The Impact of Japanese Dietary Patterns on Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Transient Elastography
2.3. Clinical Parameters
2.4. Dietary Pattern Analysis
2.5. Diagnosis of MASLD
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Participant Characteristics among the Dietary Patterns in Patients with MASLD
3.3. Risk Factors for Liver Fibrosis in Patients with MASLD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Manios, Y.; Papatheodoridis, G. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Martínez-González, M.A.; Tong, T.Y.; Forouhi, N.G.; Khandelwal, S.; Prabhakaran, D.; Mozaffarian, D.; de Lorgeril, M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med. 2014, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Mora, J.J.; García-Vigara, A.; Sánchez-Sánchez, M.L.; García-Pérez, M.; Tarín, J.; Cano, A. The Mediterranean diet: A historical perspective on food for health. Maturitas 2020, 132, 65–69. [Google Scholar] [CrossRef]
- Ogce, F.; Ceber, E.; Ekti, R.; Oran, N.T. Comparison of mediterranean, Western and Japanese diets and some recommendations. Asian Pac. J. Cancer Prev. 2008, 9, 351–356. [Google Scholar] [PubMed]
- Matsumoto, Y.; Fujii, H.; Harima, M.; Okamura, H.; Yukawa-Muto, Y.; Odagiri, N.; Motoyama, H.; Kotani, K.; Kozuka, R.; Kawamura, E.; et al. Severity of Liver Fibrosis Is Associated with the Japanese Diet Pattern and Skeletal Muscle Mass in Patients with Nonalcoholic Fatty Liver Disease. Nutrients 2023, 15, 1175. [Google Scholar] [CrossRef]
- Nakaji, S.; Ihara, K.; Sawada, K.; Parodi, S.; Umeda, T.; Takahashi, I.; Murashita, K.; Kurauchi, S.; Tokuda, I. Social innovation for life expectancy extension utilizing a platform-centered system used in the Iwaki health promotion project: A protocol paper. SAGE Open Med. 2021, 9, 20503121211002606. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Zarski, J.P.; de Ledinghen, V.; Rousselet, M.C.; Sturm, N.; Lebail, B.; Fouchard-Hubert, I.; Gallois, Y.; Oberti, F.; Bertrais, S.; et al. Determination of reliability criteria for liver stiffness evaluation by transient elastography. Hepatology 2013, 57, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Karlas, T.; Petroff, D.; Sasso, M.; Fan, J.G.; Mi, Y.Q.; de Lédinghen, V.; Kumar, M.; Lupsor-Platon, M.; Han, K.H.; Cardoso, A.C.; et al. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J. Hepatol. 2017, 66, 1022–1030. [Google Scholar] [CrossRef]
- Wong, V.W.; Vergniol, J.; Wong, G.L.; Foucher, J.; Chan, H.L.; Le Bail, B.; Choi, P.C.; Kowo, M.; Chan, A.W.; Merrouche, W.; et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef]
- Barr, R.G.; Wilson, S.R.; Rubens, D.; Garcia-Tsao, G.; Ferraioli, G. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology 2020, 296, 263–274. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Yanagibori, R.; Amano, K. Self-administered diet history questionnaire developed for health education: A relative validation of the test-version by comparison with 3-day diet record in women. J. Epidemiol. 1998, 8, 203–215. [Google Scholar] [CrossRef]
- Tanisawa, K.; Ito, T.; Kawakami, R.; Usui, C.; Kawamura, T.; Suzuki, K.; Sakamoto, S.; Ishii, K.; Muraoka, I.; Oka, K.; et al. Association Between Dietary Patterns and Different Metabolic Phenotypes in Japanese Adults: WASEDA’S Health Study. Front. Nutr. 2022, 9, 779967. [Google Scholar] [CrossRef]
- Ito, T.; Kawakami, R.; Tanisawa, K.; Miyawaki, R.; Ishii, K.; Torii, S.; Suzuki, K.; Sakamoto, S.; Muraoka, I.; Oka, K.; et al. Dietary patterns and abdominal obesity in middle-aged and elderly Japanese adults: Waseda Alumni’s Sports, Exercise, Daily Activity, Sedentariness and Health Study (WASEDA’s Health Study). Nutrition 2019, 58, 149–155. [Google Scholar] [CrossRef]
- Milena, G.; Charilaos, X.; Natalia, K. Old age as a risk factor for liver diseases: Modern therapeutic appriaches. Exp. Gerontol. 2023, 184, 112334. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Nakamura, T.; Takahashi, M.; Miwa, R.; Inoue, S.; Ikeda, Y.; Ohno, M.; Sakata, T.; Fukagawa, K.; Saitoh, Y.; et al. The Examination Committee of Criteria for ‘Obesity Disease’ in Japan, Japan Society for the Study of Obesity. Circ. J. 2002, 66, 987–992. [Google Scholar] [CrossRef]
- Fotakis, C.; Amanatidou, A.; Kafyra, M.; Andreou, V.; Kalafati, I.P.; Zervou, M.; Dedoussis, G.V. Ciculatory Metabolite Ratios as Indicators of Lifestyle Risk Factors Based on a Greek NAFLD Case-Control Study. Nutrients 2024, 16, 1235. [Google Scholar] [CrossRef]
- Mascaro, M.C.; Bouzas, C.; Montemayor, S.; Casares, M.; Llompart, I.; Ugarriza, L.; Borràs, P.-A.; Martínez, J.A.; Tur, J.A. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 1813. [Google Scholar] [CrossRef]
- Beak, J.H.; Kim, H.; Kim, K.Y.; Jung, J. Insulin Resistance and the Risk of Diabetes and Dysglycemia in Korean General Adult Population. Diabetes Metab. Journak 2018, 42, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Tsukamoto, K.; Arai, H.; Fujioka, Y.; Ishigaki, Y.; Koba, S.; Ohmura, H.; Shoji, T.; Yokote, K.; Yoshida, H.; et al. Japan Atherosclerosis Society(JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Disease 2022. J. Atheroscler. Thromb. 2024, 31, 641–853. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Perler, B.K.; Friedman, E.S.; Wu, G.D. The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annu. Rev. Physiol. 2023, 85, 449–468. [Google Scholar] [CrossRef]
- Suzuki, N.; Goto, Y.; Ota, H.; Kito, K.; Mano, F.; Joo, E.; Ikeda, K.; Inagaki, N.; Nakayama, T. Characteristics of the Japanese Diet Described in Epidemiologic Publications: A Qualitative Systematic Review. J. Nutr. Sci. Vitaminol. 2018, 64, 129–137. [Google Scholar] [CrossRef]
- Tomata, Y.; Watanabe, T.; Sugawara, Y.; Chou, W.T.; Kakizaki, M.; Tsuji, I. Dietary patterns and incident functional disability in elderly Japanese: The Ohsaki Cohort 2006 study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 843–851. [Google Scholar] [CrossRef]
- Saji, N.; Tsuduki, T.; Murotani, K.; Hisada, T.; Sugimoto, T.; Kimura, A.; Niida, S.; Toba, K.; Sakurai, T. Relationship between the Japanese-style diet, gut microbiota, and dementia: A cross-sectional study. Nutrition 2022, 94, 111524. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.; Otsuka, R.; Nishita, Y.; Tange, C.; Tomida, M.; Kato, Y.; Imai, T.; Sakai, T.; Ando, F.; Shimokata, H. Soy food and isoflavone intake reduces the risk of cognitive impairment in elderly Japanese women. Eur. J. Clin. Nutr. 2018, 72, 1458–1462. [Google Scholar] [CrossRef]
- Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4, 1829. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Takahata, Y.; Kokubun, M.; Anzai, Y.; Kogure, A.; Ogata, T.; Abe, N.; Sugaya, T.; Fujita, M.; Imaizumi, H.; et al. Association between equol and non-alcoholic fatty liver disease in Japanese women in their 50s and 60s. J. Gastroenterol. Hepatol. 2023, 38, 1958–1962. [Google Scholar] [CrossRef]
- Engin, K.N. Alpha-tocopherol: Looking beyond an antioxidant. Mol. Vis. 2009, 15, 855–860. [Google Scholar] [PubMed] [PubMed Central]
- Parthasarathy, G.; Revelo, X.; Malhi, H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatol. Commun. 2020, 4, 478–492. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev. 2018, 2018, 9547613. [Google Scholar] [CrossRef]
- Nagashimada, M.; Ota, T. Role of vitamin E in nonalcoholic fatty liver disease. IUBMB Life 2019, 71, 516–522. [Google Scholar] [CrossRef]
- Vogli, S.; Naska, A.; Marinos, G.; Kasdagli, M.I.; Orfanos, P. The Effect of Vitamin E Supplementation on Serum Aminotransferases in Non-Alcoholic Fatty Liver Disease (NAFLD): A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3733. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, A.; Stahl, W.; Sies, H.; Lirussi, F.; Donner, A.; Häussinger, D. Plasma levels of vitamin E and carotenoids are decreased in patients with Nonalcoholic Steatohepatitis (NASH). Eur. J. Med. Res. 2011, 16, 76–78. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Dongiovanni, P.; Valenti, L. Genetics of nonalcoholic fatty liver disease. Metabolism 2016, 65, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Zhou, X.; Xia, F.; Zhou, B. Intestinal Barrier Dysfunction and Gut Microbiota in Non-Alcoholic Fatty Liver Disease: Assessment, Mechanisms, and Therapeutic Considerations. Biology 2024, 13, 243. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, S.; He, M.; Ao, Z.; Wang, J.; Wu, Q.; Wang, Q. Oral Pathogenic Bacteria and the Oral-Gut-Liver Axis: A New Understanding of Chronic Liver Diseases. Diagnostics 2023, 13, 3324. [Google Scholar] [CrossRef]
- Wong, V.W.; Chan, W.K.; Chitturi, S.; Chawla, Y.; Dan, Y.Y.; Duseja, A.; Fan, J.; Goh, K.-L.; Hamaguchi, M.; Hashimoto, E.; et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017-Part 1: Definition, risk factors and assessment. J. Gastroenterol. Hepatol. 2018, 33, 70–85. [Google Scholar] [CrossRef]
- Eguchi, Y.; Hyogo, H.; Ono, M.; Mizuta, T.; Ono, N.; Fujimoto, K.; Chayama, K.; Saibara, T. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general populations from 2009 to 2010 in Japan: A multicenter large retrospective study. J. Gastroenterol. 2012, 47, 586–595. [Google Scholar] [CrossRef]
Factor 1 | Factor 2 | Factor 3 | Factor 4 | |
---|---|---|---|---|
Carrot, pumpkin | 0.696 | 0.046 | 0.053 | 0.011 |
Leafy green vegetables | 0.669 | −0.068 | 0.034 | 0.008 |
Root vegetables | 0.629 | 0.012 | 0.041 | 0.060 |
Cabbage | 0.628 | 0.119 | −0.006 | 0.050 |
Mushrooms | 0.620 | 0.080 | −0.019 | 0.055 |
Raw lettuce, cabbage | 0.570 | 0.055 | 0.163 | 0.091 |
Tofu, fried tofu | 0.527 | −0.048 | −0.063 | −0.142 |
Seaweed | 0.517 | 0.194 | −0.183 | −0.133 |
Daikon radish, turnip | 0.432 | 0.244 | 0.015 | 0.052 |
Tomato | 0.421 | 0.172 | 0.117 | 0.116 |
Natto | 0.342 | 0.026 | −0.238 | −0.195 |
Cola | −0.336 | 0.056 | 0.046 | 0.006 |
Mayonnaise | 0.334 | −0.072 | 0.320 | 0.128 |
Ramen | −0.319 | 0.079 | 0.051 | 0.206 |
Potato | 0.298 | 0.108 | 0.033 | 0.151 |
Canned tuna | 0.273 | 0.064 | −0.04 | 0.217 |
Green tea | 0.218 | 0.207 | 0.064 | −0.185 |
Low-fat milk | 0.193 | −0.030 | 0.06 | −0.132 |
Shochu | −0.113 | −0.043 | −0.047 | 0.109 |
Pickled leafy green vegetables | 0.102 | 0.523 | −0.075 | 0.012 |
Fatty fish | 0.288 | 0.494 | −0.127 | 0.085 |
Soba noodles | −0.182 | 0.470 | 0.006 | 0.026 |
Fish with bones | 0.156 | 0.427 | −0.172 | 0.072 |
Lean fish | 0.347 | 0.419 | −0.238 | 0.074 |
Dried fish | 0.204 | 0.415 | −0.054 | 0.006 |
Other pickles | −0.043 | 0.414 | 0.020 | −0.175 |
Udon noodles | −0.210 | 0.372 | 0.060 | 0.074 |
Persimmon, strawberries | 0.099 | 0.371 | 0.162 | −0.063 |
Squid, octopus, shrimp, shellfish | 0.036 | 0.345 | 0.011 | 0.278 |
Citrus fruits | 0.019 | 0.283 | 0.069 | −0.138 |
100% juice | 0.021 | 0.162 | −0.031 | −0.052 |
Coffee | 0.074 | −0.109 | 0.099 | 0.096 |
Rice | −0.310 | −0.310 | −0.689 | −0.324 |
Western-style sweets | −0.049 | −0.041 | 0.580 | −0.225 |
Bread | −0.049 | −0.057 | 0.534 | −0.004 |
Miso soup | 0.009 | −0.038 | −0.485 | −0.299 |
Rice crackers | −0.181 | −0.014 | 0.409 | −0.329 |
Japanese sweets | 0.070 | 0.155 | 0.361 | −0.357 |
Ice cream | −0.162 | −0.065 | 0.286 | −0.034 |
Sake | −0.034 | 0.155 | −0.206 | −0.011 |
Black tea, Oolong tea | 0.015 | −0.147 | 0.173 | 0.015 |
Whiskey | −0.077 | −0.014 | −0.135 | 0.071 |
Regular milk | 0.054 | 0.065 | 0.074 | 0.063 |
Pork, beef | 0.130 | −0.190 | 0.046 | 0.533 |
Ham | −0.045 | −0.125 | 0.142 | 0.503 |
Chicken | 0.068 | −0.027 | 0.034 | 0.419 |
Pasta dishes | −0.157 | 0.083 | 0.184 | 0.344 |
Beer | −0.056 | −0.014 | −0.093 | 0.328 |
Egg | 0.293 | −0.240 | −0.028 | 0.319 |
Other | 0.211 | 0.218 | 0.187 | −0.292 |
Liver | −0.013 | 0.227 | −0.135 | 0.261 |
Wine | 0.092 | 0.074 | −0.027 | 0.174 |
Rice Group | Vegetables Group | Seafoods Group | Sweets Group | Rice vs. Vegetables | Rice vs. Seafoods | Rice vs. Sweets | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
n = 259 | n = 160 | n = 151 | n = 157 | ||||||||
age (year) | 52 | (39–65) | 45 | (36–58) | 61 | (42–70) | 55 | (39–64) | 0.011 | 0.003 | 0.981 |
sex, male | 115 | (44.4%) | 28 | (17.5%) | 67 | (44.4%) | 39 | (24.8%) | <0.001 | ||
BMI (kg/m2) | 22.7 | (20.5–24.7) | 21.5 | (19.4–24.1) | 22.8 | (20.7–25.6) | 21.8 | (19.3–24.5) | 0.007 | .0.406 | 0.018 |
CAP (dB/m) | 222.0 | (192.0–261.0) | 208.0 | (163.8–253.8) | 235.0 | (192.0–275.0) | 213.0 | (174.5–262.5) | 0.050 | 0.343 | 0.477 |
LSM (kPa) | 4.4 | (3.4–5.4) | 4.2 | (3.5–4.9) | 4.3 | (3.5–5.2) | 4.4 | (3.6–5.6) | 0.849 | 0.996 | 0.802 |
AST (IU/L) | 21.0 | (17.0–25.0) | 19.0 | (16.0–22.0) | 21.0 | (18.0–26.0) | 19.0 | (16.5–24.0) | <0.001 | 0.607 | 0.141 |
ALT (IU/L) | 19.0 | (14.0–26.0) | 15.0 | (12.0–19.8) | 19.0 | (15.0–25.0) | 16.0 | (12.0–23.0) | <0.001 | 0.734 | 0.058 |
γGT (IU/L) | 21.0 | (15.0–32.0) | 18.0 | (14.0–25.8) | 23.0 | (17.0–35.0) | 18.0 | (14.0–30.0) | 0.013 | 0.109 | 0.232 |
FPG (mg/dL) | 91.0 | (86.0–98.0) | 88.0 | (84.0–93.0) | 94.0 | (87.0–103.0) | 91.0 | (85.0–99.5) | 0.009 | 0.003 | 0.999 |
HbA1c (%) | 5.7 | (5.5–5.9) | 5.6 | (5.4–5.8) | 5.7 | (5.5–6.0) | 5.7 | (5.5–5.9) | 0.001 | 0.396 | 0.954 |
HOMA-IR | 1.1 | (0.8–1.6) | 1.1 | (0.8–1.5) | 1.3 | (1.0–1.9) | 1.2 | (0.9–1.6) | 0.725 | 0.004 | 0.554 |
TG (mg/dL) | 82.0 | (54.0–118.0) | 62.0 | (47.3–84.0) | 89.0 | (63.0–118.0) | 72.0 | (53.0–104.0) | <0.001 | 0.305 | 0.349 |
HDL (mg/dL) | 60.0 | (49.0–71.0) | 69.0 | (59.0–82.0) | 62.0 | (52.0–75.0) | 64.0 | (54.5–77.5) | <0.001 | 0.273 | 0.02 |
LDL (mg/dL) | 118.0 | (99.0–139.0) | 110.5 | (92.3–129.0) | 119.0 | (107.0–142.0) | 116.0 | (95.5–138.0) | 0.053 | 0.627 | 0.994 |
smoking habit (%) | 34 | (13.1%) | 14 | (8.8%) | 29 | (19.2%) | 16 | (10.2%) | 0.031 | ||
exercise habit (%) | 30 | (11.6%) | 38 | (23.8%) | 37 | (24.5%) | 22 | (14.0%) | <0.001 | ||
MASLD (%) | 78 | (30.1%) | 44 | (27.5%) | 57 | (37.7%) | 41 | (26.1%) | 0.118 |
Rice Group | Vegetables Group | Seafoods Group | Sweets Group | Rice vs. Vegetables | Rice vs. Seafoods | Rice vs. Sweets | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
n = 78 | n = 44 | n = 57 | n = 41 | ||||||||
Percentage of MASLD | 30.1% | 27.5% | 37.7% | 26.1% | 0.118 | ||||||
LSM ≤ 5 kPa | 37 | (47.4%) | 12 | (27.2%) | 24 | (42.1%) | 21 | (51.2%) | 0.082 | ||
age (year) | 57.5 | (44.0–66.0) | 53.5 | (41.3–64.3) | 60.0 | (44.0–69.0) | 60.0 | (55.0–68.0) | 0.272 | 0.316 | 0.102 |
sex, male | 38 | (48.7%) | 9.0 | (20.4%) | 30.0 | (52.6%) | 14.0 | (33.3%) | 0.019 | ||
BMI (kg/m2) | 24.9 | (23.2–27.7) | 24.7 | (22.4–27.0) | 25.6 | (22.7–27.7) | 24.9 | (23.1–26.3) | 0.522 | 0.801 | 0.891 |
CAP (dB/m) | 281.0 | (262.2–314.3) | 281.0 | (255.8–299.0) | 286.0 | (266.0–313.0) | 299.0 | (268.5–321.0) | 0.570 | 0.732 | 0.087 |
LSM (kPa) | 4.9 | (3.5–6.2) | 4.1 | (3.5–5.2) | 4.6 | (4.0–5.6) | 5.0 | (4.4–6.8) | 0.198 | 0.955 | 0.115 |
AST (IU/L) | 23.0 | (19.0–28.8) | 19.5 | (16.0–23.0) | 22.0 | (19.0–28.0) | 22.0 | (19.0–27.0) | 0.002 | 0.961 | 0.752 |
ALT (IU/L) | 23.0 | (16.0–35.8) | 17.0 | (14.0–23.3) | 23.0 | (16.0–37.0) | 23.0 | (16.0–32.0) | 0.004 | 0.901 | 0.472 |
γGT (IU/L) | 27.0 | (19.0–40.8) | 19.5 | (17.0–34.0) | 29.0 | (19.0–41.0) | 28.0 | (18.0–39.0) | 0.106 | 0.400 | 0.718 |
FPG (mg/dL) | 95.0 | (90.0–108.0) | 92.5 | (89.0–100.0) | 101.0 | (93.0–111.0) | 95.0 | (92.0–110.0) | 0.196 | 0.248 | 0.767 |
HbA1c (%) | 5.9 | (5.6–6.2) | 5.7 | (5.6–6.1) | 5.8 | (5.6–6.3) | 5.8 | (5.7–6.2) | 0.386 | 0.839 | 0.805 |
HOMA-IR | 1.6 | (1.1–2.5) | 1.6 | (1.1–2.2) | 1.8 | (1.2–2.6) | 1.6 | (1.2–2.5) | 0.869 | 0.460 | 0.595 |
TG (mg/dL) | 102.0 | (66.5–152.5) | 82.5 | (58.5–108.3) | 96.0 | (81.0–127.0) | 102.0 | (81.0–149.0) | 0.014 | 0.772 | 0.889 |
HDL (mg/dL) | 56.0 | (46.3–65.8) | 61.5 | (47.8–69.0) | 60.0 | (49.0–74.0) | 56.0 | (47.0–61.0) | 0.243 | 0.161 | 0.935 |
LDL (mg/dL) | 121.5 | (109.0–142.0) | 118.0 | (99.8–137.0) | 120.0 | (108.0–136.0) | 127.0 | (112.0–153.0) | 0.197 | 0.461 | 0.397 |
smoking habit (%) | 12 | (15.4%) | 7 | (16.0%) | 17 | (30.0%) | 3 | (7.1%) | 0.034 | ||
exercise habit (%) | 11 | (14.0%) | 10 | (22.7%) | 14 | (24.6%) | 6 | (14.2%) | 0.247 |
OR | Univariable | p-Value | ||
---|---|---|---|---|
95%CI | ||||
Age ≥ 65 years | 1.94 | 1.37 | 2.74 | <0.001 |
Female | 0.64 | 0.46 | 0.89 | 0.007 |
BMI ≥ 25 (kg/m2) | 7.73 | 5.29 | 11.3 | <0.001 |
Smoking habit | 1.81 | 1.16 | 2.82 | 0.009 |
Exercise habit | 1.07 | 0.71 | 1.62 | 0.739 |
HOMA-IR ≥ 1.6 | 5.79 | 4.05 | 8.29 | <0.001 |
HDL cholesterol < 40 (mg/dL) | 8.41 | 3.06 | 23.1 | <0.001 |
LDL cholesterol ≥ 140 (mg/dL) | 1.57 | 1.09 | 2.26 | 0.014 |
Triglyceride ≥ 150 (mg/dL) | 3.92 | 2.42 | 6.36 | <0.001 |
Diet pattern | ||||
Rice | 1.00 | |||
Vegetables | 0.88 | 0.569 | 1.36 | 0.567 |
Seafoods | 1.41 | 0.922 | 2.15 | 0.113 |
Sweets | 0.82 | 0.526 | 1.28 | 0.382 |
Univariable | Multivariable | |||||||
---|---|---|---|---|---|---|---|---|
OR | 95%CI | p-Value | OR | 95%CI | p-Value | |||
Age ≥ 65 years | 1.35 | 0.77 | 2.35 | 0.296 | ||||
Female | 0.85 | 0.50 | 1.46 | 0.558 | ||||
BMI ≥ 25 (kg/m2) | 2.40 | 1.39 | 4.15 | 0.002 | 1.83 | 1.01 | 3.32 | 0.047 |
Smoking habit | 1.73 | 0.86 | 3.46 | 0.124 | ||||
Exercise habit | 0.87 | 0.43 | 1.75 | 0.700 | ||||
HOMA-IR ≥ 1.6 | 3.47 | 1.97 | 6.09 | <0.001 | 3.18 | 1.74 | 5.80 | <0.001 |
HDL cholesterol < 40 (mg/dL) | 2.02 | 0.74 | 5.53 | 0.169 | ||||
LDL cholesterol ≥ 140 (mg/dL) | 0.92 | 0.51 | 1.66 | 0.782 | ||||
Triglyceride ≥ 150 (mg/dL) | 1.81 | 0.94 | 3.49 | 0.070 | ||||
Diet pattern | ||||||||
Rice | 1.00 | 1.00 | ||||||
Vegetables | 0.42 | 0.19 | 0.92 | 0.030 | 0.38 | 0.16 | 0.88 | 0.023 |
Seafoods | 0.81 | 0.41 | 1.60 | 0.313 | 0.66 | 0.31 | 1.37 | 0.260 |
Sweets | 1.16 | 0.55 | 2.48 | 0.700 | 1.19 | 0.53 | 2.67 | 0.666 |
OR | 95%CI | p-Value | ||
---|---|---|---|---|
Carrot, pumpkin | 0.96 | 0.92 | 0.99 | 0.030 |
Leafy green vegetables | 0.99 | 0.98 | 1.01 | 0.949 |
Root vegetables | 0.99 | 0.97 | 1.01 | 0.459 |
Cabbage | 0.99 | 0.98 | 1.01 | 0.421 |
Mushrooms | 0.97 | 0.91 | 1.03 | 0.309 |
Raw lettuce, cabbage | 0.99 | 0.97 | 1.01 | 0.416 |
Tofu, fried tofu | 0.99 | 0.97 | 1.00 | 0.114 |
Seaweed | 1.01 | 0.96 | 1.06 | 0.643 |
Daikon radish, turnip | 0.94 | 0.90 | 0.99 | 0.012 |
Tomato | 0.99 | 0.97 | 1.01 | 0.414 |
OR | 95%CI | p-Value | ||
---|---|---|---|---|
α-Tocopherol | 0.74 | 0.56 | 0.99 | 0.039 |
β-Carotene | 1.00 | 0.99 | 1.00 | 0.118 |
Retinol | 0.99 | 0.99 | 1.00 | 0.125 |
Dietary fiber | 0.94 | 0.80 | 1.10 | 0.519 |
Vitamin C | 0.99 | 0.98 | 1.00 | 0.323 |
Potassium | 0.99 | 0.99 | 1.00 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasada, T.; Iino, C.; Sato, S.; Tateda, T.; Igarashi, G.; Yoshida, K.; Sawada, K.; Mikami, T.; Nakaji, S.; Sakuraba, H.; et al. The Impact of Japanese Dietary Patterns on Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis. Nutrients 2024, 16, 2877. https://doi.org/10.3390/nu16172877
Sasada T, Iino C, Sato S, Tateda T, Igarashi G, Yoshida K, Sawada K, Mikami T, Nakaji S, Sakuraba H, et al. The Impact of Japanese Dietary Patterns on Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis. Nutrients. 2024; 16(17):2877. https://doi.org/10.3390/nu16172877
Chicago/Turabian StyleSasada, Takafumi, Chikara Iino, Satoshi Sato, Tetsuyuki Tateda, Go Igarashi, Kenta Yoshida, Kaori Sawada, Tatsuya Mikami, Shigeyuki Nakaji, Hirotake Sakuraba, and et al. 2024. "The Impact of Japanese Dietary Patterns on Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis" Nutrients 16, no. 17: 2877. https://doi.org/10.3390/nu16172877
APA StyleSasada, T., Iino, C., Sato, S., Tateda, T., Igarashi, G., Yoshida, K., Sawada, K., Mikami, T., Nakaji, S., Sakuraba, H., & Fukuda, S. (2024). The Impact of Japanese Dietary Patterns on Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis. Nutrients, 16(17), 2877. https://doi.org/10.3390/nu16172877