Analysis of Dietary Patterns Associated with Kidney Stone Disease Based on Data-Driven Approaches: A Case-Control Study in Shanghai
Abstract
:1. Introduction
2. Method
2.1. Data Set
2.2. Statistical Analysis
2.3. Principal Component Analysis (PCA) and Logistic Regression with Selected Principle Components (PCs)
2.4. Least Absolute Shrinkage and Selection Operator (LASSO) Regression and Post-Selection Inference
3. Results
3.1. Personal Characteristics and Food Intake
3.2. Principal Component Analysis (PCA) and Logistic Regression with Selected Principal Components
3.3. Least Absolute Shrinkage and Selection Operator (LASSO) Regression and Post-Selection Inference
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edvardsson, V.O.; Indridason, O.S.; Haraldsson, G.; Kjartansson, O.; Palsson, R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 2013, 83, 146–152. [Google Scholar] [CrossRef]
- Zhou, Y.-L. Recent advances in the risk factors, diagnosis and evaluation of renal calculus. J. Shanghai Jiaotong Univ. (Med. Sci.) 2020, 688–692. [Google Scholar]
- Wang, W.; Fan, J.; Huang, G.; Li, J.; Zhu, X.; Tian, Y.; Su, L. Prevalence of kidney stones in mainland China: A systematic review. Sci. Rep. 2017, 7, 41630. [Google Scholar] [CrossRef]
- Zeng, G.; Mai, Z.; Xia, S.; Wang, Z.; Zhang, K.; Wang, L.; Long, Y.; Ma, J.; Li, Y.; Wan, S.P.; et al. Prevalence of kidney stones in China: An ultrasonography based cross-sectional study. BJU Int. 2017, 120, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Türk, C.; Skolarikos, A.; Neisius, A.; Petrik, A.; Seitz, C.; Thomas, K. EAU guidelines on urolithiasis 2020. In Proceedings of the European Association of Urology Guidelines, Amsterdam, The Netherlands, 20–24 March 2020. [Google Scholar]
- Penniston, K.L.; Nakada, S.Y. Updates in the metabolic management of calcium stones. Curr. Urol. Rep. 2018, 19, 41. [Google Scholar] [CrossRef] [PubMed]
- Skolarikos, A.; Straub, M.; Knoll, T.; Sarica, K.; Seitz, C.; Petřík, A.; Türk, C. Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur. Urol. 2015, 67, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Kočvara, R.; Plasgura, P.; Petřík, A.; Louženský, G.; Bartoníčková, J.; Dvořáček, J. A prospective study of nonmedical prophylaxis after a first kidney stone. BJU Int. 1999, 84, 393–398. [Google Scholar] [CrossRef]
- Streeper, N.M.; Dubnansky, A.; Sanders, A.B.; Lehman, K.; Thomaz, E.; Conroy, D.E. Improving fluid intake behavior among patients with kidney stones: Understanding patients’ experiences and acceptability of digital health technology. Urology 2019, 133, 57–66. [Google Scholar] [CrossRef]
- Shu, X.; Calvert, J.K.; Cai, H.; Xiang, Y.B.; Li, H.; Zheng, W.; Shu, X.-O.; Hsi, R.S. Plant and animal protein intake and risk of incident kidney stones: Results from the Shanghai Men’s and Women’s Health Studies. J. Urol. 2019, 202, 1217–1223. [Google Scholar] [CrossRef]
- Borghi, L.; Schianchi, T.; Meschi, T.; Guerra, A.; Allegri, F.; Maggiore, U.; Novarini, A. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 2002, 346, 77–84. [Google Scholar] [CrossRef]
- Assimos, D.G. Fructose consumption and the risk of kidney stones. J. Endourol. 2008, 22, 853–854. [Google Scholar]
- Ferraro, P.M.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am. J. Kidney Dis. 2016, 67, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Peerapen, P.; Thongboonkerd, V. Kidney Stone Prevention. Adv. Nutr. Int. Rev. J. 2023, 14, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Littlejohns, T.J.; Neal, N.L.; Bradbury, K.E.; Heers, H.; Allen, N.E.; Turney, B.W. Fluid Intake and Dietary Factors and the Risk of Incident Kidney Stones in UK Biobank: A Population-based Prospective Cohort Study. Eur. Urol. Focus 2020, 6, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Turney, B.W.; Appleby, P.N.; Reynard, J.M.; Noble, J.G.; Key, T.J.; Allen, N.E. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Epidemiol. 2014, 29, 363–369. [Google Scholar] [CrossRef]
- O’Hara, C.; Gibney, E.R. Meal Pattern Analysis in Nutritional Science: Recent Methods and Findings. Adv. Nutr. Int. Rev. J. 2021, 12, 1365–1378. [Google Scholar] [CrossRef] [PubMed]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef]
- Rodriguez, A.; Curhan, G.C.; Gambaro, G.; Taylor, E.N.; Ferraro, P.M. Mediterranean diet adherence and risk of incident kidney stones. Am. J. Clin. Nutr. 2020, 111, 1100–1106. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian–Vegan Diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef]
- Maddahi, N.; Yarizadeh, H.; Aghamir, S.M.K.; Alizadeh, S.; Yekaninejad, M.S.; Mirzaei, K. The association of dietary inflammatory index with urinary risk factors of kidney stones formation in men with nephrolithiasis. BMC Res. Notes 2020, 13, 373. [Google Scholar] [CrossRef]
- Liu, N.; Feng, Y.; Li, J.; Ma, X.; Ma, F. Relationship between the dietary inflammatory index and kidney stone prevalence. World J. Urol. 2022, 40, 1545–1552. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, S.; Bian, H.; Tian, B.; Wang, H.; Tu, X.; Cai, B.; Jin, K.; Zheng, X.; Yang, L.; et al. Association between Dietary Inflammatory Index and kidney stones in US adults: Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2016. Public Health Nutr. 2021, 24, 6113–6121. [Google Scholar] [CrossRef] [PubMed]
- Moludi, J.; Fateh, H.L.; Pasdar, Y.; Moradinazar, M.; Sheikhi, L.; Saber, A.; Kamari, N.; Bonyani, M.; Najafi, F.; Dey, P. Association of dietary inflammatory index with chronic kidney disease and kidney stones in Iranian adults: A cross-sectional study within the Ravansar non-communicable diseases cohort. Front. Nutr. 2022, 9, 955562. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A review of statistical methods for dietary pattern analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Understanding meal patterns: Definitions, methodology and impact on nutrient intake and diet quality. Nutr. Res. Rev. 2015, 28, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Pendergast, F.J.; Leech, R.M.; McNaughton, S.A. Novel Online or Mobile Methods to Assess Eating Patterns. Curr. Nutr. Rep. 2017, 6, 212–227. [Google Scholar] [CrossRef]
- Biesbroek, S.; Van Der A, D.L.; Brosens, M.C.; Beulens, J.W.; Verschuren, W.M.; van der Schouw, Y.T.; Boer, J.M. Identifying cardiovascular risk factor–related dietary patterns with reduced rank regression and random forest in the EPIC-NL cohort. Am. J. Clin. Nutr. 2015, 102, 146–154. [Google Scholar] [CrossRef]
- Edberg, A.; Freyhult, E.; Sand, S.; Fagt, S.; Kildegaard Knudsen, V.; Frost Andersen, L.; Hammerling, U. Discovery and Characterisation of Dietary Patterns in Two Nordic Countries; Nordic Council of Ministers: Copenhagen, Danmark, 2013. [Google Scholar]
- Zhang, F.; Tapera, T.M.; Gou, J. Application of a new dietary pattern analysis method in nutritional epidemiology. BMC Med. Res. Methodol. 2018, 18, 119. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, B.; Wang, R.; Zhu, M.; Shao, Y.; Wang, N.; Liu, X.; Zhang, T.; Jiang, F.; Wang, W.; et al. Cohort profile: Protocol and baseline survey for the Shanghai Suburban Adult Cohort and Biobank (SSACB) study. BMJ Open 2020, 10, e035430. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wu, H.; He, G.; Li, S.; Chen, B. Association between Dietary Patterns and Frailty Prevalence in Shanghai Suburban Elders: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 10852. [Google Scholar] [CrossRef]
- Gao, J.; Fei, J.Q.; Jiang, L.J.; Yao, W.Q.; Lin, B.; Guo, H. Assessment of the reproducibility and validity of a simple food-frequency questionnaire used in dietary patterns studies. Acta Nutr. Sin. 2011, 33, 452–456. [Google Scholar]
- Siener, R.; Hesse, A. Fluid intake and epidemiology of urolithiasis. Eur. J. Clin. Nutr. 2003, 57 (Suppl. S2), S47–S51. [Google Scholar] [CrossRef] [PubMed]
- Borghi, L.; Meschi, T.; Maggiore, U.; Prati, B. Dietary therapy in idiopathic nephrolithiasis. Nutr. Rev. 2006, 64 Pt 1, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Fink, H.A.; Akornor, J.W.; Garimella, P.S.; MacDonald, R.; Cutting, A.; Rutks, I.R.; Monga, M.; Wilt, T.J. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: A systematic review and me-ta-analysis of randomized trials. Eur. Urol. 2009, 56, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Shuster, J.; Jenkins, A.; Logan, C.; Barnett, T.; Riehle, R.; Zackson, D.; Wolfe, H.; Dale, R.; Daley, M.; Malik, I.; et al. Soft drink consumption and urinary stone recurrence: A randomized prevention trial. J. Clin. Epidemiol. 1992, 45, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Soda and Other Beverages and the Risk of Kidney Stones. Clin. J. Am. Soc. Nephrol. 2013, 8, 1389–1395. [Google Scholar] [CrossRef]
- Keßler, T.; Jansen, B.; Hesse, A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur. J. Clin. Nutr. 2002, 56, 1020–1023. [Google Scholar] [CrossRef]
- Nguyen, N.; Dumoulin, G.; Henriet, M.-T.; Regnard, J. Increase in Urinary Calcium and Oxalate after Fructose Infusion. Horm. Metab. Res. 1995, 27, 155–158. [Google Scholar] [CrossRef]
- Fox, I.H.; Kelley, W.N. Studies on the mechanism of fructose-induced hyperuricemia in man. Metabolism 1972, 21, 713–721. [Google Scholar] [CrossRef]
- Choi, J.W.J.; Ford, E.S.; Gao, X.; Choi, H.K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: The third national health and nutrition examination survey. Arthritis Care Res. 2008, 59, 109–116. [Google Scholar] [CrossRef]
- Hönow, R.; Laube, N.; Schneider, A.; Keßler, T.; Hesse, A. Influence of grapefruit-, orange- and apple-juice consumption on urinary variables and risk of crystallization. Br. J. Nutr. 2003, 90, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Odvina, C.V. Comparative Value of Orange Juice versus Lemonade in Reducing Stone-Forming Risk. Clin. J. Am. Soc. Nephrol. 2006, 1, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D. Health Safety of Soft Drinks: Contents, Containers, and Microorganisms. BioMed Res. Int. 2015, 2015, 128697. [Google Scholar] [CrossRef] [PubMed]
- Wabner, C.L.; Pak, C.Y. Effect of Orange Juice Consumption on Urinary Stone Risk Factors. J. Urol. 1993, 149, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Sun, H.; Wu, J.; Zhao, C.; Li, T.; Huang, H.; Fang, Q.; Mu, E.; Wu, R. Investigating the core microbiota and its influencing factors in traditional Chinese pickles. Food Res. Int. 2021, 147, 110543. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ghosh, M.; Ganguli, A. Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J. Microbiol. Biotechnol. 2012, 28, 703–711. [Google Scholar] [CrossRef]
- Pasolli, E.; De Filippis, F.; Mauriello, I.E.; Cumbo, F.; Walsh, A.M.; Leech, J.; Cotter, P.D.; Segata, N.; Ercolini, D. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 2020, 11, 2610. [Google Scholar] [CrossRef]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.-Y. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Asoudeh, F.; Talebi, S.; Jayedi, A.; Marx, W.; Najafi, M.T.; Mohammadi, H. Associations of Total Protein or Animal Protein Intake and Animal Protein Sources with Risk of Kidney Stones: A Systematic Review and Dose–Response Meta-Analysis. Adv. Nutr. Int. Rev. J. 2022, 13, 821–832. [Google Scholar] [CrossRef]
- Tracy, C.R.; Best, S.; Bagrodia, A.; Poindexter, J.R.; Adams-Huet, B.; Sakhaee, K.; Maalouf, N.; Pak, C.Y.; Pearle, M.S. Animal Protein and the Risk of Kidney Stones: A Comparative Metabolic Study of Animal Protein Sources. J. Urol. 2014, 192, 137–141. [Google Scholar] [CrossRef] [PubMed]
- García, R.M.M.; Ortega, A.I.J.; Salas-González, M.D.; López, L.M.B.; Rodríguez-Rodríguez, E. Nutritional intervention in the control of gallstones and renal lithiasis. Nutr. Hosp. 2019, 36, 70–74. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, Y.; Lan, Y.; Li, X.; Luo, L.; Duan, X.; Lei, M.; Liu, G.; Yang, Z.; Mai, X.; et al. Dietary vinegar prevents kidney stone recurrence via epigenetic regulations. EBioMedicine 2019, 45, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Xu, X. Vinegar could act by gut microbiome. EBioMedicine 2019, 46, 30. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, X.; Ma, Y.; Sun, Q.; Li, H.; Wang, K. Vinegar reduced renal calcium oxalate stones by regulating acetate metabolism in gut microbiota and crystal adhesion in rats. Int. Urol. Nephrol. 2022, 54, 2485–2495. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, X.; Hong, H.G.; Xiang, L.; Jiang, Q.; Ma, Y.; Chen, Z.; Cheng, L.; Jian, Z.; Wei, Z.; et al. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB J. 2020, 34, 11200–11214. [Google Scholar] [CrossRef]
- Yang, X.; Ren, J.; Wang, X.; Song, Q. Reduce the dimension of the predistortion model coefficients by lasso regression. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–9 January 2022; pp. 1–3. [Google Scholar]
Food Groups | Male | Female | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Case (n = 465) | Control (n = 2325) | p | Case (n = 601) | Control (n = 3005) | p | Case (n = 1066) | Control (n = 5330) | p | |
Rice | 393.9 | 391.6 | 0.833 | 267.4 | 254.1 | 0.102 | 323.1 | 310.5 | 0.074 |
Wheat | 35.4 | 32.2 | 0.123 | 40.0 | 32.1 | 0.013 | 38.0 | 33.5 | 0.025 |
Whole grains and mixed beans | 15.1 | 15.2 | 0.964 | 17.4 | 16.4 | 0.439 | 16.4 | 16.2 | 0.852 |
Potatoes | 20.7 | 21.2 | 0.729 | 21.3 | 20.6 | 0.593 | 21.1 | 20.8 | 0.771 |
Fresh vegetables | 182.1 | 186.5 | 0.601 | 195.8 | 190.7 | 0.570 | 190.2 | 187.9 | 0.712 |
Dark vegetables | 91.6 | 89.1 | 0.658 | 95.5 | 86.9 | 0.126 | 93.8 | 90.2 | 0.368 |
Mushrooms | 18.8 | 18.3 | 0.689 | 22.5 | 18.7 | 0.017 | 20.9 | 18.3 | 0.013 |
Fruits | 112.6 | 98.5 | 0.017 | 105.0 | 99.0 | 0.230 | 108.4 | 101.4 | 0.065 |
Dairy | 58.3 | 48.2 | 0.032 | 61.4 | 46.8 | 0.001 | 60.0 | 48.0 | <0.001 |
Yogurt | 40.7 | 32.3 | 0.116 | 40.0 | 31.2 | 0.003 | 40.3 | 31.2 | 0.002 |
Pork | 35.6 | 37.3 | 0.460 | 43.3 | 35.4 | 0.004 | 40.1 | 36.8 | 0.078 |
Meat from other livestock meat | 12.0 | 9.2 | 0.098 | 12.9 | 9.6 | 0.005 | 12.5 | 9.8 | 0.006 |
Poultry | 18.7 | 15.9 | 0.123 | 19.3 | 15.8 | 0.004 | 19.0 | 15.8 | 0.002 |
Innards | 4.2 | 3.6 | 0.190 | 5.2 | 3.6 | 0.054 | 4.8 | 3.5 | 0.010 |
Freshwater fish | 26.2 | 26.3 | 0.946 | 26.6 | 27.3 | 0.629 | 26.5 | 26.8 | 0.721 |
Marine fish | 12.6 | 13.3 | 0.473 | 12.5 | 12.3 | 0.841 | 12.6 | 12.5 | 0.918 |
Crustacean | 17.3 | 16.6 | 0.754 | 14.8 | 16.4 | 0.079 | 15.9 | 16.5 | 0.621 |
Soymilk | 23.9 | 16.6 | 0.010 | 29.1 | 16.7 | <0.001 | 26.8 | 18.8 | <0.001 |
Tofu | 17.9 | 17.9 | 0.982 | 18.5 | 17.7 | 0.465 | 18.3 | 18.1 | 0.822 |
Eggs | 29.9 | 29.6 | 0.848 | 28.8 | 29.4 | 0.596 | 29.3 | 29.2 | 0.892 |
Nuts | 9.7 | 11.1 | 0.085 | 11.2 | 12.5 | 0.177 | 10.5 | 11.2 | 0.278 |
Carbonated drinks | 31.8 | 15.9 | 0.001 | 30.6 | 13.9 | <0.001 | 31.5 | 16.5 | <0.001 |
Pure juices | 16.8 | 7.2 | <0.001 | 13.8 | 7.2 | <0.001 | 15.1 | 7.4 | <0.001 |
Other sugar drinks | 21.6 | 9.9 | <0.001 | 21.7 | 8.9 | <0.001 | 21.7 | 10.0 | <0.001 |
Candies and chocolates | 2.7 | 2.1 | 0.138 | 2.4 | 1.7 | 0.017 | 2.5 | 1.9 | 0.008 |
Fried dough foods | 7.2 | 5.3 | 0.002 | 7.5 | 5.4 | 0.013 | 7.4 | 5.5 | <0.001 |
Pickles | 7.5 | 11.7 | <0.001 | 10.3 | 11.2 | 0.408 | 9.1 | 11.1 | 0.003 |
Processed meat | 3.3 | 3.5 | 0.644 | 3.7 | 3.2 | 0.169 | 3.6 | 3.3 | 0.299 |
Pastries | 14.7 | 13.4 | 0.246 | 13.8 | 13.0 | 0.329 | 14.2 | 12.7 | 0.029 |
Dietary Patterns | High Loadings (>0.3) | Low Loadings (<−0.3) | OR (95% CI) # | p |
---|---|---|---|---|
Male | ||||
PC1 | Poultry, meat from other livestock, crustaceans *, pork *, tofu * | 1.02 (0.98, 1.07) | 0.327 | |
PC2 | Crustaceans *, freshwater fish * | Other sugary drinks, carbonated drinks, pure juices | 0.83 (0.78, 0.89) | <0.001 |
PC3 | Yogurt *, meat from other livestock * | Dark vegetables, fresh vegetables | 1.14 (1.06, 1.24) | <0.001 |
PC4 | Processed meat *, innards *, carbonated drinks * | Dairy, yogurt, fruits | 0.95 (0.88, 1.04) | 0.279 |
PC5 | Nuts, pickles, pastries * | Fresh vegetables *, pure juices * | 0.79 (0.72, 0.87) | <0.001 |
PC6 | Marine fish, soymilk, tofu | Dark vegetables, candies and chocolates *, fresh vegetables * | 0.98 (0.89, 1.08) | 0.659 |
PC7 | Fried dough foods *, soymilk *, dairy * | Eggs, carbonated drinks, other sugary drinks | 1.05 (0.95, 1.15) | 0.355 |
PC8 | Rice, wheat, nuts | Pickles, potatoes | 1.10 (0.99, 1.22) | 0.085 |
PC9 | Wheat | Rice | 1.04 (0.94, 1.17) | 0.432 |
Female | ||||
PC1 | Mushroom *, meat from other livestock *, tofu *, poultry *, crustaceans * | 1.07 (1.03, 1.12) | 0.001 | |
PC2 | Fresh vegetables, dark vegetables, freshwater fish * | Other sugary drinks, carbonated drinks *, pure juice * | 0.88 (0.82, 0.93) | <0.001 |
PC3 | Yogurt, fruits, dairy * | Pickles, innards | 1.05 (0.98, 1.12) | 0.141 |
PC4 | Carbonated drinks, other sugary drinks, pork | Whole grains and mixed beans, potatoes * | 1.11 (1.04, 1.20) | 0.004 |
PC5 | Crustaceans, nuts | Dark vegetables, dairy, fresh vegetables * | 0.79 (0.72, 0.85) | <0.001 |
PC6 | Carbonated drinks, marine fish, crustaceans * | Fried dough foods, nuts, candies and chocolates * | 1.03 (0.95, 1.13) | 0.445 |
PC7 | Carbonated drinks, fried dough foods, other sugary drinks | Poultry, meat from other livestock, processed meat * | 0.94 (0.87, 1.02) | 0.149 |
PC8 | Rice, poultry *, wheat * | 1.12 (1.02, 1.22) | 0.014 | |
PC9 | Nuts, pork * | Processed meat, soymilk, tofu * | 1.00 (0.92, 1.09) | 0.916 |
PC10 | Rice, juice *, marine fish * | Wheat | 0.93 (0.85, 1.01) | 0.099 |
Food Items | OR (LASSO Regression #) | Post-Selection Inference # | |
---|---|---|---|
OR | p | ||
Male | |||
Pure juices | 1.0047 | 1.0055 | <0.001 |
Fried dough foods | 1.0022 | 1.0057 | 0.127 |
Other sugary drinks | 1.0019 | 1.0026 | 0.014 |
Meat from other livestock | 1.0017 | 1.0043 | 0.040 |
Carbonated drinks | 1.0006 | 1.0010 | 0.100 |
Soymilk | 1.0001 | 1.0009 | 0.299 |
Fruits | 1.0001 | 1.0005 | 0.216 |
Pickles | 0.9891 | 0.9781 | <0.001 |
Female | |||
Fried dough foods | 1.0045 | 1.0063 | 0.045 |
Innards | 1.0029 | 1.0053 | 0.121 |
Meat from other livestock | 1.0024 | 1.0040 | 0.099 |
Pork | 1.0019 | 1.0028 | 0.007 |
Mushrooms | 1.0018 | 1.0030 | 0.090 |
Pure juices | 1.0015 | 1.0019 | 0.086 |
Carbonated drinks | 1.0014 | 1.0017 | 0.007 |
Soymilk | 1.0013 | 1.0016 | 0.024 |
Other sugary drinks | 1.0013 | 1.0015 | 0.033 |
Wheat | 1.0011 | 1.0015 | 0.071 |
Poultry | 1.0011 | 1.0015 | 0.499 |
Dairy | 1.0007 | 1.0009 | 0.058 |
Yogurt | 1.0007 | 1.0011 | 0.094 |
Rice | 1.0002 | 1.0004 | 0.103 |
Crustaceans | 0.9934 | 0.9904 | 0.001 |
Pickles | 0.9961 | 0.9926 | 0.009 |
Eggs | 0.9987 | 0.9968 | 0.117 |
Nuts | 0.9989 | 0.9965 | 0.133 |
Freshwater fish | 0.9996 | 0.9981 | 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, S.; Zhao, Q.; Wang, N.; Liu, X.; Zhang, T.; He, G.; Zhao, G.; Jiang, Y.; Chen, B. Analysis of Dietary Patterns Associated with Kidney Stone Disease Based on Data-Driven Approaches: A Case-Control Study in Shanghai. Nutrients 2024, 16, 214. https://doi.org/10.3390/nu16020214
Wang Y, Liu S, Zhao Q, Wang N, Liu X, Zhang T, He G, Zhao G, Jiang Y, Chen B. Analysis of Dietary Patterns Associated with Kidney Stone Disease Based on Data-Driven Approaches: A Case-Control Study in Shanghai. Nutrients. 2024; 16(2):214. https://doi.org/10.3390/nu16020214
Chicago/Turabian StyleWang, Yifei, Shaojie Liu, Qi Zhao, Na Wang, Xing Liu, Tiejun Zhang, Gengsheng He, Genming Zhao, Yonggen Jiang, and Bo Chen. 2024. "Analysis of Dietary Patterns Associated with Kidney Stone Disease Based on Data-Driven Approaches: A Case-Control Study in Shanghai" Nutrients 16, no. 2: 214. https://doi.org/10.3390/nu16020214
APA StyleWang, Y., Liu, S., Zhao, Q., Wang, N., Liu, X., Zhang, T., He, G., Zhao, G., Jiang, Y., & Chen, B. (2024). Analysis of Dietary Patterns Associated with Kidney Stone Disease Based on Data-Driven Approaches: A Case-Control Study in Shanghai. Nutrients, 16(2), 214. https://doi.org/10.3390/nu16020214