The Impact of 24 h Urinary Potassium Excretion on High-Density Lipoprotein Cholesterol and Chronic Disease Risk in Chinese Adults: A Health Promotion Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Recruitment
2.2. Data Collection
2.3. The Definition of Chronic Diseases in This Study
- -
- Hypertension is identified when the mean SBP is 140 mmHg or higher and/or the mean DBP is 90 mmHg or higher. This diagnosis also applies to those with a documented history of hypertension who are receiving treatment with antihypertensive drugs [16].
- -
- Diabetes is diagnosed in individuals who exhibit a FPG level of 7.0 mmol/L or higher, a random plasma glucose level of 11.1 mmol/L or higher, an oral glucose tolerance test result of 11.1 mmol/L or higher, a hemoglobin A1c level of 6.5% or higher, or those with a known history of type 2 diabetes who are undergoing treatment with hypoglycemic agents [17].
- -
- Microalbuminuria is defined as a 24 h urinary albumin excretion that ranges from 30 to 300 mg within a 24 h period [18].
- -
- Dyslipidemia is characterized by levels of TC of 6.2 mmol/L or higher, TG of 2.3 mmol/L or higher, LDL-C of 4.1 mmol/L or higher, and HDL-C below 1.0 mmol/L for males or below 1.3 mmol/L for females. It also includes individuals with a prior diagnosis of dyslipidemia who are undergoing lipid-lowering treatment [19].
2.4. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Associations between Urinary Sodium and Potassium Excretion and Biomarkers of Chronic Diseases
3.3. Uriary Exception of Sodium and Potassium in Relation to Chronic Disease
3.4. Uriary Exception of Sodium and Potassium in Relation to Comorbidity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jagannathan, R.; Patel, S.A.; Ali, M.K.; Narayan, K.M.V. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr. Diabetes Rep. 2019, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; He, F.J.; Wang, C.; MacGregor, G.A. Twenty-Four-Hour Urinary Sodium and Potassium Excretion in China: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2019, 8, e012923. [Google Scholar] [CrossRef] [PubMed]
- Land, M.-A.; Webster, J.; Christoforou, A.; Johnson, C.; Trevena, H.; Hodgins, F.; Chalmers, J.; Woodward, M.; Barzi, F.; Smith, W.; et al. The association of knowledge, attitudes and behaviours related to salt with 24-hour urinary sodium excretion. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- O’donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; O’leary, N.; Yin, L.; Liu, X.; Swaminathan, S.; Khatib, R.; Rosengren, A.; et al. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: Prospective cohort study. BMJ 2019, 364, l772. [Google Scholar] [CrossRef]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt Reduction to Prevent Hypertension and Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef]
- Cook, N.R.; Appel, L.J.; Whelton, P.K. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 2014, 129, 981–989. [Google Scholar] [CrossRef]
- D’elia, L. Potassium Intake and Human Health. Nutrients 2024, 16, 833. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Witteman, J.C.M.; Stijnen, T.; Kloos, M.W.; Hofman, A.; Grobbee, D.E. Sodium and potassium intake and risk of cardiovascular events and all-cause mortality: The Rotterdam Study. Eur. J. Epidemiol. 2007, 22, 763–770. [Google Scholar] [CrossRef]
- Hossain, F.; Kharel, M.; Husna, A.U.; Khan, M.A.; Aziz, S.N.; Taznin, T. Prevalence of Electrolyte Imbalance in Patients with Acute Stroke: A Systematic Review. Cureus 2023, 15, e43149. [Google Scholar] [CrossRef]
- Krogager, M.L.; Kragholm, K.; Thomassen, J.Q.; Søgaard, P.; Lewis, B.S.; Wassmann, S.; Baumgartner, I.; Ceconi, C.; Schmidt, T.A.; Kaski, J.C.; et al. Update on management of hypokalaemia and goals for the lower potassium level in patients with cardiovascular disease: A review in collaboration with the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J.—Cardiovasc. Pharmacother. 2021, 7, 557–567. [Google Scholar] [CrossRef]
- Mattsson, N.; Nielsen, O.W.; Johnson, L.; Prescott, E.; Schnohr, P.; Jensen, G.B.; Køber, L.; Sajadieh, A. Prognostic Impact of Mild Hypokalemia in Terms of Death and Stroke in the General Population—A Prospective Population Study. Am. J. Med. 2018, 131, 318.e9–318.e19. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Fang, L.; Xu, J.; Chen, X.; Zhang, J.; Bai, Y.; Wu, J.; Ma, J.; Yu, M.; Zhong, J. Prevalence, awareness, treatment and control of hypertension and sodium intake in Zhejiang Province, China: A cross-sectional survey in 2017. PLoS ONE 2019, 14, e0226756. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhao, D.; Henry, M.E.; Fang, L.; Xu, J.; Chen, X.; Zhang, J.; Bai, Y.; Wu, J.; Ma, J.; et al. Use of Salt-Restriction Spoons and Its Associations with Urinary Sodium and Potassium in the Zhejiang Province of China: Results of a Population-Based Survey. Nutrients 2021, 13, 1047. [Google Scholar] [CrossRef]
- Graudal, N.; Hubeck-Graudal, T.; Jürgens, G.; Taylor, R.S. Dose-response relation between dietary sodium and blood pressure: A meta-regression analysis of 133 randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 1273–1278. [Google Scholar] [CrossRef]
- Stamler, J.; Chan, Q.; Daviglus, M.L.; Dyer, A.R.; Van Horn, L.; Garside, D.B.; Miura, K.; Wu, Y.; Ueshima, H.; Zhao, L.; et al. Relation of Dietary Sodium (Salt) to Blood Pressure and Its Possible Modulation by Other Dietary Factors. Hypertension 2018, 71, 631–637. [Google Scholar] [CrossRef]
- Lewington, S.; Clarke, R.; Clarke, R.; Qizilbash, N.; Qizilbash, N.; Peto, R.; Peto, R.; Collins, R.; Collins, R. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002, 360, 1903–1913. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2010, 33 (Suppl. S1), S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Du, X.; Fang, L.; Zhong, J.; Lu, F. Association of 24-h urinary sodium excretion with microalbuminuria in a Chinese population. Sci. Rep. 2023, 13, 1044. [Google Scholar] [CrossRef]
- Wu, L.; Parhofer, K.G. Diabetic dyslipidemia. Metabolism 2014, 63, 1469–1479. [Google Scholar] [CrossRef]
- Link, J.J.; Rohatgi, A.; de Lemos, J.A. HDL cholesterol: Physiology, pathophysiology, and management. Curr. Probl. Cardiol. 2007, 32, 268–314. [Google Scholar] [CrossRef]
- WHO. Guideline: Potassium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Reddin, C.; Ferguson, J.; Murphy, R.; Clarke, A.; Judge, C.; Griffith, V.; Alvarez, A.; Smyth, A.; Mente, A.; Yusuf, S.; et al. Global mean potassium intake: A systematic review and Bayesian meta-analysis. Eur. J. Nutr. 2023, 62, 2027–2037. [Google Scholar] [CrossRef]
- Iwahori, T.; Miura, K.; Ueshima, H.; Tanaka-Mizuno, S.; Chan, Q.; Arima, H.; Dyer, A.R.; Elliott, P.; Stamler, J.; The INTERSALT Research Group. Urinary sodium-to-potassium ratio and intake of sodium and potassium among men and women from multiethnic general populations: The INTERSALT Study. Hypertens. Res. 2019, 42, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, M.; Kawamoto, S.; Nakatani, Y.; Banba, N.; Nagashima, Y.; Tomoe, T.; Sugiyama, T.; Ueno, A.; Kitahara, K.; Kawabe, A.; et al. Effects of salt intake reduction by urinary sodium to potassium ratio self-monitoring method. Hypertens. Res. 2024, 47, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, Y.; Li, C.; Feng, X.; Wang, H.; Qiao, Q.; Zhang, R.; Jin, A.; Li, J.; Li, H.; et al. Effect of a Salt Substitute on Incidence of Hypertension and Hypotension Among Normotensive Adults. J. Am. Coll. Cardiol. 2024, 83, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Gao, C.; Yin, X.; Zhang, X.; Ji, Y.; Zheng, X.; Zhou, Q.; Wu, Y. The Guidelines for use and promotion of low sodium salt in China. J. Evid.-Based Med. 2024, 17, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Rodgers, A.; Perkovic, A.; Huang, L.; Li, K.-C.; Yu, J.; Wu, Y.; Wu, J.H.Y.; Marklund, M.; Huffman, M.D.; et al. Effects of salt substitutes on clinical outcomes: A systematic review and meta-analysis. Heart 2022, 108, 1608–1615. [Google Scholar] [CrossRef]
- Marklund, M.; Singh, G.; Greer, R.; Cudhea, F.; Matsushita, K.; Micha, R.; Brady, T.; Zhao, D.; Huang, L.; Tian, M.; et al. Estimated population wide benefits and risks in China of lowering sodium through potassium enriched salt substitution: Modelling study. BMJ 2020, 369, m824. [Google Scholar] [CrossRef]
- Neal, B.; Wu, Y.; Feng, X.; Zhang, R.; Zhang, Y.; Shi, J.; Zhang, J.; Tian, M.; Huang, L.; Li, Z.; et al. Effect of Salt Substitution on Cardiovascular Events and Death. N. Engl. J. Med. 2021, 385, 1067–1077. [Google Scholar] [CrossRef]
- Ge, Z.; Zhang, J.; Chen, X.; Guo, X.; Yan, L.; Tang, J.; Cai, X.; Xu, J.; Hou, L.; Ma, J. Association between 24 h urinary sodium to potassium ratio and metabolic syndrome in Chinese adults. Zhonghua Liu Xing Bing Xue Za Zhi 2015, 36, 790–793. [Google Scholar]
- Hamaya, R.; Sun, Q.; Li, J.; Yun, H.; Wang, F.; Curhan, G.C.; Huang, T.; Manson, J.E.; Willett, W.C.; Rimm, E.B.; et al. 24-hour urinary sodium and potassium excretions, plasma metabolomic profiles, and cardiometabolic biomarkers in US adults: A cross-sectional study. Am. J. Clin. Nutr. 2024, 120, 153–161. [Google Scholar] [CrossRef]
- D’elia, L.; Rossi, G.; di Cola, M.S.; Savino, I.; Galletti, F.; Strazzullo, P. Meta-Analysis of the Effect of Dietary Sodium Restriction with or without Concomitant Renin-Angiotensin-Aldosterone System–Inhibiting Treatment on Albuminuria. Clin. J. Am. Soc. Nephrol. 2015, 10, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Schwalm, J.; McKee, M.; Huffman, M.D.; Yusuf, S. Resource Effective Strategies to Prevent and Treat Cardiovascular Disease. Circulation 2016, 133, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019, 290, 140–205. [Google Scholar] [CrossRef]
- Obarzanek, E.; Sacks, F.M.; Vollmer, W.M.; Bray, G.A.; Miller, E.R.; Lin, P.-H.; Karanja, N.M.; Most-Windhauser, M.M.; Moore, T.J.; Swain, J.F.; et al. Effects on blood lipids of a blood pressure–lowering diet: The Dietary Approaches to Stop Hypertension (DASH) Trial. Am. J. Clin. Nutr. 2001, 74, 80–89. [Google Scholar] [CrossRef]
- Antoniazzi, L.; Arroyo-Olivares, R.; Bittencourt, M.S.; Tada, M.T.; Lima, I.; Jannes, C.E.; Krieger, J.E.; Pereira, A.C.; Quintana-Navarro, G.; Muñiz-Grijalvo, O.; et al. Adherence to a Mediterranean diet, dyslipidemia and inflammation in familial hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2014–2022. [Google Scholar] [CrossRef]
- Hao, G.; Liu, K.; Halbert, J.D.; Chen, H.; Wu, J.; Jing, C. Dietary sodium and potassium and risk of diabetes: A prospective study using data from the China Health and Nutrition Survey. Diabetes Metab. 2019, 46, 377–383. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wang, C.; Mao, Z.; Yang, T.; Li, Y.; Xing, W.; Li, Z.; Zhao, J.; Li, L. Dietary Potassium and Magnesium Intake with Risk of Type 2 Diabetes Mellitus Among Rural China: The Henan Rural Cohort Study. Biol. Trace Elem. Res. 2023, 202, 3932–3944. [Google Scholar] [CrossRef]
- Hinderliter, A.L.; Babyak, M.A.; Sherwood, A.; Blumenthal, J.A. The DASH diet and insulin sensitivity. Curr. Hypertens. Rep. 2010, 13, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, Z.; Chong, M.K.C.; Hicks, J.P.; Gong, W.; Zou, G.; Zhong, J.; Walley, J.D.; Upshur, R.E.G.; Yu, M. Evaluation of a package of risk-based pharmaceutical and lifestyle interventions in patients with hypertension and/or diabetes in rural China: A pragmatic cluster randomised controlled trial. PLoS Med. 2021, 18, e1003694. [Google Scholar] [CrossRef] [PubMed]
- D’elia, L.; Masulli, M.; Cappuccio, F.P.; Zarrella, A.F.; Strazzullo, P.; Galletti, F. Dietary Potassium Intake and Risk of Diabetes: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2022, 14, 4785. [Google Scholar] [CrossRef] [PubMed]
- Howard, K.; White, S.; Salkeld, G.; McDonald, S.; Craig, J.C.; Chadban, S.; Cass, A. Cost-effectiveness of screening and optimal management for diabetes, hypertension, and chronic kidney disease: A modeled analysis. Value Health 2010, 13, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.L.; Cogswell, M.E.; Zhao, L.; Terry, A.L.; Wang, C.Y.; Wright, J.; Coleman King, S.M.; Bowman, B.; Chen, T.C.; Merritt, R.; et al. Association between urinary sodium and potassium excretion and blood pressure among adults in the United States: National Health and Nutrition Examination Survey, 2014. Circulation 2018, 137, 237–246. [Google Scholar] [CrossRef]
- Verkaik-Kloosterman, J.; Dekkers, A.L.; de Borst, M.H.; Bakker, S.J. Estimation of the salt intake distribution of Dutch kidney transplant recipients using 24-h urinary sodium excretion: The potential of external within-person variance. Am. J. Clin. Nutr. 2019, 110, 641–651. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Cogswell, M.E.; Loria, C.M.; Chen, T.-C.; Pfeiffer, C.M.; Swanson, C.A.; Caldwell, K.L.; Perrine, C.G.; Carriquiry, A.L.; Liu, K.; et al. Urinary excretion of sodium, potassium, and chloride, but not iodine, varies by timing of collection in a 24-hour calibration study1–3. J. Nutr. 2013, 143, 1276–1282. [Google Scholar] [CrossRef]
- Nagata, T.; Sobajima, H.; Ohashi, N.; Hirakawa, A.; Katsuno, T.; Yasuda, Y.; Matsuo, S.; Tsuboi, N.; Maruyama, S. Association between 24h Urinary Sodium and Potassium Excretion and Estimated Glomerular Filtration Rate (eGFR) Decline or Death in Patients with Diabetes Mellitus and eGFR More than 30 mL/min/1.73m2. PLoS ONE 2016, 11, e0152306. [Google Scholar] [CrossRef]
Characteristic | All Subjects a (n = 1496) | Low Sodium (Less than 3613.3 mg/24 h, n = 745) | High Sodium (More than 3613.3 mg/24 h, n = 744) | p Value | Low Potassium (Less than 1366.0 mg/24 h, n = 749) | High Potassium (More than 1366.0 mg/24 h, n = 747) | p Value |
---|---|---|---|---|---|---|---|
Gender, n (%) | 0.005 * | <0.001 * | |||||
Male | 732 (48.9) | 337 (45.2) | 391 (52.6) | 401 (53.5) | 331 (44.3) | ||
Female | 764 (51.1) | 408 (54.8) | 353 (47.4) | 348 (46.5) | 416 (55.7) | ||
Ethnicity, n (%) | 0.65 | 0.025 * | |||||
Han | 1476 (98.7) | 734 (98.5) | 735 (98.8) | 734 (98.0) | 742 (99.3) | ||
Others | 20 (1.3) | 11 (1.5) | 9 (1.2) | 15 (2.0) | 5 (0.7) | ||
Household registration type, n (%) | 0.77 | 0.004 * | |||||
Urban | 655 (43.8) | 328 (44.0) | 322 (43.3) | 300 (40.1) | 355 (47.5) | ||
Rural | 841 (56.2) | 417 (56.0) | 422 (56.7) | 449 (59.9) | 392 (52.5) | ||
Education, n (%) | 0.009 * | <0.001 * | |||||
<9 years | 486 (32.5) | 261 (35.0) | 224 (30.1) | 282 (37.7) | 204 (27.3) | ||
9–12 years | 691 (46.2) | 344 (46.2) | 343 (46.1) | 335 (44.7) | 356 (47.7) | ||
>12 years | 319 (21.3) | 140 (18.8) | 177 (23.8) | 132 (17.6) | 187 (25.0) | ||
Smoking status, n (%) | 0.09 | <0.001 * | |||||
Never smoked | 1091 (72.9) | 558 (74.9) | 528 (71.0) | 511 (68.2) | 580 (77.6) | ||
Former smoker | 68 (4.5) | 32 (4.3) | 36 (4.8) | 34 (4.5) | 34 (4.6) | ||
Current smoker | 337 (22.5) | 155 (20.8) | 180 (24.2) | 204 (27.2) | 133 (17.8) | ||
Alcohol use status, n (%) | 487 (32.6) | 217 (29.1) | 268 (36.0) | 0.005 * | 257 (34.3) | 230 (30.8) | 0.15 |
Physical activity, n (%) | 610 (40.8) | 295 (39.6) | 313 (42.1) | 0.33 | 267 (35.6) | 343 (45.9) | <0.001 * |
Stroke, n (%) | 17 (1.1) | 4 (0.5) | 13 (1.7) | 0.028 * | 8 (1.1) | 9 (1.2) | 0.80 |
Coronary heart disease, n (%) | 18 (1.2) | 12 (1.6) | 6 (0.8) | 0.16 | 12 (1.6) | 6 (0.8) | 0.16 |
Self-report kidney disease, n (%) | 7 (0.5) | 6 (0.8) | 1 (0.1) | 0.06 | 3 (0.4) | 4 (0.5) | 0.70 |
Hypertension, n (%) | 533 (35.6) | 268 (36.0) | 264 (35.5) | 0.84 | 274 (36.6) | 259 (34.7) | 0.44 |
Diabete mellitus, n (%) | 134 (9.0) | 74 (9.9) | 59 (7.9) | 0.18 | 64 (8.5) | 70 (9.4) | 0.58 |
Dyslipidemia, n (%) | 512 (34.2) | 255 (34.2) | 253 (34.0) | 0.93 | 266 (35.5) | 246 (32.9) | 0.29 |
Microalbuminuria, n (%) | 131 (8.8) | 55 (7.4) | 75 (10.1) | 0.06 | 60 (8.0) | 71 (9.5) | 0.29 |
Antihypertensive medication use, n (%) | 205 (13.7) | 112 (15.0) | 92 (12.4) | 0.14 | 96 (12.8) | 109 (14.6) | 0.32 |
Age, year | 48.0 (24.0) | 49.0 (25.0) | 46.0 (24.0) | <0.001 * | 48.0 (25.0) | 48.0 (24.0) | 0.59 |
BMI, kg/m2 | 23.8 (4.5) | 23.4 (4.3) | 24.1 (4.5) | <0.001 * | 23.6 (4.2) | 24.0 (4.6) | 0.003 * |
SBP, mmHg | 127.5 (24.3) | 128.7 (24.7) | 126.7 (24.7) | 0.80 | 129.3 (23.2) | 126.0 (25.9) | 0.037 * |
DBP, mmHg | 78.3 (14.3) | 78.0 (14.7) | 79.0 (14.7) | 0.014 * | 78.3 (15.3) | 78.3 (14.0) | 0.82 |
FPG, mmol/L | 4.9 (0.8) | 4.9 (0.8) | 4.9 (0.7) | 0.63 | 4.9 (0.7) | 4.9 (0.8) | 0.49 |
HDL-C, mmol/L | 1.3 (0.4) | 1.3 (0.4) | 1.3 (0.4) | 0.52 | 1.2 (0.4) | 1.3 (0.4) | 0.012 * |
LDL-C, mmol/L | 2.7 (1.0) | 2.7 (1.0) | 2.7 (1.0) | 0.34 | 2.7 (1.0) | 2.7 (1.0) | 0.06 |
TC, mmol/L | 4.9 (1.2) | 4.9 (1.2) | 4.9 (1.2) | 0.57 | 4.9 (1.2) | 4.9 (1.2) | 0.15 |
TG, mmol/L | 1.2 (0.9) | 1.2 (0.9) | 1.2 (0.9) | 0.21 | 1.2 (0.9) | 1.2 (0.9) | 0.15 |
24 h urinary sodium excretion, mg/24 h | 3613.3 (2161.7) | 2653.7 (1088.8) | 4813.7 (1638.6) | <0.001 * | 2941.2 (1819.5) | 4348.7 (2112.4) | <0.001 * |
24 h urinary potassium excretion, mg/24 h | 1366.0 (824.9) | 1127.5 (667.7) | 1618.5 (848.3) | <0.001 * | 1004.3 (391.3) | 1827.7 (644.8) | <0.001 * |
24 h urinary microalbumin, mg/24 h | 4.8 (8.4) | 3.8 (6.3) | 5.7 (10.0) | <0.001 * | 4.3 (7.5) | 5.4 (9.9) | <0.001 * |
24 h urinary creatinine, mg/24 h | 1067.7 (635.4) | 953.5 (595.2) | 1182.8 (650.7) | <0.001 * | 968.5 (599.7) | 1162.2 (673.0) | <0.001 * |
24 h urine volume, mL/24 h | 1420.0 (620.0) | 1270.0 (620.0) | 1520.0 (570.0) | <0.001 * | 1255.0 (610.0) | 1530.0 (580.0) | <0.001 * |
All Subjects, n = 1496 | SBP | DBP | FPG | HDL-C | LDL-C | TC | TG | Urine Microalbumin |
---|---|---|---|---|---|---|---|---|
β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | β-Coefcient (95% CI) a | |
Sodium excretion | ||||||||
Adjusted for age, sex, ethnicity b | 1.15 * (0.55 to 1.75) | 0.76 * (0.39 to 1.13) | 0.00 (−0.04 to 0.05) | 0.00 (−0.01 to 0.01) | 0.02 (0.00 to 0.05) | 0.02 (−0.01 to 0.05) | 0.01 (−0.03 to 0.06) | 1.08 * (0.17 to 2.00) |
Fully adjusted model c | 0.67 * (0.10 to 1.25) | 0.42 * (0.07 to 0.77) | −0.02 (−0.05 to 0.02) | 0.00 (−0.01 to 0.02) | 0.01 (−0.02 to 0.03) | 0.00 (−0.03 to 0.04) | −0.02 (−0.06 to 0.03) | 1.09 * (0.18 to 2.01) |
Potassium excretion | ||||||||
Adjusted for age, sex, ethnicity b | −3.00 * (−4.42 to −1.58) | −0.99 * (−1.86 to −0.11) | 0.00 (−0.11 to 0.11) | 0.02 (0.00 to 0.05) | 0.02 (−0.04 to 0.08) | 0.02 (−0.05 to 0.10) | −0.10 (−0.21 to 0.01) | 0.77 (−1.40 to 2.93) |
Fully adjusted model c | −2.77 * (−4.14 to −1.40) | −0.88 * (−1.73 to −0.04) | 0.01 (−0.08 to 0.09) | 0.03 * (0.00 to 0.05) | 0.03 (−0.03 to 0.09) | 0.05 (−0.03 to 0.13) | −0.07 (−0.18 to 0.05) | 0.25 (−1.94 to 2.43) |
Sodium-to-potassium ratio | ||||||||
Adjusted for age, sex, ethnicity b | 0.90 * (0.54 to 1.26) | 0.39 * (0.17 to 0.61) | 0.00 (−0.03 to 0.03) | 0.00 (−0.01 to 0.01) | 0.00 (−0.02 to 0.01) | 0.00 (−0.02 to 0.02) | 0.03 (0.00 to 0.05) | 0.21 (−0.34 to 0.77) |
Fully adjusted model c | 0.79 * (0.45 to 1.14) | 0.32 * (0.11 to 0.54) | −0.01 (−0.03 to 0.01) | 0.00 (−0.01 to 0.01) | −0.01 (−0.02 to 0.01) | −0.01 (−0.03 to 0.01) | 0.02 (−0.01 to 0.05) | 0.33 (−0.23 to 0.88) |
All Subjects, n = 1496 | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|
OR, 95% CI | OR, 95% CI | OR, 95% CI | OR, 95% CI | |
Hypertension a | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.99 (0.69–1.40) | 1.10 (0.77–1.58) | 1.53 * (1.03–2.27) |
Fully adjusted model c | 1.00 | 0.88 (0.60–1.29) | 1.02 (0.69–1.51) | 1.24 (0.81–1.92) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.64 * (0.45–0.91) | 0.79 (0.55–1.13) | 0.62 * (0.42–0.92) |
Fully adjusted model c | 1.00 | 0.57 * (0.39–0.84) | 0.66 * (0.44–0.98) | 0.56 * (0.36–0.87) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.40 * (1.00–1.97) | 1.37 (0.97–1.93) | 1.74 * (1.23–2.45) |
Fully adjusted model c | 1.00 | 1.18 (0.82–1.69) | 1.24 (0.85–1.81) | 1.65 * (1.13–2.41) |
Diabetes | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.42 (0.84–2.41) | 0.87 (0.49–1.56) | 1.24 (0.67–2.29) |
Fully adjusted model c | 1.00 | 1.38 (0.80–2.39) | 0.79 (0.43–1.45) | 1.00 (0.52–1.90) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.75 (0.43–1.30) | 1.06 (0.62–1.83) | 0.90 (0.50–1.63) |
Fully adjusted model c | 1.00 | 0.79 (0.44–1.41) | 1.13 (0.63–2.02) | 0.99 (0.53–1.87) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.70 * (1.01–2.86) | 1.47 (0.85–2.53) | 1.23 (0.70–2.16) |
Fully adjusted model c | 1.00 | 1.44 (0.84–2.49) | 1.32 (0.75–2.34) | 1.06 (0.58–1.92) |
Dyslipidemia | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.16 (0.84–1.61) | 0.92 (0.66–1.29) | 1.39 (0.97–1.99) |
Fully adjusted model c | 1.00 | 1.11 (0.79–1.56) | 0.83 (0.58–1.18) | 1.10 (0.76–1.61) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.02 (0.74–1.40) | 1.09 (0.78–1.52) | 0.68 * (0.47–0.97) |
Fully adjusted model c | 1.00 | 1.08 (0.77–1.50) | 1.12 (0.79–1.60) | 0.74 (0.50–1.10) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.41 * (1.03–1.93) | 1.26 (0.92–1.73) | 1.29 (0.94–1.77) |
Fully adjusted model c | 1.00 | 1.25 (0.90–1.73) | 1.12 (0.80–1.55) | 1.05 (0.75–1.48) |
Low HDL-C | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.08 (0.75–1.57) | 0.76 (0.51–1.13) | 1.21 (0.80–1.82) |
Fully adjusted model c | 1.00 | 1.06 (0.72–1.56) | 0.72 (0.48–1.08) | 1.04 (0.67–1.59) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.15 (0.80–1.66) | 1.29 (0.88–1.89) | 0.64 * (0.41–0.98) |
Fully adjusted model c | 1.00 | 1.15 (0.79–1.69) | 1.25 (0.84–1.87) | 0.62 * (0.39–1.00) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.23 (0.85–1.79) | 1.09 (0.75–1.58) | 1.35 (0.94–1.94) |
Fully adjusted model c | 1.00 | 1.12 (0.76–1.65) | 1.03 (0.70–1.53) | 1.22 (0.83–1.79) |
Microalbuminuria | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.57 (0.87–2.82) | 1.54 (0.85–2.80) | 2.11 * (1.13–3.92) |
Fully adjusted model c | 1.00 | 1.47 (0.80–2.70) | 1.58 (0.85–2.93) | 1.95 * (1.01–3.74) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.07 (0.62–1.87) | 1.10 (0.62–1.95) | 1.00 (0.55–1.83) |
Fully adjusted model c | 1.00 | 1.09 (0.61–1.95) | 1.10 (0.60–1.99) | 1.01 (0.53–1.92) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.83 (0.49–1.42) | 1.44 (0.88–2.33) | 0.79 (0.46–1.36) |
Fully adjusted model c | 1.00 | 0.66 (0.38–1.17) | 1.32 (0.80–2.19) | 0.70 (0.39–1.24) |
All Subjects, n = 1496 | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|
OR, 95% CI | OR, 95% CI | OR, 95% CI | OR, 95% CI | |
Hypertension complicated with diabetes mellitus a | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.21 (0.66–2.23) | 0.87 (0.45–1.68) | 1.36 (0.68–2.73) |
Fully adjusted model c | 1.00 | 1.14 (0.60–2.19) | 0.76 (0.37–1.55) | 1.09 (0.51–2.31) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.72 (0.38–1.36) | 1.01 (0.54–1.89) | 0.73 (0.37–1.47) |
Fully adjusted model c | 1.00 | 0.59 (0.30–1.17) | 0.87 (0.44–1.71) | 0.70 (0.33–1.47) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.58 (0.85–2.94) | 1.64 (0.87–3.08) | 1.43 (0.75–2.73) |
Fully adjusted model c | 1.00 | 1.24 (0.65–2.39) | 1.32 (0.68–2.59) | 1.33 (0.67–2.63) |
Hypertension complicated with dyslipidemia | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.05 (0.69–1.60) | 1.11 (0.73–1.71) | 1.50 (0.94–2.38) |
Fully adjusted model c | 1.00 | 0.93 (0.59–1.46) | 0.90 (0.57–1.43) | 1.04 (0.63–1.73) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.85 (0.57–1.28) | 0.91 (0.60–1.39) | 0.58 * (0.36–0.94) |
Fully adjusted model c | 1.00 | 0.81 (0.52–1.27) | 0.83 (0.52–1.32) | 0.58 * (0.34–0.98) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.63 * (1.07–2.49) | 1.65 * (1.07–2.54) | 1.88 * (1.23–2.88) |
Fully adjusted model c | 1.00 | 1.37 (0.87–2.15) | 1.42 (0.90–2.25) | 1.64 * (1.03–2.60) |
Diabetes mellitus complicated with dyslipidemia | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 2.31 (0.95–5.65) | 1.79 (0.70–4.57) | 3.58 * (1.41–9.09) |
Fully adjusted model c | 1.00 | 2.32 (0.92–5.89) | 1.39 (0.52–3.72) | 2.67 * (1.00–7.20) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 0.95 (0.42–2.17) | 1.24 (0.55–2.79) | 1.00 (0.42–2.35) |
Fully adjusted model c | 1.00 | 1.08 (0.45–2.58) | 1.37 (0.57–3.28) | 1.17 (0.46–2.95) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 2.20 (0.93–5.20) | 2.60 * (1.11–6.09) | 2.41 * (1.02–5.67) |
Fully adjusted model c | 1.00 | 1.65 (0.67–4.08) | 2.27 (0.94–5.46) | 1.99 (0.81–4.88) |
Hypertension complicated with diabetes and dyslipidemia | ||||
Sodium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.65 (0.64–4.28) | 1.44 (0.54–3.86) | 3.04 * (1.14–8.12) |
Fully adjusted model c | 1.00 | 1.52 (0.56–4.13) | 1.03 (0.36–2.93) | 2.17 (0.76–6.20) |
Potassium excretion, mg/24 h | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 1.13 (0.47–2.74) | 1.27 (0.52–3.13) | 0.76 (0.28–2.07) |
Fully adjusted model c | 1.00 | 1.01 (0.39–2.58) | 1.19 (0.45–3.15) | 0.80 (0.28–2.32) |
Sodium-to-potassium ratio | ||||
Adjusted for age, sex, ethnicity b | 1.00 | 2.26 (0.77–6.65) | 3.82 * (1.38–10.62) | 3.27 * (1.16–9.20) |
Fully adjusted model c | 1.00 | 1.68 (0.55–5.21) | 3.27 * (1.14–9.35) | 2.91 * (1.00–8.48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Chen, X.; Zhang, J.; Lu, F.; Xu, C.; Zhong, J. The Impact of 24 h Urinary Potassium Excretion on High-Density Lipoprotein Cholesterol and Chronic Disease Risk in Chinese Adults: A Health Promotion Study. Nutrients 2024, 16, 3286. https://doi.org/10.3390/nu16193286
Du X, Chen X, Zhang J, Lu F, Xu C, Zhong J. The Impact of 24 h Urinary Potassium Excretion on High-Density Lipoprotein Cholesterol and Chronic Disease Risk in Chinese Adults: A Health Promotion Study. Nutrients. 2024; 16(19):3286. https://doi.org/10.3390/nu16193286
Chicago/Turabian StyleDu, Xiaofu, Xiangyu Chen, Jie Zhang, Feng Lu, Chunxiao Xu, and Jieming Zhong. 2024. "The Impact of 24 h Urinary Potassium Excretion on High-Density Lipoprotein Cholesterol and Chronic Disease Risk in Chinese Adults: A Health Promotion Study" Nutrients 16, no. 19: 3286. https://doi.org/10.3390/nu16193286
APA StyleDu, X., Chen, X., Zhang, J., Lu, F., Xu, C., & Zhong, J. (2024). The Impact of 24 h Urinary Potassium Excretion on High-Density Lipoprotein Cholesterol and Chronic Disease Risk in Chinese Adults: A Health Promotion Study. Nutrients, 16(19), 3286. https://doi.org/10.3390/nu16193286