The Role of the Mediterranean Diet in Assisted Reproduction: A Literature Review
Abstract
:1. Introduction
- Optimization of conditions for implantation: the anti-inflammatory properties of the Mediterranean Diet, derived from its overall composition of plant-based foods and healthy fats, may contribute to a more favorable endometrial environment for implantation [13].
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
- Studies examining the Mediterranean Diet as a whole when used by infertile couples seeking ART.
- Studies dealing with ART for the purpose of IVF/ICSI.
- Published original research studies.
- Studies including methods for evaluating adherence to the Mediterranean Diet.
- Studies focusing only on specific ingredients, vitamins, or trace elements.
- Studies focusing only on cryopreservation, embryo storage, donation, or surrogacy.
- Studies focusing only on specific pathological conditions associated with infertility (e.g., endometriosis, polycystic ovary syndrome).
- Literature reviews, systematic reviews, and case reports.
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
- Study design: we assessed whether the design (cohort, cross-sectional) was appropriate for addressing the research question.
- Sample size: we considered the number of participants in each study.
- Mediterranean Diet assessment methods: we evaluated the tools used to measure diet adherence, including the number of food items assessed and whether the tools were validated.
- ART protocol: we noted the type of ART protocol used and whether it was clearly described.
- Outcome measures: we assessed the clarity and relevance of the reported outcomes.
- Confounding factors: we examined which potential confounders were considered in each study.
- Reporting of results: we assessed the clarity and completeness of the reported findings.
3. Results
3.1. Study Features & Demographics
3.2. Evaluation of Adherence/Following of the Mediterranean Diet
3.3. ART Protocols
3.4. Results—Associations of the Mediterranean Diet and ART Outcomes
- The study of Vujkovic et al. (2010) [40] found that higher adherence to a Mediterranean Diet among couples undergoing IVF/ICSI was associated with increased odds of clinical pregnancy (OR 1.4, 95% CI 1.0–1.9). However, adherence to the Mediterranean Diet was not associated with embryo quality.
- The study of Twigt et al. (2012) [41] reported that each one-unit increase in the mother’s preconception nutritional risk score assessing adherence to the Dutch Dietary Guidelines [49] was associated with a 65% increase in the likelihood of ongoing pregnancy—pregnancy progression (ultrasound detection of heart rate at 10 weeks of gestation) after a 1st ART cycle.
- The study of Karayiannis et al. (2018) [42] observed that higher Mediterranean Diet scores were associated with increased clinical pregnancy rates (RR 1.98, 95% CI 1.05–3.78) and live birth rates (RR 2.64, 95% CI 1.37–5.07) among women under 35 years of age undergoing their 1st cycle of in vitro fertilization. No associations were observed between the Mediterranean Diet and the number of eggs or the quality of the embryos.
- The study of Gaskins et al. (2019) [43] found that the Mediterranean Diet was associated with improvement in live birth rates above the first quartile of adherence (0.44, 95% CI: 0.39–0.49, p < 0.05), versus the first quartile: (0.31, 95% CI: 0.25–0.39, p < 0.05). However, there was no further improvement in live birth rates above the second quartile. No significant correlation was noted with clinical pregnancy rates.
- The study of Ricci et al. (2019) [44] reported no significant associations between Mediterranean Diet adherence score and oocyte number, embryo quality, clinical pregnancy, or live birth rates among women undergoing IVF. A marginally lower risk of failure to achieve clinical pregnancy for the intermediate Mediterranean Diet scores in women >35 years was noted (aRR 0.84, 95% CI 0.71–1.00, p < 0.05) with no associated increase in live birth rates.
- The study of Sun et al. (2019) [45] found that higher Mediterranean Diet scores were associated with an increased number of fetuses (p = 0.028). However, no associations were observed for oocyte number, embryo quality, clinical pregnancy, or live birth rates.
- Finally, Noli et al. (2023) [46] found that lower scores in adherence to the Mediterranean Diet were associated with an increased risk of unexpected poor ovarian response (aOR 0.29, 95% CI 0.11–0.76).
- Clinical Pregnancy and Live Birth Rates: Three studies [40,42,43] reported positive associations between higher Mediterranean Diet adherence and improved clinical pregnancy or live birth rates. The effect sizes varied, with odds ratios ranging from 1.4 (95% CI: 1.0–1.9) [40] to 2.7 (95% CI: 1.3–5.7) [42] for clinical pregnancy, and relative risks of 2.5 (95% CI: 1.3–4.8) for live births [42]. However, two studies [44,45] found no significant associations with these outcomes.
- Oocyte and Embryo Quality: The impact on oocyte and embryo quality was less clear. While Sun et al. [45] reported an increase in the number of available embryos associated with higher Mediterranean Diet scores (8.4 ± 5.26 vs. 7.4 ± 4.71, p = 0.028), four studies [40,42,44,45] found no significant effects on oocyte and embryo number or quality.
- Ovarian Response: Noli et al. [46] uniquely focused on ovarian response, finding that lower adherence to the Mediterranean Diet was associated with an increased risk of poor ovarian response (aOR 0.29, 95% CI: 0.11–0.76).
- Age-Specific Effects: Some studies noted age-specific effects. For instance, Karayiannis et al. [42] found significant associations only in women under 35 years of age, while Ricci et al. [44] noted a marginally lower risk of failure to achieve clinical pregnancy for intermediate Mediterranean Diet scores in women over 35 years.
- Dose–Response Relationship: Gaskins et al. [43] observed a non-linear relationship, with improvements in live birth rates above the first quartile of adherence, but no further improvement above the second quartile.
Study | Number/Quality of Oocytes | Number/Quality of Embryos | Clinical Pregnancy | Live Births |
---|---|---|---|---|
Vujkovic et al. (2010) [40] | No correlation | No correlation | OR 1.4, 95% CI 1.0–1.9 | Not evaluated |
Twigt et al. (2012) [41] | Not evaluated | Not evaluated | 65% increase in ongoing pregnancy with 1 unit increase in nutrition score | Not evaluated |
Karayiannis et al. (2018) [42] | No correlation | No correlation | RR 1.98, 95% CI 1.05–3.78 | RR 2.64, 95% CI 1.37–5.07 |
Gaskins et al. (2019) [43] | Not evaluated | Not evaluated | Improvement in live births above the first quartile following the Mediterranean Diet | Not evaluated |
Ricci et al. (2019) [44] | No correlation | No correlation | No correlation | No correlation |
Sun et al. (2019) [45] | No correlation | Increased number with higher nutrition score (p = 0.028) | No correlation | Not evaluated |
Noli et al. (2023) [46] | Increased poor response with lower nutrition score | Not evaluated | Not evaluated | Not evaluated |
4. Discussion
4.1. Potential Applications
4.2. Limitations and Areas for Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for Healthy Eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean diet; a literature review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A. Cancer and mediterranean diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef]
- Fontana, R.; Torre, S. The deep correlation between energy metabolism and reproduction: A view on the effects of nutrition for women fertility. Nutrients 2016, 8, 87. [Google Scholar] [CrossRef]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on infertility and Fertility Care, 2017. Fertil Steril. 2017, 108, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Zegers-Hochschild, F. The ICMART glossary on art terminology. Hum. Reprod. 2006, 21, 1968–1970. [Google Scholar] [CrossRef]
- World Health Organization. Infertility. Available online: https://www.who.int/health-topics/infertility#tab=tab_1 (accessed on 21 November 2022).
- American Society for Reproductive Medicine (ASRM). Available online: https://www.asrm.org/ (accessed on 11 December 2022).
- Smith, A.D.; Tilling, K.; Nelson, S.M.; Lawlor, D.A. Live-birth rate associated with repeat in vitro fertilization treatment cycles. JAMA 2015, 314, 2654. [Google Scholar] [CrossRef]
- Łakoma, K.; Kukharuk, O.; Śliż, D. The influence of metabolic factors and diet on fertility. Nutrients 2023, 15, 1180. [Google Scholar] [CrossRef]
- Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best. Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arce, E.; Vizmanos, B.; Babio, N.; Márquez-Sandoval, F.; Salas-Huetos, A. Dietary antioxidants in the treatment of male infertility: Counteracting oxidative stress. Biology 2021, 10, 241. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Bulló, M.; Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of Observational Studies. Hum. Reprod. Update 2017, 23, 371–389. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Babio, N.; Carrell, D.T.; Bulló, M.; Salas-Salvadó, J. Adherence to the Mediterranean diet is positively associated with sperm motility: A cross-sectional analysis. Sci. Rep. 2019, 9, 3389. [Google Scholar] [CrossRef]
- Kljajic, M.; Hammadeh, M.; Wagenpfeil, G.; Baus, S.; Sklavounos, P.; Solomayer, E.-F.; Kasoha, M. Impact of the vegan diet on sperm quality and sperm oxidative stress values: A preliminary study. J. Hum. Reprod. Sci. 2021, 14, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.M.; Ghosh, M.; Nandi, N. Diabetes mellitus and abnormalities in semen analysis. J. Obstet. Gynaecol. Res. 2013, 40, 167–171. [Google Scholar] [CrossRef]
- Keskes-Ammar, L.; Feki-Chakroun, N.; Rebai, T.; Sahnoun, Z.; Ghozzi, H.; Hammami, S.; Zghal, K.; Fki, H.; Damak, J.; Bahloul, A. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch. Androl. 2003, 49, 83–94. [Google Scholar] [CrossRef]
- Attaman, J.A.; Toth, T.L.; Furtado, J.; Campos, H.; Hauser, R.; Chavarro, J.E. Dietary fat and semen quality among men attending a fertility clinic. Hum. Reprod. 2012, 27, 1466–1474. [Google Scholar] [CrossRef]
- Falsig, A.-M.L.; Gleerup, C.S.; Knudsen, U.B. The influence of omega-3 fatty acids on semen quality markers: A systematic PRISMA review. Andrology 2019, 7, 794–803. [Google Scholar] [CrossRef]
- Silvestris, E.; Lovero, D.; Palmirotta, R. Nutrition and female fertility: An interdependent correlation. Front. Endocrinol. 2019, 10, 346. [Google Scholar] [CrossRef]
- Noli, S.A.; Ricci, E.; Cipriani, S.; Ferrari, S.; Castiglioni, M.; La Vecchia, I.; Somigliana, E.; Parazzini, F. Dietary carbohydrate intake, dietary glycemic load and outcomes of in vitro fertilization: Findings from an observational Italian cohort study. Nutrients 2020, 12, 1568. [Google Scholar] [CrossRef] [PubMed]
- Koloverou, E.; Esposito, K.; Giugliano, D.; Panagiotakos, D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: A meta-analysis of 10 prospective studies and 136,846 participants. Metabolism 2014, 63, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Abiemo, E.E.; Alonso, A.; Nettleton, J.A.; Steffen, L.M.; Bertoni, A.G.; Jain, A.; Lutsey, P.L. Relationships of the Mediterranean dietary pattern with insulin resistance and diabetes incidence in the multi-ethnic study of atherosclerosis (MESA). Br. J. Nutr. 2012, 109, 1490–1497. [Google Scholar] [CrossRef]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: A meta-analysis. Eur. J. Clin. Nutr. 2014, 69, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Sleiman, D.; Al-Badri, M.R.; Azar, S.T. Effect of mediterranean diet in diabetes control and cardiovascular risk modification: A systematic review. Front. Public. Health 2015, 3, 69. [Google Scholar] [CrossRef] [PubMed]
- Nehra, D.; Le, H.D.; Fallon, E.M.; Carlson, S.J.; Woods, D.; White, Y.A.; Pan, A.H.; Guo, L.; Rodig, S.J.; Tilly, J.L.; et al. Prolonging the female reproductive lifespan and improving egg quality with dietary omega-3 fatty acids. Aging Cell 2012, 11, 1046–1054. [Google Scholar] [CrossRef]
- Wathes, D.C.; Abayasekara, D.R.; Aitken, R.J. Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Hammiche, F.; Vujkovic, M.; Wijburg, W.; de Vries, J.H.M.; Macklon, N.S.; Laven, J.S.E.; Steegers-Theunissen, R.P. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil. Steril. 2011, 95, 1820–1823. [Google Scholar] [CrossRef]
- Di Tucci, C.; Galati, G.; Mattei, G.; Bonanni, V.; Capri, O.; D’Amelio, R.; Muzii, L.; Panici, P.B. The role of alpha lipoic acid in female and male infertility: A systematic review. Gynecol. Endocrinol. 2020, 37, 497–505. [Google Scholar] [CrossRef]
- Efrat, M.; Stein, A.; Pinkas, H.; Unger, R.; Birk, R. Dietary patterns are positively associated with semen quality. Fertil. Steril. 2018, 109, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Ghafarizadeh, A.; Malmir, M.; Naderi Noreini, S.; Faraji, T. Antioxidant effects of n-acetylcysteine on the male reproductive system: A systematic review. Andrologia 2020, 53, e13870. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Obermayer-Pietsch, B. Mechanisms in endocrinology: Vitamin D and fertility: A systematic review. Eur. J. Endocrinol. 2012, 166, 765–778. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Rosique-Esteban, N.; Becerra-Tomás, N.; Vizmanos, B.; Bulló, M.; Salas-Salvadó, J. The effect of nutrients and dietary supplements on sperm quality parameters: A systematic review and meta-analysis of randomized clinical trials. Adv. Nutr. 2018, 9, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Zara, V. Diet and male fertility: The impact of nutrients and antioxidants on sperm energetic metabolism. Int. J. Mol. Sci. 2022, 23, 2542. [Google Scholar] [CrossRef]
- Takalani, N.B.; Monaneng, E.M.; Mohlala, K.; Monsees, T.K.; Henkel, R.; Opuwari, C.S. Role of oxidative stress in male infertility. Reprod. Fertil. 2023, 4, e230024. [Google Scholar] [CrossRef]
- Mediterranean Diet Unesco. The Mediterranean Diet: From Ancel Keys to the Present, Part II. 2021. Available online: https://mediterraneandietunesco.org/el/the-mediterranean-diet-from-ancel-keys-to-the-present-part-ii/ (accessed on 28 July 2024).
- Vujkovic, M.; de Vries, J.H.; Lindemans, J.; Macklon, N.S.; van der Spek, P.J.; Steegers, E.A.P.; Steegers-Theunissen, R.P. The preconception Mediterranean dietary pattern in couples undergoing in vitro fertilization/intracytoplasmic sperm injection treatment increases the chance of pregnancy. Fertil. Steril. 2010, 94, 2096–2101. [Google Scholar] [CrossRef]
- Twigt, J.M.; Bolhuis, M.E.; Steegers, E.A.; Hammiche, F.; van Inzen, W.G.; Laven, J.S.; Steegers-Theunissen, R.P.M. The preconception diet is associated with the chance of ongoing pregnancy in women undergoing IVF/ICSI treatment. Hum. Reprod. 2012, 27, 2526–2531. [Google Scholar] [CrossRef]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Mastrominas, M.; Yiannakouris, N. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum. Reprod. 2018, 33, 494–502. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Nassan, F.L.; Chiu, Y.-H.; Arvizu, M.; Williams, P.L.; Keller, M.G.; Souter, I.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Dietary patterns and outcomes of assisted reproduction. Am. J. Obstet. Gynecol. 2019, 220, 567.e1–567.e18. [Google Scholar] [CrossRef]
- Ricci, E.; Bravi, F.; Noli, S.; Somigliana, E.; Cipriani, S.; Castiglioni, M.; Chiaffarino, F.; Vignali, M.; Gallotti, B.; Parazzini, F. Mediterranean diet and outcomes of Assisted Reproduction: An Italian cohort study. Am. J. Obstet. Gynecol. 2019, 221, 627.e1–627.e14. [Google Scholar] [CrossRef]
- Sun, H.; Lin, Y.; Lin, D.; Zou, C.; Zou, X.; Fu, L.; Meng, F.; Qian, W. Mediterranean diet improves embryo yield in IVF: A prospective cohort study. Reprod. Biol. Endocrinol. 2019, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Noli, S.A.; Ferrari, S.; Ricci, E.; Reschini, M.; Cipriani, S.; Dallagiovanna, C.; Parazzini, F.; Somigliana, E. Adherence to the Mediterranean diet and the risk of unexpected poor response to ovarian stimulation in IVF cycles. Reprod. Biomed. Online 2023, 47, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Voedingscentrum. The Netherlands Nutrition Centre. Available online: https://www.voedingscentrum.nl/nl/service/english.aspx (accessed on 30 August 2023).
- Panagiotakos, D.B.; Pitsavos, C.; Arvaniti, F.; Stefanadis, C. Adherence to the Mediterranean food pattern predicts the prevalence of hypertension, hypercholesterolemia, diabetes and obesity, among healthy adults; the accuracy of the meddietscore. Prev. Med. 2007, 44, 335–340. [Google Scholar] [CrossRef]
- Decarli, A.; Franceschi, S.; Ferraroni, M.; Gnagnarella, P.; Parpinel, M.T.; Vecchia, C.L.; Negri, E.; Salvini, S.; Falcini, F.; Giacosa, A. Validation of a food-frequency questionnaire to assess dietary intakes in cancer studies in Italy results for specific nutrients. Ann. Epidemiol. 1996, 6, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Assaf-Balut, C.; García de la Torre, N.; Fuentes, M.; Durán, A.; Bordiú, E.; del Valle, L.; Valerio, J.; Jiménez, I.; Herraiz, M.A.; Izquierdo, N.; et al. A high adherence to six food targets of the Mediterranean diet in the late first trimester is associated with a reduction in the risk of materno-foetal outcomes: The St. Carlos Gestational Diabetes Mellitus Prevention study. Nutrients 2018, 11, 66. [Google Scholar] [CrossRef]
- Assaf-Balut, C.; García de la Torre, N.; Durán, A.; Fuentes, M.; Bordiú, E.; del Valle, L.; Familiar, C.; Ortolá, A.; Jiménez, I.; Herraiz, M.A.; et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM Prevention Study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Galiano, J.; Olmedo-Requena, R.; Barrios-Rodríguez, R.; Amezcua-Prieto, C.; Bueno-Cavanillas, A.; Salcedo-Bellido, I.; Jimenez-Moleon, J.J.; Delgado-Rodríguez, M. Effect of adherence to a Mediterranean diet and olive oil intake during pregnancy on risk of small for gestational age infants. Nutrients 2018, 10, 1234. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.N.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef]
- Kakoly, N.S.; Earnest, A.; Teede, H.J.; Moran, L.J.; Joham, A.E. The impact of obesity on the incidence of type 2 diabetes among women with polycystic ovary syndrome. Diabetes Care 2019, 42, 560–567. [Google Scholar] [CrossRef]
- Kazemi, M.; Hadi, A.; Pierson, R.A.; Lujan, M.E.; Zello, G.A.; Chilibeck, P.D. Effects of dietary glycemic index and glycemic load on cardiometabolic and reproductive profiles in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2021, 12, 161–178. [Google Scholar] [CrossRef]
- Makarem, N.; Chau, K.; Miller, E.C.; Gyamfi-Bannerman, C.; Tous, I.; Booker, W.; Catov, J.M.; Haas, D.M.; Grobman, W.A.; Levine, L.D.; et al. Association of a Mediterranean diet pattern with adverse pregnancy outcomes among US women. JAMA Netw. Open 2022, 5, e2248165. [Google Scholar] [CrossRef] [PubMed]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Cheung, N.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C.; et al. Associations of diet and physical activity with risk for gestational diabetes mellitus: A systematic review and meta-analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Dreibelbis, C.; Kingshipp, B.L.; Wong, Y.P.; Abrams, B.; Gernand, A.D.; Rasmussen, K.M.; Siega-Riz, A.M.; Stang, J.; Casavale, K.O.; et al. Dietary patterns before and during pregnancy and maternal outcomes: A systematic review. Am. J. Clin. Nutr. 2019, 109 (Suppl. 7), 705S–728S. [Google Scholar] [CrossRef]
- Amati, F.; Hassounah, S.; Swaka, A. The impact of Mediterranean dietary patterns during pregnancy on maternal and offspring health. Nutrients 2019, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rejón, A.I.; Castro-Quezada, I.; Ruano-Rodríguez, C.; Ruiz-López, M.D.; Sánchez-Villegas, A.; Toledo, E.; Artacho, R.; Estruch, R.; Salas-Salvadó, J.; Covas, M.I.; et al. Effect of a Mediterranean diet intervention on dietary glycemic load and dietary glycemic index: The predimed study. J. Nutr. Metab. 2014, 2014, 985373. [Google Scholar] [CrossRef]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the Globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef]
- Saez Lancellotti, T.E.; Boarelli, P.V.; Monclus, M.A.; Cabrillana, M.E.; Clementi, M.A.; Espínola, L.S.; Barría, J.L.C.; Vincenti, A.E.; Santi, A.G.; Fornés, M.W. Hypercholesterolemia impaired sperm functionality in rabbits. PLoS ONE 2010, 5, e13457. [Google Scholar] [CrossRef]
- Minguez-Alarcon, L.; Mendiola, J.; Lopez-Espin, J.J.; Sarabia-Cos, L.; Vivero-Salmeron, G.; Vioque, J.; Navarrete-Muñoz, E.M.; Torres-Cantero, A.M. Dietary intake of antioxidant nutrients is associated with semen quality in Young University students. Hum. Reprod. 2012, 27, 2807–2814. [Google Scholar] [CrossRef]
- Braga, D.P.; Halpern, G.; Figueira R de Setti, A.S.; Iaconelli, A.; Borges, E. Food intake and social habits in male patients and its relationship to intracytoplasmic sperm injection outcomes. Fertil. Steril. 2012, 97, 53–59. [Google Scholar] [CrossRef]
- Eslamian, G.; Amirjannati, N.; Rashidkhani, B.; Sadeghi, M.-R.; Hekmatdoost, A. Intake of food groups and idiopathic asthenozoospermia: A case-control study. Hum. Reprod. 2012, 27, 3328–3336. [Google Scholar] [CrossRef] [PubMed]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Douka, L.; Mastrominas, M.; Yiannakouris, N. Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility. Hum. Reprod. 2016, 32, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Bravi, F.; Noli, S.; Ferrari, S.; De Cosmi, V.; La Vecchia, I.; Cavadini, M.; La Vecchia, C.; Parazzini, F. Mediterranean diet and the risk of poor semen quality: Cross-sectional analysis of men referring to an Italian fertility clinic. Andrology 2019, 7, 156–162. [Google Scholar] [CrossRef]
- Kermack, A.J.; Calder, P.C.; Houghton, F.D.; Godfrey, K.M.; Macklon, N.S. A randomised controlled trial of a preconceptional dietary intervention in women undergoing IVF treatment (prepare trial). BMC Womens Health 2014, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Vetter, T.R.; Mascha, E.J. Bias, confounding, and interaction: Lions and tigers, and bears, oh my! Anesth Analg. 2017, 125, 1042–1048. [Google Scholar] [CrossRef]
First Author (Year) | Country | Study Design | Sample Size and Characteristics | ART Protocol | Method of Evaluation of the Mediterranean Diet | Duration of the Study and Follow-up Period | Results | Mediterranean Diet and ART Association | Confounders |
---|---|---|---|---|---|---|---|---|---|
Vujkovic et al. (2010) [40] | Netherlands | Prospective Cohort | IVF/ICSI treatment at a university IVF clinic, median age of women ≈35 years, median BMI ≈23 kg/m2 | Not clarified |
|
|
|
|
|
Twigt et al. (2012) [41] | Netherlands | Prospective Cohort | 199 women undergoing 1st IVF/ICSI cycle at a university IVF clinic | Not clarified |
|
|
|
|
|
Karayiannis et al. (2018) [42] | Greece | Prospective Cohort | 244 non-obese women aged 22–41 years with BMI < 30 kg/m2 undergoing 1 IVF cycle (ICSI) in a private IVF clinic. Mainly infertile couples of male etiology | GnR H agonist protocol—rFSH and/or hMG at a max combined dose of 450 IU/day |
|
|
|
|
|
Gaskins et al. (2019) [43] | USA | Prospective Cohort | 357 women aged 31–39 years and BMI: 21–28 who underwent a total of 608 cycles of ART treatment | Multiple Protocols |
|
|
|
|
|
Ricci et al. (2019) [44] | Italy | Prospective Cohort | 474 women aged 23–40 years, with BMI: 18.3–26.3, treated with an IVF cycle in an Italian IVF clinic | Not clarified |
|
|
|
|
|
Sun et al. (2019) [45] | China | Prospective Cohort | 590 infertile women aged 28–35.5 years undergoing IVF treatment |
|
|
|
|
|
|
Noli et al. (2023) [46] | Italy | Cross-Sectional | 296 infertile women aged 19–39 years, with normal BMI and ovarian reserve, undergoing IVF treatment |
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroutis, D.; Kalampokas, T.; Katsianou, E.; Psarris, A.; Daskalakis, G.; Panoulis, K.; Eleftheriades, M. The Role of the Mediterranean Diet in Assisted Reproduction: A Literature Review. Nutrients 2024, 16, 2807. https://doi.org/10.3390/nu16162807
Baroutis D, Kalampokas T, Katsianou E, Psarris A, Daskalakis G, Panoulis K, Eleftheriades M. The Role of the Mediterranean Diet in Assisted Reproduction: A Literature Review. Nutrients. 2024; 16(16):2807. https://doi.org/10.3390/nu16162807
Chicago/Turabian StyleBaroutis, Dimitris, Theodoros Kalampokas, Eleni Katsianou, Alexandros Psarris, George Daskalakis, Konstantinos Panoulis, and Makarios Eleftheriades. 2024. "The Role of the Mediterranean Diet in Assisted Reproduction: A Literature Review" Nutrients 16, no. 16: 2807. https://doi.org/10.3390/nu16162807
APA StyleBaroutis, D., Kalampokas, T., Katsianou, E., Psarris, A., Daskalakis, G., Panoulis, K., & Eleftheriades, M. (2024). The Role of the Mediterranean Diet in Assisted Reproduction: A Literature Review. Nutrients, 16(16), 2807. https://doi.org/10.3390/nu16162807