Urinary Phosphate and Subclinical Atherosclerosis: The AWHS Study
Abstract
:1. Introduction
2. Participants and Methods
2.1. Data Collection
2.1.1. Urine Phosphate Sample
2.1.2. Subclinical Atherosclerosis Imaging
2.2. Baseline Information on Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch. Med. Res. 2015, 46, 328–338. [Google Scholar] [CrossRef]
- Luca, A.C.; David, S.G.; David, A.G.; Țarcă, V.; Pădureț, I.-A.; Mîndru, D.E.; Roșu, S.T.; Roșu, E.V.; Adumitrăchioaiei, H.; Bernic, J.; et al. Atherosclerosis from Newborn to Adult—Epidemiology, Pathological Aspects, and Risk Factors. Life 2023, 13, 2056. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Zhao, Y.; Chen, Y.; Huang, R. Global and National Burden of Atherosclerosis from 1990 to 2019: Trend Analysis Based on the Global Burden of Disease Study 2019. Chin. Med. J. 2023, 136, 2442–2450. [Google Scholar] [CrossRef]
- GBD 2016 Causes of Death Collaborators. Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef]
- Yeboah, J.; Delaney, J.A.; Nance, R.; McClelland, R.L.; Polak, J.F.; Sibley, C.T.; Bertoni, A.; Burke, G.L.; Carr, J.J.; Herrington, D.M. Mediation of Cardiovascular Risk Factor Effects through Subclinical Vascular Disease: The Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1778–1783. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, J.; Tian, Y.; Yang, X.; Gu, D. Sugar Sweetened Beverages Consumption and Risk of Coronary Heart Disease: A Meta-Analysis of Prospective Studies. Atherosclerosis 2014, 234, 11–16. [Google Scholar] [CrossRef]
- Li, J.; Siegrist, J. Physical Activity and Risk of Cardiovascular Disease-a Meta-Analysis of Prospective Cohort Studies. Int. J. Environ. Res. Public Health 2012, 9, 391–407. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Guallar-Castillon, P.; Nyström, J.; Larsson, S.C.; Kippler, M.; Vahter, M.; Faxén-Irving, G.; Michaelsson, K.; Wolk, A.; Stenvinkel, P.; et al. Urinary Phosphate Is Associated with Cardiovascular Disease Incidence. J. Intern. Med. 2023, 294, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Toussaint, N.D.; Damasiewicz, M.J.; Holt, S.G.; Lu, Z.X.; Magliano, D.J.; Atkins, R.C.; Chadban, S.J.; Shaw, J.E.; Polkinghorne, K.R. Relationship Between Urinary Phosphate and All-Cause and Cardiovascular Mortality in a National Population-Based Longitudinal Cohort Study. J. Ren. Nutr. 2022, 32, 510–519. [Google Scholar] [CrossRef]
- Suh, S.H.; Oh, T.R.; Choi, H.S.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Oh, K.H.; Hyun, Y.Y.; Sung, S.; Kim, S.W. Urinary Phosphorus Excretion and Cardiovascular Outcomes in Patients with Pre-Dialysis Chronic Kidney Disease: The KNOW-CKD Study. Nutrients 2023, 15, 2267. [Google Scholar] [CrossRef]
- Penido, M.G.M.G.; Alon, U.S. Phosphate Homeostasis and Its Role in Bone Health. Pediatr. Nephrol. 2012, 27, 2039–2048. [Google Scholar] [CrossRef]
- Chonchol, M.; Dale, R.; Schrier, R.W.; Estacio, R. Serum Phosphorus and Cardiovascular Mortality in Type 2 Diabetes. Am. J. Med. 2009, 122, 380–386. [Google Scholar] [CrossRef]
- Volk, C.; Schmidt, B.; Brandsch, C.; Kurze, T.; Schlegelmilch, U.; Grosse, I.; Ulrich, C.; Girndt, M.; Stangl, G.I. Acute Effects of an Inorganic Phosphorus Additive on Mineral Metabolism and Cardiometabolic Risk Factors in Healthy Subjects. J. Clin. Endocrinol. Metab. 2022, 107, E852–E864. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, Z.; Wu, B.; Gao, X. Association of Bone Metabolism Markers with Coronary Atherosclerosis and Coronary Artery Disease in Postmenopausal Women. J. Bone Miner. Metab. 2017, 36, 352–363. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Husøy, T.; Mennes, W.; et al. Re-Evaluation of Phosphoric Acid–Phosphates—Di-, Tri- and Polyphosphates (E 338–341, E 343, E 450–452) as Food Additives and the Safety of Proposed Extension of Use. EFSA J. 2019, 17, 5674. [Google Scholar] [CrossRef]
- Dominguez, J.R.; Kestenbaum, B.; Chonchol, M.; Block, G.; Laughlin, G.A.; Lewis, C.E.; Katz, R.; Barrett-Connor, E.; Cummings, S.; Orwoll, E.S.; et al. Relationships between Serum and Urine Phosphorus with All-Cause and Cardiovascular Mortality: The Osteoporotic Fractures in Men (MrOS) Study. Am. J. Kidney Dis. 2013, 61, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Laclaustra, M.; Casasnovas, J.A.; Fernández-Ortiz, A.; Fuster, V.; León-Latre, M.; Jiménez-Borreguero, L.J.; Pocovi, M.; Hurtado-Roca, Y.; Ordovas, J.M.; Jarauta, E.; et al. Femoral and Carotid Subclinical Atherosclerosis Association with Risk Factors and Coronary Calcium: The AWHS Study. J. Am. Coll. Cardiol. 2016, 67, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Casasnovas, J.A.; Alcaide, V.; Civeira, F.; Guallar, E.; Ibañez, B.; Borreguero, J.J.; Laclaustra, M.; León, M.; Peñalvo, J.L.; Ordovás, J.M.; et al. Aragon Workers’ Health Study-Design and Cohort Description. BMC Cardiovasc. Disord. 2012, 12, 45. [Google Scholar] [CrossRef]
- Fisake, C.H.; Subbarow, Y. The Colorimetric Determination of Phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Muntendam, P.; McCall, C.; Sanz, J.; Falk, E.; Fuster, V. The BioImage Study: Novel Approaches to Risk Assessment in the Primary Prevention of Atherosclerotic Cardiovascular Disease-Study Design and Objectives. Am. Heart J. 2010, 160, 49–57.e1. [Google Scholar] [CrossRef]
- Junyent, M.; Gilabert, R.; Zambón, D.; Pocoví, M.; Mallén, M.; Cofán, M.; Núñez, I.; Civeira, F.; Tejedor, D.; Ros, E. Femoral Atherosclerosis in Heterozygous Familial Hypercholesterolemia Influence of the Genetic Defect. Arter. Thromb. Vasc. Biol. 2008, 28, 580–586. [Google Scholar] [CrossRef]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martn-Moreno, J.M. Relative Validity of a Semi-Quantitative Food-Frequency Questionnaire in an Elderly Mediterranean Population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef]
- Budoff, M.J.; Nasir, K.; McClelland, R.L.; Detrano, R.; Wong, N.; Blumenthal, R.S.; Kondos, G.; Kronmal, R.A. Coronary Calcium Predicts Events Better with Absolute Calcium Scores than Age-Sex-Race/Ethnicity Percentiles: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2009, 53, 345–352. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of Coronary Artery Calcium Using Ultrafast Computed Tomography. J. Am. Coll. Cardiol. 1990, 15, 827–859. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; López-Fontana, C.; Varo, J.J.; Sánchez-Villegas, A.; Martinez, J.A. Validation of the Spanish Version of the Physical Activity Questionnaire Used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr. 2005, 8, 920–927. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimationof the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A.; Palaniappan, L.P.; Artinian, N.T.; Carnethon, M.R.; Criqui, M.H.; Daniels, S.R.; Fonarow, G.C.; Fortmann, S.P.; Franklin, B.A.; Galloway, J.M.; et al. American Heart Association Guide for Improving Cardiovascular Health at the Community Level, 2013 Update: A Scientific Statement for Public Health Practitioners, Healthcare Providers, and Health Policy Makers. Circulation 2013, 127, 1730–1753. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program (NCEP); Expert Panel on Detection, and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Ciculation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Palomino, H.L.; Rifkin, D.E.; Anderson, C.; Criqui, M.H.; Whooley, M.A.; Ix, J.H. 24-Hour Urine Phosphorus Excretion and Mortality and Cardiovascular Events. Clin. J. Am. Soc. Nephrol. 2013, 8, 1202–1210. [Google Scholar] [CrossRef]
- Kwak, S.M.; Kim, J.S.; Choi, Y.; Chang, Y.; Kwon, M.J.; Jung, J.G.; Jeong, C.; Ahn, J.; Kim, H.S.; Shin, H.; et al. Dietary Intake of Calcium and Phosphorus and Serum Concentration in Relation to the Risk of Coronary Artery Calcification in Asymptomatic Adults. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, H.; Tanaka, S.; Ota, Y.; Endo, S.; Tani, M.; Ishitani, M.; Sakaue, M.; Ito, M. Dietary Intake of Inorganic Phosphorus Has a Stronger Influence on Vascularrendothelium Function than Organic Phosphorus. J. Clin. Biochem. Nutr. 2018, 62, 167–173. [Google Scholar] [CrossRef]
- Botts, S.R.; Fish, J.E.; Howe, K.L. Dysfunctional Vascular Endothelium as a Driver of Atherosclerosis: Emerging Insights into Pathogenesis and Treatment. Front. Pharmacol. 2021, 12, 787541. [Google Scholar] [CrossRef]
- McClure, S.T.; Rebholz, C.M.; Phillips, K.M.; Champagne, C.M.; Selvin, E.; Appel, L.J. The Percentage of Dietary Phosphorus Excreted in the Urine Varies by Dietary Pattern in a Randomized Feeding Study in Adults. J. Nutr. 2019, 149, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Blaine, J.; Chonchol, M.; Levi, M. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Pendón-Ruiz de Mier, M.V.; Vergara, N.; Rodelo-Haad, C.; López-Zamorano, M.D.; Membrives-González, C.; López-Baltanás, R.; Muñoz-Castañeda, J.R.; Caravaca, F.; Martín-Malo, A.; Felsenfeld, A.J.; et al. Assessment of Inorganic Phosphate Intake by the Measurement of the Phosphate/Urea Nitrogen Ratio in Urine. Nutrients 2021, 13, 292. [Google Scholar] [CrossRef]
- Noori, N.; Sims, J.J.; Kopple, J.D.; Shah, A.; Colman, S.; Shinaberger, C.S.; Bross, R.; Mehrotra, R.; Kovesdy, C.P.; Kalantar-Zadeh, K. Organic and Inorganic Dietary Phosphorus and Its Management in Chronic Kidney Disease. Iran. J. Kidney Dis. 2010, 4, 89–100. [Google Scholar] [PubMed]
- Calvo, M.S.; Dunford, E.K.; Uribarri, J. Industrial Use of Phosphate Food Additives: A Mechanism Linking Ultra-Processed Food Intake to Cardiorenal Disease Risk? Nutrients 2023, 15, 3510. [Google Scholar] [CrossRef]
- Cupisti, A.; Gallieni, M. Urinary Phosphorus Excretion: Not What We Have Believed It to Be? Clin. J. Am. Soc. Nephrol. 2018, 13, 973–974. [Google Scholar] [CrossRef]
- National Research Council (US). Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. In Recommended Dietary Allowances, 10th ed.; Nacional Academy Press, US: Washington, DC, USA, 1989. [Google Scholar]
- Cupisti, A.; Kalantar-Zadeh, K. Management of Natural and Added Dietary Phosphorus Burden in Kidney Disease. Semin. Nephrol. 2013, 33, 180–190. [Google Scholar] [CrossRef]
- Sun, Q.; Bertrand, K.A.; Franke, A.A.; Rosner, B.; Curhan, G.C.; Willett, W.C. Reproducibility of Urinary Biomarkers in Multiple 24-h Urine Samples. Am. J. Clin. Nutr. 2017, 105, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Uribarri, J. Contributions to Total Phosphorus Intake: All Sources Considered. Semin. Dial. 2013, 26, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Colizzi, C.; Peñalvo, J.L. Ultra-Processed Food Consumption in Adults across Europe. Eur. J. Nutr. 2022, 61, 1521–1539. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, I.; Rauber, F.; Nicolas, G.; Casagrande, C.; Kliemann, N.; Wedekind, R.; Biessy, C.; Scalbert, A.; Touvier, M.; Aleksandrova, K.; et al. Characterization of the Degree of Food Processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova Classification and Validation Using Selected Biomarkers of Food Processing. Front. Nutr. 2022, 9, 1035580. [Google Scholar] [CrossRef]
- Gutiérrez, O.M. Sodium- and Phosphorus-Based Food Additives: Persistent but Surmountable Hurdles in the Management of Nutrition in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2013, 20, 150–156. [Google Scholar] [CrossRef]
- León, J.B.; Sullivan, C.M.; Sehgal, A.R. The Prevalence of Phosphorus-Containing Food Additives in Top-Selling Foods in Grocery Stores. J. Ren. Nutr. 2013, 23, 265–270.e2. [Google Scholar] [CrossRef] [PubMed]
- Shutto, Y.; Shimada, M.; Kitajima, M.; Yamabe, H.; Razzaque, M.S. Lack of Awareness among Future Medical Professionals about the Risk of Consuming Hidden Phosphate-Containing Processed Food and Drinks. PLoS ONE 2011, 6, e29105. [Google Scholar] [CrossRef]
- European Food and Safety Authority (EFSA). Outcome of the Questions for Health Professionals in the Fields of Nephrology, Mineral Metabolism, Cardiovascular and Nutrition Medicine on Phosphates Food Additives Re-evaluation. EFSA Support. Publ. 2019, 16, 1624E. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Phosphorus. EFSA J. 2015, 13, 4185. [Google Scholar] [CrossRef]
- Calvo, M.S.; Uribarri, J. Phosphorus in the Modern Food Supply: Underestimation of Exposure. In Clinical Aspects of Natural and Added Phosphorus in Foods; Springer: New York, NY, USA, 2017; pp. 47–76. [Google Scholar] [CrossRef]
- Gutiérrez, O.M.; Luzuriaga-McPherson, A.; Lin, Y.; Gilbert, L.C.; Ha, S.W.; Beck, G.R. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism. J. Clin. Endocrinol. Metab. 2015, 100, 4264–4271. [Google Scholar] [CrossRef]
- Fulgoni, K.; Fulgoni, V.L.; Wallace, T.C. Association of Total, Added, and Natural Phosphorus Intakes with Biomarkers of Health Status and Mortality in Healthy Adults in the United States. Nutrients 2022, 14, 1738. [Google Scholar] [CrossRef]
- Van Dam, R.M.; Hunter, D. Biochemical Indicators of Dietary Intake. In Nutritional Epidemiology; Willett, W.C., Ed.; Oxford University Press: New York, NY, USA, 2013; pp. 150–212. [Google Scholar]
- Ji, C.; Sykes, L.; Paul, C.; Dary, O.; Legetic, B.; Campbell, N.R.C.; Cappuccio, F. Systematic Review of Studies Comparing 24-Hour and Spot Urine Collections for Estimating Population Salt Intake. Rev. Panam. Salud Publica 2012, 32, 2012. [Google Scholar] [CrossRef]
- James, G.D.; Sealey, J.E.; Alderman, M.; Ljungman, S.; Mueller, F.B.; Pecker, M.S.; Laragh, J.H. A Longitudinal Study of Urinary Creatinine and Creatinine Clearance in Normal Subjects: Race, Sex, and Age Differences. Am. J. Hypertens. 1988, 1, 124–131. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Ransil, B.J.; Harmatz, J.S.; Smith, T.W.; Duhme, D.W.; Koch-Werser, J. Variability of 24-Hour Urinary Creatinine Excretion by Normal Subjects. J. Clin. Pharmacol. 1976, 16, 321–328. [Google Scholar] [CrossRef]
Q1 | Q2 | Q3 | Q4 | |||
---|---|---|---|---|---|---|
<0.305 | 0.305–<0.398 | 0.398–<0.626 | ≥0.626 | |||
N = 1.169 | Mean | n = 294 | n = 291 | n = 292 | n = 292 | p-Trend |
Age, years | 50.9 (3.7) | 51.1 (3.6) | 50.9 (3.7) | 51.2 (3.5) | 50.4 (3.9) | 0.095 |
BMI, kg/m2 | 27.6 (3.3) | 27.3 (3.4) | 27.4 (3.4) | 28.0 (3.4) | 27.9 (3.0) | 0.017 |
Waist circumference, cm | 97.6 (8.9) | 96.8 (8.4) | 96.4 (8.5) | 99.0 (9.5) | 98.4 (8.7) | 0.001 |
Ever-smokers, % | 76.8 [898] | 76.1 [223] | 75.7 [221] | 80.5 [235] | 75.0 [219] | 0.375 |
Physical activity, total METs-h/wk | 35.3 (21.5) | 34.4 (21.5) | 35.3 (21.2) | 34.0 (20.9) | 37.7 (22.1) | 0.162 |
Systolic blood pressure, mm Hg | 126.2 (13.8) | 126.0 (13.4) | 125.7 (13.7) | 127.2 (14.5) | 125.9 (13.6) | 0.536 |
Diastolic blood pressure, mm Hg | 83.5 (9.3) | 82.7 (9.1) | 83.2 (8.8) | 84.5 (9.8) | 83.4 (9.4) | 0.138 |
Total cholesterol, mg/dL | 223.7 (36.5) | 223.8 (38.1) | 224.4 (35.2) | 222.2 (36.3) | 224.4 (36.6) | 0.862 |
HDL-c, mg/dL | 52.5 (11.3) | 50.8 (11.3) | 53.2 (11.5) | 52.9 (11.6) | 53.0 (10.8) | 0.031 |
Non-HDL-c, mg/dL | 171.2 (35.3) | 173.0 (37.1) | 171.2 (33.4) | 169.2 (35.2) | 171.4 (35.5) | 0.633 |
LDL-c, mg/dL | 141.1 (31.8) | 141.9 (33.3) | 141.9 (30.5) | 139.1 (31.8) | 141.5 (31.7) | 0.674 |
Triglycerides, mg/dL | 156.4 (101.0) | 167.0 (130.3) | 151.4 (90.4) | 152.4 (83.6) | 154.7 (92.6) | 0.211 |
Fasting glucose, mg/dL | 99.2 (18.0) | 98.1 (19.1) | 98.8 (18.2) | 100.0 (19.5) | 99.9 (14.8) | 0.539 |
Hypertension, % | 39.4 [461] | 40.6 [119] | 39.0 [114] | 42.1 [123] | 36.0 [105] | 0.465 |
Dyslipidemia, % | 51.0 [596] | 53.9 [158] | 51.7 [151] | 51.0 [149] | 47.3 [138] | 0.441 |
Diabetes, % | 5.6 [65] | 7.5 [22] | 4.8 [14] | 5.1 [15] | 4.8 [14] | 0.440 |
Q1 | Q2 | Q3 | Q4 | ||
---|---|---|---|---|---|
<0.305 | 0.305–<0.398 | 0.398–<0.626 | ≥0.626 | ||
N = 1169 | n = 294 | n = 291 | n = 292 | n = 292 | p-Trend |
Carotid plaques, % (n) | 44.0% (n = 129) | 39.7% (n = 116) | 34.2% (n = 100) | 33.6% (n = 98) | |
Aged-Adjusted | Ref. | 0.85 (0.61, 1.19) | 0.64 (0.46, 0.91) | 0.68 (0.48, 0.95) | 0.008 |
Multivariable-Adjusted | Ref. | 0.86 (0.61, 1.21) | 0.63 (0.44, 0.89) | 0.69 (0.49, 0.99) | 0.012 |
Femoral plaques, % (n) | 61.1% (n = 179) | 52.1% (n = 152) | 59.9% (n = 175) | 58.9% (n = 172) | |
Aged-Adjusted | Ref. | 0.70 (0.50, 0.97) | 0.94 (0.67, 1.32) | 0.97 (0.69, 1.35) | 0.698 |
Multivariable-Adjusted | Ref. | 0.69 (0.49, 0.98) | 0.91 (0.64, 1.29) | 1.02 (0.72, 1.45) | 0.567 |
Any atherosclerosis, % (n) | 73.4% (n = 215) | 65.8% (n = 192) | 67.8% (n = 198) | 69.5% (n = 203) | |
Age-Adjusted | Ref. | 0.70 (0.49, 1.00) | 0.75 (0.52, 1.08) | 0.88 (0.61, 1.27) | 0.615 |
Multivariable-Adjusted | Ref. | 0.71 (0.49, 1.02) | 0.71 (0.49, 1.03) | 0.91 (0.62, 1.33) | 0.666 |
CACS > 200 | 11.6% (n = 34) | 5.8% (n = 17) | 4.8% (n = 14) | 5.1% (n = 15) | |
Aged-Adjusted | Ref. | 0.47 (0.25, 0.85) | 0.37 (0.19, 0.70) | 0.44 (0.23, 0.83) | 0.004 |
Multivariable-Adjusted | Ref. | 0.49 (0.25, 0.91) | 0.40 (0.20, 0.76) | 0.46 (0.23, 0.88) | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrijo-Belanche, C.; Moreno-Franco, B.; Laclaustra, M.; Gimeno-Ruiz, S.; Calvo-Galiano, N.; Rey-García, J.; Guallar-Castillón, P. Urinary Phosphate and Subclinical Atherosclerosis: The AWHS Study. Nutrients 2024, 16, 2780. https://doi.org/10.3390/nu16162780
Torrijo-Belanche C, Moreno-Franco B, Laclaustra M, Gimeno-Ruiz S, Calvo-Galiano N, Rey-García J, Guallar-Castillón P. Urinary Phosphate and Subclinical Atherosclerosis: The AWHS Study. Nutrients. 2024; 16(16):2780. https://doi.org/10.3390/nu16162780
Chicago/Turabian StyleTorrijo-Belanche, Carolina, Belén Moreno-Franco, Martín Laclaustra, Sofía Gimeno-Ruiz, Naiara Calvo-Galiano, Jimena Rey-García, and Pilar Guallar-Castillón. 2024. "Urinary Phosphate and Subclinical Atherosclerosis: The AWHS Study" Nutrients 16, no. 16: 2780. https://doi.org/10.3390/nu16162780
APA StyleTorrijo-Belanche, C., Moreno-Franco, B., Laclaustra, M., Gimeno-Ruiz, S., Calvo-Galiano, N., Rey-García, J., & Guallar-Castillón, P. (2024). Urinary Phosphate and Subclinical Atherosclerosis: The AWHS Study. Nutrients, 16(16), 2780. https://doi.org/10.3390/nu16162780