Obesity-Related Complications Including Dysglycemia Based on 1-h Post-Load Plasma Glucose in Children and Adolescents Screened before and after COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
- HOMA = FPG [mg/dL] × fasting insulin [mIU/L]/405;
- QUICKI = 1/log fasting insulin [mIU/L] + log FPG [mg/dL];
- Matsuda index = √fasting insulin [mIU/L] × FPG [mg/dL] × mean OGTT glucose [mg/dL] × mean OGTT insulin [mUI/L];
- AUC (ins/glu) = AUC-ins in OGTT/AUC-glu in OGTT (timepoints 0, 0.5h-PG, 1h-PG, 1.5h-PG, 2.0h-PG were included, calculation according to trapezoidal rule).
- T2D-IDF—patients fulfilling diagnostic criteria of T2D according to IDF—patients with T2D according to ADA and patients with 1h-PG plasma glucose > 209 mg/dL;
- Prediabetes-IDF—patients with IFG and/or IGT according to ADA, and/or HbA1c 5.7–6.4% (except for ones, qualified to T2D-IDF group);
- IH-1h—patients with NGT according to ADA and 1h-PG plasma glucose > 155–209 mg/dL;
- NGT-IDF—patients with NGT according to ADA and 1h-PG plasma glucose ≤ 155 mg/dL.
3. Results
3.1. Comparisons between the Patients Diagnosed before and after COVID-19 Pandemic
3.2. Comparisons between the Groups of Patients Diagnosed According to the Criteria of ADA [8]
3.3. Comparisons between the Groups of Patients Diagnosed According to the Criteria of IDF [13]
3.4. Characteristics of the Patients with T2D Diagnosed According to the Criteria of ADA and IDF
3.5. Characteristics of the Patients with T2D Diagnosed According to the Criteria of ADA and IDF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Overweight and Obesity. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 June 2024).
- Iacopetta, D.; Catalano, A.; Ceramella, J.; Pellegrino, M.; Marra, M.; Scali, E.; Sinicropi, M.S.; Aquaro, S. The Ongoing Impact of COVID-19 on Pediatric Obesity. Pediatr. Rep. 2024, 16, 135–150. [Google Scholar] [CrossRef]
- Ferentinou, E.; Koutelekos, I.; Pappa, D.; Manthou, P.; Dafogianni, C. The Impact of the COVID-19 Pandemic on Childhood Obesity: A Review. Cureus 2023, 15, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Vasile, C.M.; Padovani, P.; Rujinski, S.D.; Nicolosu, D.; Toma, C.; Turcu, A.A.; Cioboata, R. The Increase in Childhood Obesity and Its Association with Hypertension during Pandemics. J. Clin. Med. 2023, 12, 5909. [Google Scholar] [CrossRef]
- Fabin-Czepiel, K.; Pieczyńska-Chapuła, K.; Deja, G. “The obesity pandemic” in the COVID-19 pandemic—New treatment for an old problem. Pediatr. Endocrinol. Diabetes Metab. 2023, 29, 104–111. [Google Scholar] [CrossRef]
- Woolford, S.J.; Sidell, M.; Li, X.; Else, V.; Young, D.R.; Resnicow, K.; Koebnick, C. Changes in Body Mass Index Among Children and Adolescents During the COVID-19 Pandemic. JAMA 2021, 326, 1434–1436. [Google Scholar] [CrossRef] [PubMed]
- Piątkowska-Chmiel, I.; Krawiec, P.; Ziętara, K.J.; Pawłowski, P.; Samardakiewicz, M.; Pac-Kożuchowska, E.; Herbet, M. The Impact of Chronic Stress Related to COVID-19 on Eating Behaviors and the Risk of Obesity in Children and Adolescents. Nutrients 2024, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S17–S38. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2020, 42, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Makaroff, L.E. The need for international consensus on prediabetes. Lancet Diabetes Endocrinol. 2017, 5, 5–7. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Cyganek, K.; Gajewska, E.D.; Gawrecki, A.; Defects, C.H.; Clinic, P.; Diseases, M.; Kwiendacz, H. Standards of Care in Diabetes. Position Diabetes Pol. 2024, 4, 197–348. [Google Scholar]
- Chylińska-Frątczak, A.; Michalak, A.; Baranowska-Jaźwiecka, A.; Mianowska, B.; Szadkowska, A. Incidence of hyperglycaemic disorders in children and adolescents with obesity. Pediatr. Endocrinol. Diabetes Metab. 2022, 28, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M.; Manco, M.; Satman, I.; Chan, J.; Inês Schmidt, M.; Sesti, G.; Vanessa Fiorentino, T.; Abdul-Ghani, M.; Jagannathan, R.; Kumar Thyparambil Aravindakshan, P.; et al. International Diabetes Federation Position Statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res. Clin. Pract. 2024, 209. [Google Scholar] [CrossRef]
- Nyirjesy, S.C.; Sheikh, S.; Hadjiliadis, D.; De Leon, D.D.; Peleckis, A.J.; Eiel, J.N.; Kubrak, C.; Stefanovski, D.; Rubenstein, R.C.; Rickels, M.R.; et al. β-Cell secretory defects are present in pancreatic insufficient cystic fibrosis with 1-hour oral glucose tolerance test glucose ≥ 155 mg/dL. Pediatr. Diabetes 2018, 19, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Schmid, K.; Fink, K.; Holl, R.W.; Hebestreit, H.; Ballmann, M. Predictors for future cystic fibrosis-related diabetes by oral glucose tolerance test. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2014, 13, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Umano, G.R.; Galderisi, A.; Aiello, F.; Martino, M.; Camponesco, O.; Di Sessa, A.; Marzuillo, P.; Alfonso, P.; Miraglia Del Giudice, E. Obstructive sleep apnea (OSA) is associated with the impairment of beta-cell response to glucose in children and adolescents with obesity. Int. J. Obes. 2023, 47, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Enders-Seidlitz, H.; Raile, K.; Gong, M.; Galler, A.; Kuehnen, P.; Wiegand, S. Insulin Secretion Defect in Children and Adolescents with Obesity: Clinical and Molecular Genetic Characterization. J. Diabetes Res. 2024, 2024, 5558634. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Świąder, A.; Różdżyńska-Świątkowska, A.; Litwin, M. Polish 2012 growth references for preschool children. Eur. J. Pediatr. 2013, 172, 753–761. [Google Scholar] [CrossRef]
- Hani, N.S.; Thomas, I.H. Changes in Pediatric Type 2 Diabetes During the COVID-19 Pandemic. Pediatr. Ann. 2024, 53, e249–e253. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.; Dixit, N.; Pasha, S.; Sukumaran, A.; Topaloglu, A.K.; Armstrong, M.K.; Garg, P.; Karlson, C.; Bates, J.T.; Ansari, M.A.Y.; et al. New onset diabetes in children during the COVID-19 Pandemic: An assessment of biomarkers and psychosocial risk factors at play in Mississippi. Ann. Pediatr. Endocrinol. Metab. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Schluter, P.J.; Ahuriri-Driscoll, A.; Mohammed, J.; Singh, S. COVID-19 impact on overweight and obesity rates in Aotearoa|New Zealand 4-year-old children. Pediatr. Res. 2024, 95, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Belita, E.; Amores, A.; Riazi, N.A.; Carsley, S.; Vanderloo, L.M.; Carson, V.; Chaput, J.P.; Faulkner, G.; Leatherdale, S.T.; et al. Changes in breakfast and water consumption among adolescents in Canada: Examining the impact of COVID-19 in worsening inequity. BMC Nutr. 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Beynon, C.; Davies, L. The impact of the COVID-19 pandemic on childhood obesity rates, by Health Board area, in Wales, UK. J. Public Health 2024, 46, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Piesch, L.; Stojan, R.; Zinner, J.; Büsch, D.; Utesch, K.; Utesch, T. Effect of COVID-19 Pandemic Lockdowns on Body Mass Index of Primary School Children from Different Socioeconomic Backgrounds. Sport. Med. Open 2024, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Fäldt, A.; Nejat, S.; Durbeej, N.; Holmgren, A. Childhood Overweight and Obesity during and after the COVID-19 Pandemic. JAMA Pediatr. 2024, 178, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Woo, J.; Wi, W.Y.; Cho, K.-D.; Koo, M.; Hong, S.J.; Jung, Y.M.; Kim, H.Y.; Ahn, K.H.; Hong, S.-C.; et al. The impact of the COVID-19 pandemic on infant obesity: A nationwide retrospective cohort study. J. Infect. Public Health 2024, 17, 795–799. [Google Scholar] [CrossRef]
- Gutkowska, K.; Czarniecka-Skubina, E.; Hamułka, J.; Jeruszka-Bielak, M. Changes in eating behaviours and physical activity among primary schoolchildren aged 7-12 during the pandemic in the light of qualitative and quantitative research—Junior-Edu-Żywienie (JEŻ) Project. Ann. Agric. Environ. Med. 2024, 31, 78–86. [Google Scholar] [CrossRef]
- Bustamante, M.J.; Solis, J.M.; Tabera, C.M.; Maraz, N.; Gutiérrez, G.B.D.R.; Dipierri, J.E. Nutritional status of schoolchildren before and after confinement by COVID-19 (2019–2021) in Jujuy, Argentina. J. Biosoc. Sci. 2024, 1–10. [Google Scholar] [CrossRef]
- Morales-Cahuancama, B.; Verdezoto, N.; Gonzales-Achuy, E.; Quispe-Gala, C.; Bautista-Olortegui, W.; Hinojosa-Mamani, P.; Aparco, J.P. Exploring Children’s Knowledge of Healthy Eating, Digital Media Use, and Caregivers’ Perspectives to Inform Design and Contextual Considerations for Game-Based Interventions in Schools for Low-Income Families in Lima, Peru: Survey Study. JMIR Form. Res. 2024, 8, e49168. [Google Scholar] [CrossRef]
- Narvaez, L.; Mahler, P.B.; Baratti-Mayer, D.; Jeannot, E. Changes in Body Weight and Risk Factors for Overweight and Obesity in 5–6-Year-Old Children Attending School in Geneva. Children 2024, 11, 529. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Doi, S.K.; Isumi, A.; Matsuyama, Y.; Tani, Y.; Fujiwara, T. Impact of COVID-19 pandemic on children overweight in Japan in 2020. Pediatr. Obes. 2024, 19, e13128. [Google Scholar] [CrossRef] [PubMed]
- Yárnoz-Goñi, N.; Goñi-Sarriés, A.; Díez-Suárez, A.; Pírez, G.; Morata-Sampaio, L.; Sánchez-Villegas, A. COVID-19 Posttraumatic Stress Disorder and Mental Health among Spanish Adolescents: SESSAMO Project. J. Clin. Med. 2024, 13, 3114. [Google Scholar] [CrossRef] [PubMed]
- Pare, S.M.; Gunn, E.; Morrison, K.M.; Miller, A.L.; Duncan, A.M.; Buchholz, A.C.; Ma, D.W.L.; Tremblay, P.F.; Vallis, L.A.; Mercer, N.J.; et al. Testing a Biobehavioral Model of Chronic Stress and Weight Gain in Young Children (Family Stress Study): Protocol and Baseline Demographics for a Prospective Observational Study. JMIR Res. Protoc. 2024, 13, e48549. [Google Scholar] [CrossRef] [PubMed]
- Qadar, S.M.Z.; Naz, H.; Shamim, S.; Hashim, F.; Ahmed, S.; Kumar Mehraj, S. Prevalence of Obesity and its Effects in Patients With COVID-19: A Systematic Review and Meta-analysis. Hosp. Pharm. 2024, 59, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Feghaly, Z.; Aoun, R.; Mouawad, C.; Chamaa, B.; Dahboul, H.; Kassar, S.; Osseis, M.; Noun, R.; Chakhtoura, G. The Role of Obesity in the Poor Prognosis of COVID-19 Infection: A Review of 192 Patients. Interdiscip. Perspect. Infect. Dis. 2024, 1, 7512355. [Google Scholar] [CrossRef]
- Álvarez-Macías, A.; Úbeda-Iglesias, A.; Macías-Seda, J.; Gómez-Salgado, J. Factors related to mortality of patients with COVID-19 who are admitted to the ICU: Prognostic mortality factors of COVID-19 patients. Medicine 2024, 103, e38266. [Google Scholar] [CrossRef]
- Altunkaya, J.; Piernas, C.; Pouwels, K.B.; Jebb, S.A.; Clarke, P.; Astbury, N.M.; Leal, J. Associations between BMI and hospital resource use in patients hospitalised for COVID-19 in England: A community-based cohort study. Lancet Diabetes Endocrinol. 2024, 12, 462–471. [Google Scholar] [CrossRef]
- Xue, P.; Merikanto, I.; Delale, E.A.; Bjelajac, A.; Yordanova, J.; Chan, R.N.Y.; Korman, M.; Mota-Rolim, S.A.; Landtblom, A.-M.; Matsui, K.; et al. Associations between obesity, a composite risk score for probable long COVID, and sleep problems in SARS-CoV-2 vaccinated individuals. Int. J. Obes. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Srikanth, S.; Garg, V.; Subramanian, L.; Verma, J.; Sharma, H.; Klair, H.S.; Kavathia, S.A.; Teja, J.K.; Vasireddy, N.S.; Anmol, K.; et al. In-hospital outcomes in COVID-19 patients with non-alcoholic fatty liver disease by severity of obesity: Insights from national inpatient sample 2020. World J. Hepatol. 2024, 16, 912–919. [Google Scholar] [CrossRef]
- Buschner, A.; Katz, K.; Beyerlein, A. Comparison of fatalities due to COVID-19 and other nonexternal causes during the first five pandemic waves: Results from multiple cause of death statistics in Bavaria. Bundesgesundheitsblatt. Gesundheitsforschung. Gesundheitsschutz 2024, 67, 939–994. [Google Scholar] [CrossRef]
- Bjarnadóttir, K.J.; Perchiazzi, G.; Sidenbladh, C.L.; Larina, A.; Wallin, E.; Larsson, I.-M.; Franzén, S.; Larsson, A.O.; Sousa, M.L.A.; Segelsjö, M.; et al. Body mass index is associated with pulmonary gas and blood distribution mismatch in COVID-19 acute respiratory failure. A physiological study. Front. Physiol. 2024, 15, 1399407. [Google Scholar] [CrossRef]
- Christodoulou, A.; Katsarou, M.-S.; Emmanouil, C.; Gavrielatos, M.; Georgiou, D.; Tsolakou, A.; Papasavva, M.; Economou, V.; Nanou, V.; Nikolopoulos, I.; et al. A Machine Learning-Based Web Tool for the Severity Prediction of COVID-19. Biotech 2024, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, C.; Willis, Z.I.; Nakamura, M.M.; Wolf, J.; Little, C.; Maron, G.M.; Sue, P.K.; Anosike, B.I.; Miller, C.; Bio, L.L.; et al. Risk Factors for Pediatric Critical COVID-19: A Systematic Review and Meta-Analysis. J. Pediatr. Infect. Dis. Soc. 2024, 13, 352–362. [Google Scholar] [CrossRef]
- Perez, A.V.; Viana, M.V.; Dall’Orto Thomazini, L.; Loss, S.H.; de Machado, F.C.R.; do Nascimento, A.G.; Kropidlofscky, A.P.; Gerchman, F.; Leitão, C.B.; Rech, T.H.; et al. BMI and mortality in critically ill patients with COVID-19: Another brick in the wall of the obesity paradox. Obesity 2024, 32, 1474–1482. [Google Scholar] [CrossRef]
- Currey, J.; Ellsworth, C.; Khatun, M.S.; Wang, C.; Chen, Z.; Liu, S.; Midkiff, C.; Xiao, M.; Ren, M.; Liu, F.; et al. Upregulation of inflammatory genes and pathways links obesity to severe COVID-19. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167322. [Google Scholar] [CrossRef]
- Barron, E.; Sharp, S.J.; Khunti, K.; Bakhai, C.; Wareham, N.J.; Valabhji, J. Prediabetes, participation in the English National Health Service Diabetes Prevention Programme, and associations with COVID-19-related mortality: A whole population study. Diabetes Res. Clin. Pract. 2024, 212, 11169. [Google Scholar] [CrossRef]
- Maguolo, A.; Ippolito, G.; Mazzuca, G.; Bertaiola, M.; Rudi, D.; Marchiori, E.; Venier, V.; Bordin, F.; Morandi, A.; Maffeis, C.; et al. Feasibility and effectiveness of a distance-adapted physical activity intervention in adolescents with obesity during the COVID-19 pandemic. Minerva Pediatr. 2024, 76, 1–13. [Google Scholar] [CrossRef]
- Holt, G.; Hughes, D. Consensus study on UK weight management services’ response to COVID-19: Best practices in outpatient management, governance and digital solutions. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Swamy, A.M. Obesity: Post-Pandemic Weight Management. Pediatr. Clin. N. Am. 2024, 71, 645–652. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, R.; Vázquez-Rodríguez, A.; Bellahmar-Lkadiri, S.; Salmonte-Rodríguez, A.; Siverio-Díaz, A.R.; De Paz-Pérez, P.; González-Pérez, A.M.; Brito-Brito, P.R. Effectiveness of a Nurse-Led Telehealth Intervention to Improve Adherence to Healthy Eating and Physical Activity Habits in Overweight or Obese Young Adults. Nutrients 2024, 16, 2217. [Google Scholar] [CrossRef]
- Basterfield, L.; Galna, B.; Burn, N.L.; Batten, H.; Weston, M.; Goffe, L.; Lawn, M.; Weston, K.L. Back to ‘normal’? BMI, physical fitness and health-related quality of life of children from North East England before, during and after the COVID-19 lockdowns. J. Sports Sci. 2024, 42, 688–700. [Google Scholar] [CrossRef]
- Elperin, A. Supportive Interventions in Managing Eating Disorders: A Review of the Evolving Medical Professional Landscape. Adv. Mind. Body. Med. 2024, 28, 15–19. [Google Scholar]
- Cimino, S. Parental Neglect and Childhood Obesity Amidst COVID-19: A Developmental Psychopathology Perspective on Health and Developmental Risks. Nutrients 2024, 16, 2162. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Park, R.Y.; Eastwood, S.V.; Eto, F.; Morton, C.E.; Stow, D.; Bacon, S.; Mehrkar, A.; Morley, J.; Dillingham, I.; et al. Trends in weight gain recorded in English primary care before and during the Coronavirus-19 pandemic: An observational cohort study using the OpenSAFELY platform. PLoS Med. 2024, 21, e1004398. [Google Scholar] [CrossRef]
- Lechner, K.; Lechner, B.; Crispin, A.; Schwarz, P.E.H.; von Bibra, H. Waist-to-height ratio and metabolic phenotype compared to the Matsuda index for the prediction of insulin resistance. Sci. Rep. 2021, 11, 8224. [Google Scholar] [CrossRef]
- La Valle, A.; d’Annunzio, G.; Campanello, C.; Tantari, G.; Pistorio, A.; Napoli, F.; Patti, G.; Crocco, M.; Bassi, M.; Minuto, N.; et al. Are glucose and insulin levels at all time points during OGTT a reliable marker of diabetes mellitus risk in pediatric obesity? J. Endocrinol. Investig. 2023, 46, 1685–1694. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Tikka, M.; Rojas Gil, A.P.; Partsalaki, I.; Spiliotis, B.E. Glucose tolerance and insulin sensitivity markers in children and adolescents with excess weight. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5986–5992. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, K.; Horodnicka-Józwa, A.; Jackowski, T.; Strączek, K.; Biczysko-Mokosa, A.; Walczak, M.; Petriczko, E. Nonalcoholic fatty liver disease in children with obesity–observations from one clinical centre in the Western Pomerania region. Front. Endocrinol. 2022, 13, 992264. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Chung, S.T.; Springer, M.; Kim, J.Y.; Chen, P.; Chhabra, A.; Cree, M.G.; Diniz Behn, C.; Sumner, A.E.; Arslanian, S.A.; et al. Estimating insulin sensitivity and β-cell function from the oral glucose tolerance test: Validation of a new insulin sensitivity and secretion (ISS) model. Am. J. Physiol. Endocrinol. Metab. 2024, 326, E454–E471. [Google Scholar] [CrossRef]
- Malagón-Soriano, V.A.; Ledezma-Forero, A.J.; Espinel-Pachon, C.F.; Burgos-Cárdenas, Á.J.; Garces, M.F.; Ortega-Ramírez, G.E.; Franco-Vega, R.; Peralta-Franco, J.J.; Maldonado-Acosta, L.M.; Rubio-Romero, J.A.; et al. Surrogate indices of insulin resistance using the Matsuda index as reference in adult men—A computational approach. Front. Endocrinol. 2024, 15, 1343641. [Google Scholar] [CrossRef]
All | PRE | POST | p * | |
---|---|---|---|---|
N (m/f) | 263 (134/129) | 113 (59/54) | 150 (75/75) | |
Age [years] | 13.6 (11.5–15.9) | 13.5 (11.7–16.1) | 13.4 (11.1–15.8) | 0.782 |
Height [cm] | 165.0 (155.0–172.0) | 165.0 (155.0–172.0) | 165.0 (154.0–173.0) | 0.578 |
Weight [kg] | 87.1 (69.8–105.0) | 85.1 (71.0–96.7) | 89.0 (69.0–108.6) | 0.223 |
BMI [kg/m2] | 31.2 (28.5–35.2) | 30.8 (28.6–33.2) | 32.0 (28.0–37.0) | 0.085 |
BMI z-score | 2.39 (2.11–2.69) | 2.31 (2.07–2.53) | 2.49 (2.15–2.87) | 0.056 |
All | PRE | POST | p * | |
---|---|---|---|---|
HOMA | 3.35 (2.17–5.05) | 3.54 (2.46–5.05) | 3.14 (2.12–5.05) | 0.159 |
QUICKI | 0.32 (0.31–0.34) | 0.32 (0.30–0.33) | 0.33 (0.31–0.34) | 0.006 |
Matsuda index | 2.71 (1.90–3.78) | 2.59 (1.72–3.67) | 2.88 (2.08–4.09) | 0.044 |
AUC (ins/glu) | 0.94 (0.62–1.26) | 0.98 (0.65–1.55) | 0.87 (0.60–1.15) | 0.003 |
AUC-glu | 255 (231–280) | 250 (224–278) | 258 (233–282) | 0.090 |
AUC-ins | 235 (153–333) | 245 (161–378) | 221 (148–314) | 0.114 |
HbA1c [%] | 5.4 (5.2–5.6) | 5.4 (5.2–5.6) | 5.4 (5.2–5.6) | 0.544 |
T-Ch [mg/dL] | 160 (142–180) | 165 (146–188) | 156.5 (138–178) | 0.026 |
HDL [mg/dL] | 43 (37–49) | 43.5 (37–49) | 43 (37–49) | 0.667 |
LDL [mg/dL] | 108 (91–132) | 106 (85–125) | 110.5 (96–134) | 0.081 |
TG [mg/dL] | 101 (78–139) | 101.5 (85–142) | 101 (74–137) | 0.221 |
Uric acid [mg/dL] | 6.20 (5.38–7.12) | 6.34 (5.50–7.25) | 6.05 (5.21–7.06) | 0.227 |
Creatinine [mg/dL] | 0.60 (0.50–0.71) | 0.59 (0.49–0.70) | 0.61 (0.52–0.71) | 0.362 |
ALT [IU/L] | 23 (18–31) | 24 (16–35) | 23 (19–29) | 0.680 |
AST [IU/L] | 23.5 (17–31) | 22.5 (18–29) | 25 (16–34) | 0.852 |
NGT | Prediabetes | T2D | p * | |
---|---|---|---|---|
N (m/f) | 182 (89/93) | 74 (41/33) | 7 (4/3) | |
Age [years] | 13.5 (11.3–16.2) | 13.6 (11.8–15.8) | 15.2 (11.9–15.8) | 0.761 |
Height [cm] | 165 (155–173) | 165 (155–172) | 165 (161.5–177) | 0.771 |
Weight [kg] | 86.8 (68.4–104.0) | 87.4 (74.2–105.0) | 98.5 (80.0–108.0) | 0.622 |
BMI [kg/m2] | 31.1 (28.1–35.5) | 32.1 (29.0–34.8) | 31.2 (29.4–37.8) | 0.556 |
BMI z-score | 2.37 (2.07–2.70) | 2.44 (2.19–2.64) | 2.55 (2.01–2.97) | 0.565 |
NGT | Prediabetes | T2D | p * | |
---|---|---|---|---|
HOMA | 3.16 (2.01–4.73) | 3.61 (2.47–5.52) | 5.31 (3.93–5.81) | 0.002 |
QUICKI | 0.32 (0.31–0.34) | 0.32 (0.30–0.33) | 0.30 (0.30–0.31) | <0.001 |
Matsuda index | 3.07 (2.08–4.35) | 2.19 (1.47–2.91) | 1.76 (1.22–2.73) | <0.001 |
AUC (ins/glu) | 0.98 (0.59–1.23) | 1.01 (0.75–1.28) | 1.01 (0.75–1.28) | 0.054 |
AUC-glu | 244 (223–266) | 284 (257–311) | 284 (257–311) | <0.001 |
AUC-ins | 212 (140–314) | 279 (207–382) | 279 (207–382) | <0.001 |
HbA1c [%] | 5.3 (5.2–5.5) | 5.6 (5.4–5.8) | 6.5 (5.5–8.0) | <0.001 |
T-Ch [mg/dL] | 157 (140–176) | 157 (140–176) | 185 (165–204) | 0.009 |
HDL [mg/dL] | 43.5 (38–49) | 43.5 (38–49) | 46 (38–52) | 0.254 |
LDL [mg/dL] | 106 (84–125) | 106 (84–125) | 139 (116–173) | 0.002 |
TG [mg/dL] | 96 (74–125) | 96 (74–125) | 153 (114–169) | <0.001 |
Uric acid [mg/dL] | 6.05 (5.21–7.06) | 6.55 (5.54–7.30) | 7.22 (6.22–9.70) | 0.022 |
Creatinine [mg/dL] | 0.61 (0.50–0.70) | 0.60 (0.49–0.71) | 0.72 (0.54–0.80) | 0.189 |
ALT [IU/L] | 22 (18–29) | 24 (18–40) | 22.5 (28–27) | 0.195 |
AST [IU/L] | 22 (17–29) | 25 (17–35) | 46 (18–65) | 0.068 |
NGT-IDF | IH-1h | Prediabetes-IDF | T2D-IDF | p * | |
---|---|---|---|---|---|
N (m/f) | 144 (65/79) | 37 (23/14) | 71 (40/31) | 11 (6/5) | |
Age [years] | 13.4 (11.1–16.1) | 14.1 (11.9–16.7) | 13.5 (11.4–15.8) | 14.4 (12.9–15.8) | 0.678 |
Height [cm] | 163.5 (154.5–170) | 166 (155–175) | 165.5 (155–172) | 165 (161.5–177) | 0.551 |
Weight [kg] | 84.4 (69.0–104.0) | 91.0 (67.4–113.0) | 86.3 (74.0–106.4) | 98.5 (82.0–105.0) | 0.488 |
BMI [kg/m2] | 31.1 (28.1–35.0) | 31.8 (27.4–36.8) | 32.0 (29.0–34.6) | 32.1 (29.4–37.8) | 0.705 |
BMI z-score | 2.37 (2.09–2.68) | 2.39 (2.05–2.84) | 2.42 (2.19–2.62) | 2.55 (2.01–2.97) | 0.727 |
NGT-IDF | IH-1h | Prediabetes-IDF | T2D-IDF | p * | |
---|---|---|---|---|---|
HOMA | 3.28 (2.10–4.90) | 2.93 (1.95–4.70) | 3.60 (2.47–5.40) | 5.31 (3.82–5.81) | 0.011 |
QUICKI | 0.32 (0.31–0.34) | 0.33 (0.32–0.35) | 0.32 (0.30–0.33) | 0.30 (0.30–0.31) | 0.003 |
Matsuda index | 3.07 (2.08–4.55) | 3.08 (1.99–3.60) | 2.21 (1.51–2.91) | 1.76 (1.20–2.75) | <0.001 |
AUC (ins/glu) | 0.89 (0.60–1.23) | 0.76 (0.55–1.27) | 1.01 (0.75–1.30) | 0.88 (0.47–1.13) | 0.102 |
AUC-glu | 235 (220–254) | 273 (267–284) | 283 (257–306) | 353 (335–385) | <0.001 |
AUC-ins | 210 (134–298) | 214 (153–346) | 279 (207–382) | 278 (178–410) | 0.002 |
HbA1c [%] | 5.3 (5.1–5.5) | 5.35 (5.2–5.5) | 5.6 (5.4–5.8) | 5.6 (5.4–6.7) | <0.001 |
T-Ch [mg/dL] | 157 (141–177) | 152.5 (130–175) | 166 (144–194) | 170 (157–192) | 0.063 |
HDL [mg/dL] | 44 (38–50) | 43 (37–49) | 40 (37–49) | 40 (35–50) | 0.442 |
LDL [mg/dL] | 106 (86–125) | 108 (78–129) | 113.5 (98–141) | 121 (106–144) | 0.013 |
TG [mg/dL] | 96 (74–127) | 96 (69–124) | 123.5 (84–177) | 152 (114–169) | 0.001 |
Uric acid [mg/dL] | 6.03 (5.15–7.06) | 6.05 (5.30–7.09) | 6.58 (5.50–7.30) | 7.06 (6.05–8.90) | 0.070 |
Creatinine [mg/dL] | 0.60 (0.50–0.70) | 0.63 (0.49–0.73) | 0.58 (0.48–0.71) | 0.68 (0.54–0.77) | 0.262 |
ALT [IU/L] | 22 (17–28) | 26 (21–35) | 24 (18–40) | 22.5 (18–33) | 0.028 |
AST [IU/L] | 22 (17–28) | 25 (16–41) | 25 (17–35) | 46 (18–65) | 0.038 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyczyńska, J.; Olejniczak, A.; Różycka, P.; Chylińska-Frątczak, A.; Michalak, A.; Smyczyńska, U.; Mianowska, B.; Pietrzak, I.; Szadkowska, A. Obesity-Related Complications Including Dysglycemia Based on 1-h Post-Load Plasma Glucose in Children and Adolescents Screened before and after COVID-19 Pandemic. Nutrients 2024, 16, 2568. https://doi.org/10.3390/nu16152568
Smyczyńska J, Olejniczak A, Różycka P, Chylińska-Frątczak A, Michalak A, Smyczyńska U, Mianowska B, Pietrzak I, Szadkowska A. Obesity-Related Complications Including Dysglycemia Based on 1-h Post-Load Plasma Glucose in Children and Adolescents Screened before and after COVID-19 Pandemic. Nutrients. 2024; 16(15):2568. https://doi.org/10.3390/nu16152568
Chicago/Turabian StyleSmyczyńska, Joanna, Aleksandra Olejniczak, Paulina Różycka, Aneta Chylińska-Frątczak, Arkadiusz Michalak, Urszula Smyczyńska, Beata Mianowska, Iwona Pietrzak, and Agnieszka Szadkowska. 2024. "Obesity-Related Complications Including Dysglycemia Based on 1-h Post-Load Plasma Glucose in Children and Adolescents Screened before and after COVID-19 Pandemic" Nutrients 16, no. 15: 2568. https://doi.org/10.3390/nu16152568
APA StyleSmyczyńska, J., Olejniczak, A., Różycka, P., Chylińska-Frątczak, A., Michalak, A., Smyczyńska, U., Mianowska, B., Pietrzak, I., & Szadkowska, A. (2024). Obesity-Related Complications Including Dysglycemia Based on 1-h Post-Load Plasma Glucose in Children and Adolescents Screened before and after COVID-19 Pandemic. Nutrients, 16(15), 2568. https://doi.org/10.3390/nu16152568