the offspring’s behaviors: A systematic review and meta-analysis. Gut Microbes 2023, 15, 2226282. [Google Scholar] [CrossRef] [PubMed]
- Bédard, A.; Northstone, K.; Henderson, A.J.; Shaheen, S.O. Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes. Eur. Respir. J. 2017, 50, 1700073. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, A.; Fernando, R.L.; Dharmage, S.C.; Lodge, C.J.; Waidyatillake, N.T. The association between sugar intake during pregnancy and allergies in offspring: A systematic review and a meta-analysis of cohort studies. Nutr. Rev. 2022, 80, 904–918. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, L.; Huang, L.; Wu, M.; Tan, T.; Li, Q.; Zhong, C.; Wang, H.; Wang, W.; Sun, G.; et al. Association of maternal low-carbohydrate-diet score during pregnancy with allergic diseases at 2 years of age. Pediatr. Allergy Immunol. 2022, 33, e13842. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Ming, D.; Huang, C.; Xu, S.; Li, Z.; Wang, Z.; Liu, H.; Zeng, X.; Wang, F. Effect of maternal dietary starch-to-fat ratio and daily energy intake during late pregnancy on the performance and lipid metabolism of primiparous sows and newborn piglets. J. Anim. Sci. 2022, 100, skac033. [Google Scholar] [CrossRef] [PubMed]
- Kizirian, N.V.; Markovic, T.P.; Muirhead, R.; Brodie, S.; Garnett, S.P.; Louie, J.C.; Petocz, P.; Ross, G.P.; Brand-Miller, J.C. Macronutrient Balance and Dietary Glycemic Index in Pregnancy Predict Neonatal Body Composition. Nutrients 2016, 8, 270. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, X.; He, Y.; Shi, Y. Butyrate, but not propionate, reverses maternal diet-induced neurocognitive deficits in offspring. Pharmacol. Res. 2020, 160, 105082. [Google Scholar] [CrossRef]
- Hernandez, T.L.; Van Pelt, R.E.; Anderson, M.A.; Reece, M.S.; Reynolds, R.M.; de la Houssaye, B.A.; Heerwagen, M.; Donahoo, W.T.; Daniels, L.J.; Chartier-Logan, C.; et al. Women With Gestational Diabetes Mellitus Randomized to a Higher-Complex Carbohydrate/Low-Fat Diet Manifest Lower Adipose Tissue Insulin Resistance, Inflammation, Glucose, and Free Fatty Acids: A Pilot Study. Diabetes Care 2016, 39, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Xia, B.; Jin, X.; Zou, Q.; Zeng, Z.; Zhao, W.; Yan, S.; Li, L.; Yuan, S.; et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab. 2021, 33, 923–938.e926. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Manzano, M.; Bueno-Vargas, P.; Rueda, R.; Salto, R.; Giron, M.D.; Vilchez, J.D.; Cabrera, E.; Cano, A.; Castro, A.; et al. Feeding a slowly digestible carbohydrate diet during pregnancy of insulin-resistant rats prevents the excess of adipogenesis in their offspring. J. Nutr. Biochem. 2018, 61, 183–196. [Google Scholar] [CrossRef]
- Salto, R.; Girón, M.D.; Manzano, M.; Martín, M.J.; Vílchez, J.D.; Bueno-Vargas, P.; Cabrera, E.; Pérez-Alegre, M.; Andujar, E.; Rueda, R.; et al. Programming Skeletal Muscle Metabolic Flexibility in Offspring of Male Rats in Response to Maternal Consumption of Slow Digesting Carbohydrates during Pregnancy. Nutrients 2020, 12, 528. [Google Scholar] [CrossRef] [PubMed]
- Callanan, S.; Yelverton, C.A.; Geraghty, A.A.; O’Brien, E.C.; Donnelly, J.M.; Larkin, E.; Horan, M.K.; Mehegan, J.; McAuliffe, F.M. The association of a low glycaemic index diet in pregnancy with child body composition at 5 years of age: A secondary analysis of the ROLO study. Pediatr. Obes. 2021, 16, e12820. [Google Scholar] [CrossRef]
Study | Geographic Area | Study Design | Participants | Periods | Dietary | Outcomes |
---|---|---|---|---|---|---|
Bao et al. (2016) [20] | USA | Ongoing prospective cohort study | 4502 women with a history of GDM | 1991–2011 | Low-carbohydrate diets | Low-carbohydrate dietary patterns, especially those high in protein and fat from primarily animal foods, were associated with a higher risk of T2DM, while low-carb dietary patterns high in protein and fat from plant-based foods were not significantly associated with T2DM. |
Rayner et al. (2020) [21] | Australian | Australian longitudinal study on women’s health cohort | 9689 women | 2001 (aged 50–55) and 2013 (aged 62–67) | Low-carbohydrate diets | Carbohydrate restriction was associated with a higher incidence of T2DM in middle-aged women, independent of a history of GDM. |
Pang et al. (2017) [22] | Singapore | A birth cohort study | 1247 pregnant women | 18 and 46 y from 2009 to 2010 | Low-carbohydrate diets | Higher intake levels of both animal and vegetable protein were associated with a higher risk of GDM in Asian women. |
Saldana et al. (2004) [23] | USA | Prospective cohort study | 1698 women in pregnancy | 1 August 1995–31 May 2000 | Adding 100 kcal from carbohydrates/substituting fat for carbohydrates | Adding 100 kcal of carbohydrates to the diet was associated with a lower risk of impaired glucose tolerance and a 9% lower risk of GDM; Replacing carbohydrates with fat resulted in a significantly increased risk of GDM. |
Renault et al. (2015) [24] | Denmark | Treatment of obese pregnant women study | 425 women at 11–14 weeks gestation | April 2009 to March 2012 | / | Pregnant women who are obese can limit pregnancy weight gain by reducing their intake of sweets, snacks, and soft drinks. |
Schoenaker et al. (2016) [25] | Australia | An ongoing population-based cohort study | 9081 women aged 18–23 y | 2003–2012 | Mediterranean diet | Interventions that successfully implement a Mediterranean diet before pregnancy could significantly reduce the risk of GDM and HDP by optimizing preconception BMI. |
Zhang et al. (2021) [26] | China | A prospective cohort study | 10,126 women | 2014–2017 | / | Dietary GI, GL, and fiber intake influenced glucose homeostasis in Chinese pregnant women before and during pregnancy. |
Hinkle et al. (2019) [27] | Denmark | A prospective cohort study | 1274 pregnant women with GDM | 2012–2014 | Consumption of artificially sweetened beverages | Consumption of artificially sweetened beverages during pregnancy was associated with higher glycated hemoglobin (HbA1c), insulin, HOMA-IR, triglycerides, liver fat and obesity, and lower HDL at follow-up. |
Hillesund et al. (2014) [28] | Norway | A prospective, population-based, pregnancy cohort study | 66,597 women | 1999–2008 | High in complex carbohydrates | High consumption of fruits, vegetables, whole grains, potatoes, fish, milk, and drinking water during pregnancy may help normal-weight women achieve optimal pregnancy weight gain. |
Crowther et al. (2018) [29] | New Zealand | A multicenter, stepped wedge, cluster, randomized trial | 1080 pregnant women with GDM | / | / | More rigorous glycemic control in women with GDM resulted in a reduction in maternal and perinatal adverse outcomes. |
Hu et al. (2014) [30] | China | 140 pregnant women with GDM | / | Low GI staple diet | A low GI staple diet significantly reduced postprandial glucose levels in women with GDM. | |
Wrottesley et al. (2017) [31] | South Africa | A large longitudinal pregnancy cohort study | 1000 pregnant women | / | / | Increasing intake of whole grains, legumes, vegetables, and traditional meats, and reducing intake of refined, high-sugar, and high-fat diets, may reduce the risk of excessive weight gain. |
Skrede et al. (2018) [32] | Norway | The Norwegian mother and child cohort study | 55,056 women | 1999–2008 | High in complex carbohydrates | Women whose dietary scores tended to include Nordic fruits, root vegetables, cabbage, potatoes, oatmeal, whole grains, wild fish, game, berries, milk, and water during pregnancy had lower average BMIs and less weight gain at 8 years postpartum, benefiting from long-term weight regulation. |
Study | Geographic Area | Study Design | Participants/Model | Dietary | Outcomes |
---|---|---|---|---|---|
Kosiek et al. (2022) [106] | / | / | 30 2-month-old female Wistar rats | Ketogenic diet during gestation and lactation | The ketogenic diet reduced the weight of the offspring and impairs the physical and neurological development of their offspring. Stopping this diet early postpartum may initiate the compensatory process and considerable recovery of nervous system function. |
Viana et al. (2014) [107] | USA | Systemic reviews and meta-analyses | / | Low-GI diets | A low GI diet was associated with less insulin use and lower birth weight and was the most appropriate dietary intervention for patients with GDM. |
Crowther et al. (2018) [29] | New Zealand | A multicenter, stepped wedge, cluster, randomized trial | 1080 pregnant women with GDM | / | Stricter glycemic control in women with GDM significantly reduced large gestational age infants. |
Sussman et al. (2013) [108] | / | / | Female mice were fed a standard diet and a ketogenic diet before and during pregnancy | Ketogenic diet (0.6% carbohydrate, 67.4% fat, 15.3% protein) | Prenatal and early postnatal exposure to the ketogenic diet caused significant changes in the brain structure of newborns and led to physiological developmental delays. These changes may be accompanied by functional and behavioral changes in later postpartum life. |
Yisahak et al. (2021) [109] | USA | Diverse multisite cohort | 1948 pregnant women | Healthy diet with high-quality carbohydrates | High-quality carbohydrate diet before and during the first trimester was beneficial for fetal growth. |
Peraita et al. (2018) [110] | Spain | Two-phase retrospective population-based study | 1118 pregnant women | High-quality carbohydrate diet | A high-quality maternal diet was associated with a lower risk of newborn birth and a reduced risk of preterm birth. |
Zulyniak et al. (2020) [103] | Canada | Consortium of prospective cohort | 2160 mother–infant pairs | Plant-based diet | A plant-based diet during pregnancy was associated with a lower incidence of infant eczema 1 year later. |
Botto et al. (2016) [104] | USA | Multicenter population-based case–control study | 19,353 mothers | Diet with high carbohydrate quality | Better maternal diet quality (six components were positively scored: legumes, whole grains, fruits and nuts, vegetables, fish, and the ratio of monounsaturated to saturated fatty acid intake) was associated with a reduced occurrence of some conotruncal and septal heart defects. |
Zhu et al. (2017) [111] | Denmark | A longitudinal cohort | 918 mother-singleton child dyads | High refined-grain intake | Higher maternal refined-grain intake during pregnancy was significantly related to a greater body mass index and a higher risk of overweight or obesity at age 7 y among children. |
Helena et al. (2022) [112] | / | / | 23 female Wistar rats with 10-week-old | High-sugar, high fat diet | Maternal HFS diet increased body weight, visceral fat, and serum total cholesterol, triglyceride, and leptin levels in weaned male rats, and decreased hypothalamic weight and increased adult visceral fat. |
Sussman et al. (2013) [108] | / | / | Six-week-old female mice | Extremely low-carbohydrate diet (0.6% carbohydrate, 67.4% fat, 15.3% protein) | Prenatal and early postnatal exposure to the ketogenic diet caused significant changes in the brain structure of newborns and led to physiological developmental delays. These changes may be accompanied by functional and behavioral changes in later postpartum life. |
Blumfield et al. (2015) [113] | Australia | Prospective, longitudinal cohort | 129 mother–child dyads | Lower protein-to-carbohydrate ratio diet | The ratio of protein to carbohydrate intake during pregnancy was associated with the 4-year systolic blood pressure trajectory of children, and the systolic blood pressure of children was greatest during pregnancy when the proportion of high carbohydrate intake was high. |
Nettleton et al. (2020) [114] | / | / | Female Sprague Dawley rats | Low-dose aspartame and stevia consumption with an obesogenic diet | Maternal consumption of high-calorie sweeteners during pregnancy disrupted weight regulation, glucose control, and gut microbiota early in life in both mothers and offspring. |
Sideratou et al. (2018) [115] | / | / | C57BL/6 female mice | High GI diets | Mothers fed a high GI diet had higher expression of obesity-related genes in the placenta, and their offspring had 2.5 times higher expression of obesity-related genes in the hypothalamus at 20 weeks of age. The maternal rats’ high GI dietary carbohydrates during pregnancy are digested and absorbed more rapidly, reprogramming the offspring’s appetite. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, L.; Chen, X.; Sun, J.; Fan, M.; Qian, H.; Li, Y.; Wang, L. Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity. Nutrients 2024, 16, 2269. https://doi.org/10.3390/nu16142269
Xue L, Chen X, Sun J, Fan M, Qian H, Li Y, Wang L. Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity. Nutrients. 2024; 16(14):2269. https://doi.org/10.3390/nu16142269
Chicago/Turabian StyleXue, Lamei, Xiaofang Chen, Juan Sun, Mingcong Fan, Haifeng Qian, Yan Li, and Li Wang. 2024. "Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity" Nutrients 16, no. 14: 2269. https://doi.org/10.3390/nu16142269
APA StyleXue, L., Chen, X., Sun, J., Fan, M., Qian, H., Li, Y., & Wang, L. (2024). Maternal Dietary Carbohydrate and Pregnancy Outcomes: Quality over Quantity. Nutrients, 16(14), 2269. https://doi.org/10.3390/nu16142269