Dietary Intakes of Copper and Selenium in Association with Bone Mineral Density
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data
2.3. Statistics
3. Results
3.1. Dietary Intakes
3.2. Dietary Intakes and BMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahl, S.L.; Rucker, R.B.; Niklason, L.E. Effects of copper and cross-linking on the extracellular matrix of tissue-engineered arteries. Cell Transplant. 2005, 14, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Rucker, R.B.; Murray, J.; Riggins, R.S. Nutritional copper deficiency and penicillamine administration: Some effects on bone collagen and arterial elastin crosslinking. Adv. Exp. Med. Biol. 1977, 86B, 619–648. [Google Scholar] [PubMed]
- Rył, A.; Miazgowski, T.; Szylińska, A.; Turoń-Skrzypińska, A.; Jurewicz, A.; Bohatyrewicz, A.; Rotter, I. Bone health in aging men: Does zinc and cuprum level matter? Biomolecules 2021, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.P.; Rios, S.; Gonzalez, M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell Biochem. 2002, 85, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Turnlund, J.R. Human whole-body copper metabolism. Am. J. Clin. Nutr. 1998, 67, 960S–964S. [Google Scholar] [CrossRef] [PubMed]
- Klevay, L.M. The contemporaneous epidemic of chronic, copper deficiency. J. Nutr. Sci. 2022, 11, e89. [Google Scholar] [CrossRef]
- Qu, X.; He, Z.; Qiao, H.; Zhai, Z.; Mao, Z.; Yu, Z.; Dai, K. Serum copper levels are associated with bone mineral density and total fracture. J. Orthop. Translat. 2018, 14, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Harvey, L.; Majask-Newman, G.; Fairweather-Tait, S.; Flynn, A.; Cashman, K. Effect of dietary copper intakes on biochemical markers of bone metabolism in healthy adult males. Eur. J. Clin. Nutr. 1999, 53, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Strause, L.; Saltman, P.; Smith, K.T.; Bracker, M.; Andon, M.B. Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J. Nutr. 1994, 124, 1060–1064. [Google Scholar] [CrossRef]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 2848–2853. [Google Scholar] [CrossRef]
- Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef]
- Zamamiri-Davis, F.; Lu, Y.; Thompson, J.T.; Prabhu, K.S.; Reddy, P.V.; Sordillo, L.M.; Reddy, C.C. Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic. Biol. Med. 2002, 32, 890–897. [Google Scholar] [CrossRef]
- Xie, H.; Wang, N.; He, H.; Yang, Z.; Wu, J.; Yang, T.; Wang, Y. The association between selenium and bone health: A meta-analysis. Bone Joint Res. 2023, 12, 423–432. [Google Scholar] [CrossRef]
- Hoeg, A.; Gogakos, A.; Murphy, E.; Mueller, S.; Köhrle, J.; Reid, D.M.; Glüer, C.C.; Felsenberg, D.; Roux, C.; Eastell, R.; et al. Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 2012, 97, 4061–4070. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Nicholson, G.C.; Kotowicz, M.A. Cohort profile: Geelong Osteoporosis Study. Int. J. Epidemiol. 2012, 41, 1565–1575. [Google Scholar] [CrossRef]
- Sanders, K.M.; Pasco, J.A.; Ugoni, A.M.; Nicholson, G.C.; Seeman, E.; Martin, T.J.; Skoric, B.; Panahi, S.; Kotowicz, M.A. The exclusion of high trauma fractures may underestimate the prevalence of bone fragility fractures in the community: The Geelong Osteoporosis Study. J. Bone Miner. Res. 1998, 13, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Sanders, K.M.; Henry, M.J.; Nicholson, G.C.; Seeman, E.; Kotowicz, M.A. Calcium intakes among Australian women: Geelong Osteoporosis Study. Aust. N. Z. J. Med. 2000, 30, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, C.; Rutishauser, I.; Conn, J.; O’Dea, K. Reproducibility of a meal-based food frequency questionnaire. The influence of format and time interval between questionnaires. Eur. J. Clin. Nutr. 1994, 48, 795–809. [Google Scholar]
- Pasco, J.A.; Jacka, F.N.; Williams, L.J.; Evans-Cleverdon, M.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Ball, M.J.; Berk, M. Dietary selenium and major depression: A nested case-control study. Complement. Ther. Med. 2012, 20, 119–123. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; NHMRC: Canberra, Australia, 2006.
- Pasco, J.A.; Seeman, E.; Henry, M.J.; Merriman, E.N.; Nicholson, G.C.; Kotowicz, M.A. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 2006, 17, 1404–1409. [Google Scholar] [CrossRef]
- Chaudhri, M.A.; Kemmler, W.; Harsch, I.; Watling, R.J. Plasma copper and bone mineral density in osteopenia: An indicator of bone mineral density in osteopenic females. Biol. Trace Elem. Res. 2009, 129, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi-Roshan, M.; Ebrahimi, M.; Ebrahimi, A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin. Cases Miner. Bone Metab. 2015, 12, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Eaton-Evans, J.; McIlrath, E.M.; Jackson, W.E.; McCartney, H.; Strain, J.J. Copper supplementation and the maintenance of bone mineral density in middle-aged women. J. Trace Elem. Exp. Med. 1996, 9, 87–94. [Google Scholar] [CrossRef]
- Cruz, K.J.C.; de Oliveira, A.R.S.; Fontenelle, L.C.; Morais, J.B.S.; de Sousa Melo, S.R.; Dos Santos, L.R.; de Sousa, T.G.V.; de Freitas, S.T.; Henriques, G.S.; Bordin, S.; et al. Relationship between zinc, selenium, and magnesium status and markers of metabolically healthy and unhealthy obesity phenotypes. Biol. Trace Elem. Res. 2024, 202, 3449–3464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, S.; Yu, Y.; Bi, L.; Tian, J.; Zhang, L. Associations of dietary selenium intake with the risk of chronic diseases and mortality in US adults. Front. Nutr. 2024, 11, 1363299. [Google Scholar] [CrossRef]
- Xue, G.; Liu, R. Association between dietary selenium intake and bone mineral density in the US general population. Ann. Transl. Med. 2022, 10, 869. [Google Scholar] [CrossRef]
- Wolf, R.L.; Cauley, J.A.; Pettinger, M.; Jackson, R.; Lacroix, A.; Leboff, M.S.; Lewis, C.E.; Nevitt, M.C.; Simon, J.A.; Stone, K.L.; et al. Lack of a relation between vitamin and mineral antioxidants and bone mineral density: Results from the Women’s Health Initiative. Am. J. Clin. Nutr. 2005, 82, 581–588. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, X.; Chen, Q.; Hao, L. Independent and combined associations of dietary antioxidant intake with bone mineral density and risk of osteoporosis among elderly population in United States. J. Orthop. Sci. 2024, 29, 1064–1072. [Google Scholar] [CrossRef]
Copper | Selenium | |||||
---|---|---|---|---|---|---|
Lowest Tertile | Upper Tertiles | p | Lowest Tertile | Upper Tertiles | p | |
n = 174 | n = 348 | n = 175 | n = 347 | |||
Age (y) | 46.0 (32.5–64.1) | 52.8 (37.0–66.0) | 0.024 | 46.6 (34.1–63.3) | 52.3 (36.4–65.8) | 0.082 |
Weight (kg) | 68.4 (±14.1) | 68.2 (±12.2) | 0.859 | 68.5 (±13.7) | 68.1 (±12.4) | 0.729 |
Height (cm) | 161.8 (±6.6) | 161.2 (±6.2) | 0.280 | 161.4 (±6.5) | 161.4 (±6.2) | 0.958 |
BMI (kg/m2) | 26.1 (±5.0) | 26.3 (±4.8) | 0.658 | 26.3 (±5.0) | 26.2 (±4.8) | 0.803 |
BMD * (g/cm2) | ||||||
spine | 1.166 (±0.184) | 1.183 (±0.181) | 0.322 | 1.168 (±0.183) | 1.181 (±0.182) | 0.440 |
femoral neck | 0.918 (±0.165) | 0.931 (±0.153) | 0.392 | 0.917 (±0.162) | 0.932 (±0.154) | 0.317 |
whole body | 1.126 (±0.107) | 1.136 (±0.108) | 0.314 | 1.130 (±0.107) | 1.134 (±0.108) | 0.678 |
UD-forearm | 0.305 (±0.055) | 0.313 (±0.064) | 0.129 | 0.306 (±0.057) | 0.313 (±0.063) | 0.209 |
mid-forearm | 0.665 (±0.088) | 0.671 (±0.091) | 0.416 | 0.665 (±0.089) | 0.671 (±0.090) | 0.452 |
Prior fracture | 31 (17.8%) | 47 (13.5%) | 0.193 | 26 (14.9%) | 52 (15.0%) | 0.969 |
Hormone therapy | 12 (6.9%) | 25 (7.2%) | 0.904 | 16 (9.1%) | 21 (6.1%) | 0.194 |
Oral glucocorticoids | 1 (0.6%) | 2 (0.6%) | 1 | 1 (0.6%) | 1 (0.6%) | 1 |
Physically active | 129 (74.1%) | 262 (75.3%) | 0.775 | 133 (76.0%) | 258 (74.4%) | 0.682 |
Smoker | 25 (14.4%) | 36 (10.3%) | 0.177 | 19 (10.9%) | 42 (12.1%) | 0.676 |
Alcohol | 36 (20.7%) | 70 (20.1%) | 0.878 | 35 (20.0%) | 71 (20.5%) | 0.902 |
Dietary intakes | ||||||
energy (MJ) | 6.1 (5.2–7.3) | 8.8 (7.6–10.7) | <0.001 | 6.1 (5.2–7.2) | 8.8 (7.7–10.8) | <0.001 |
calcium (mg) | 557 (365–767) | 632 (428–889) | 0.006 | 492 (308–714) | 677 (460–906) | <0.001 |
Variable | Beta Coef | SE Coef | p | |
---|---|---|---|---|
(a) Copper | ||||
BMD spine | Lowest tertile | −0.03196 | 0.01468 | 0.030 |
(age-mean) * | −0.0079237 | 0.0008789 | <0.001 | |
(age-mean)2 | −0.00010037 | 0.00002526 | <0.001 | |
(age-mean)3 | 0.00000685 | 0.00000138 | <0.001 | |
weight | 0.0035211 | 0.0005465 | <0.001 | |
BMD femoral neck | Lowest tertile | −0.03093 | 0.01158 | 0.008 |
(age-mean) | −0.0043565 | 0.0003131 | <0.001 | |
(age-mean)2 | - | - | - | |
(age-mean)3 | - | - | - | |
weight | 0.0047170 | 0.0004257 | <0.001 | |
BMD whole body | Lowest tertile | −0.021007 | 0.006990 | 0.003 |
(age-mean) | −0.0039753 | 0.0004184 | <0.001 | |
(age-mean)2 | −0.00008278 | 0.00001203 | <0.001 | |
(age-mean)3 | 0.00000198 | 0.00000066 | 0.003 | |
weight | 0.0039798 | 0.0002601 | <0.001 | |
BMD UD-forearm | Lowest tertile | −0.013200 | 0.004740 | 0.006 |
(age-mean) | −0.0019645 | 0.0002840 | <0.001 | |
(age-mean)2 | −0.00006452 | 0.00000814 | <0.001 | |
(age-mean)3 | 0.00000098 | 0.00000044 | 0.029 | |
weight | 0.0008687 | 0.0001762 | <0.001 | |
BMD mid-forearm | Lowest tertile | −0.016453 | 0.005961 | 0.006 |
(age-mean) | −0.0038395 | 0.0003569 | <0.001 | |
(age-mean)2 | −0.00011123 | 0.00001025 | <0.001 | |
(age-mean)3 | 0.00000207 | 0.00000056 | <0.001 | |
weight | 0.0017776 | 0.0002215 | <0.001 | |
(b) Selenium | ||||
BMD spine | Lowest tertile | −0.02820 | 0.01464 | 0.055 |
(age-mean) | −0.0079088 | 0.0008797 | <0.001 | |
(age-mean)2 | −0.00010295 | 0.00002528 | <0.001 | |
(age-mean)3 | 0.00000688 | 0.00000138 | <0.001 | |
weight | 0.0035218 | 0.0005470 | <0.001 | |
BMD femoral neck | Lowest tertile | −0.03027 | 0.01155 | 0.009 |
(age-mean) | −0.0043367 | 0.0003125 | <0.001 | |
(age-mean)2 | - | - | - | |
(age-mean)3 | - | - | - | |
weight | 0.0047253 | 0.0004259 | <0.001 | |
BMD whole body | Lowest tertile | −0.015833 | 0.006992 | 0.024 |
(age-mean) | −0.0039564 | 0.0004199 | <0.001 | |
(age-mean)2 | −0.00008437 | 0.00001208 | <0.001 | |
(age-mean)3 | 0.00000199 | 0.00000066 | 0.003 | |
weight | 0.0039784 | 0.0002611 | <0.001 | |
BMD UD-forearm | Lowest tertile | −0.012806 | 0.004734 | 0.007 |
(age-mean) | −0.0019651 | 0.0002842 | <0.001 | |
(age-mean)2 | −0.00006563 | 0.00000814 | <0.001 | |
(age-mean)3 | 0.00000099 | 0.00000045 | 0.026 | |
weight | 0.0008672 | 0.0001763 | <0.001 | |
BMD mid-forearm | Lowest tertile | −0.017365 | 0.005946 | 0.004 |
(age-mean) | −0.0038447 | 0.0003567 | <0.001 | |
(age-mean)2 | −0.00011268 | 0.00001024 | <0.001 | |
(age-mean)3 | 0.00000210 | 0.00000056 | <0.001 | |
weight | 0.0017764 | 0.0002213 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasco, J.A.; Anderson, K.B.; Williams, L.J.; Stuart, A.L.; Hyde, N.K.; Holloway-Kew, K.L. Dietary Intakes of Copper and Selenium in Association with Bone Mineral Density. Nutrients 2024, 16, 2777. https://doi.org/10.3390/nu16162777
Pasco JA, Anderson KB, Williams LJ, Stuart AL, Hyde NK, Holloway-Kew KL. Dietary Intakes of Copper and Selenium in Association with Bone Mineral Density. Nutrients. 2024; 16(16):2777. https://doi.org/10.3390/nu16162777
Chicago/Turabian StylePasco, Julie A., Kara B. Anderson, Lana J. Williams, Amanda L. Stuart, Natalia K. Hyde, and Kara L. Holloway-Kew. 2024. "Dietary Intakes of Copper and Selenium in Association with Bone Mineral Density" Nutrients 16, no. 16: 2777. https://doi.org/10.3390/nu16162777
APA StylePasco, J. A., Anderson, K. B., Williams, L. J., Stuart, A. L., Hyde, N. K., & Holloway-Kew, K. L. (2024). Dietary Intakes of Copper and Selenium in Association with Bone Mineral Density. Nutrients, 16(16), 2777. https://doi.org/10.3390/nu16162777