Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Procedure
2.3. [13C2]Oxalate Absorption Test
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Urine Composition
3.3. Intestinal [13C2]Oxalate Absorption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torres, J.; Mehandru, S.; Colombel, J.-F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Thia, K.T.; Sandborn, W.J.; Harmsen, W.S.; Zinsmeister, A.R.; Loftus, E.V. Risk factors associated with progression to intestinal complications of Crohn’s disease in a population-based cohort. Gastroenterology 2010, 139, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Loftus, E.V.; Colombel, J.-F.; Sandborn, W.J. The natural history of adult Crohn’s disease in population-based cohorts. Am. J. Gastroenterol. 2010, 105, 289–297. [Google Scholar] [CrossRef]
- Le Berre, C.; Danese, S.; Peyrin-Biroulet, L. Can we change the natural course of inflammatory bowel disease? Therap. Adv. Gastroenterol. 2023, 16, 1–19. [Google Scholar] [CrossRef]
- Greenstein, A.J.; Janowitz, H.D.; Sachar, D.B. The extra-intestinal complications of Crohn’s disease and ulcerative colitis: A study of 700 patients. Medicine 1976, 55, 401–412. [Google Scholar] [CrossRef]
- Manganiotis, A.N.; Banner, M.P.; Malkowicz, S.B. Urologic complications of Crohn’s disease. Surg. Clin. N. Am. 2001, 81, 197–215. [Google Scholar] [CrossRef]
- Evan, A.P.; Lingeman, J.E.; Worcester, E.M.; Bledsoe, S.B.; Sommer, A.J.; Williams, J.C.; Krambeck, A.E.; Philips, C.L.; Coe, F.L. Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 2010, 78, 310–317. [Google Scholar] [CrossRef]
- Andersson, H.; Bosaeus, I.; Fasth, S.; Hellberg, R.; Hultén, L. Cholelithiasis and urolithiasis in Crohn’s disease. Scand. J. Gastroenterol. 1987, 22, 253–256. [Google Scholar] [CrossRef]
- Fagagnini, S.; Heinrich, H.; Rossel, J.-B.; Biedermann, L.; Frei, P.; Zeitz, J.; Spalinger, M.; Battegay, E.; Zimmerli, L.; Vavricka, S.R.; et al. Risk factors for gallstones and kidney stones in a cohort of patients with inflammatory bowel diseases. PLoS ONE 2017, 12, e0185193. [Google Scholar] [CrossRef]
- Asplin, J.R. Hyperoxaluric calcium nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 927–949. [Google Scholar] [CrossRef]
- Williams, H.E.; Wandzilak, T.R. Oxalate synthesis, transport and the hyperoxaluric syndromes. J. Urol. 1989, 141, 742–747. [Google Scholar] [CrossRef]
- Hesse, A.; Schneeberger, W.; Engfeld, S.; von Unruh, G.E.; Sauerbruch, T. Intestinal hyperabsorption of oxalate in calcium oxalate stone formers: Application of a new test with [13C2]oxalate. J. Am. Soc. Nephrol. 1999, 10 (Suppl. 14), S329–S333. [Google Scholar]
- Holmes, R.P.; Goodman, H.O.; Assimos, D.G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001, 59, 270–276. [Google Scholar] [CrossRef]
- Siener, R.; Ebert, D.; Nicolay, C.; Hesse, A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int. 2003, 63, 1037–1043. [Google Scholar] [CrossRef]
- Chadwick, V.S.; Modha, K.; Dowling, R.H. Mechanism for hyperoxaluria in patients with ileal dysfunction. N. Engl. J. Med. 1973, 289, 172–176. [Google Scholar] [CrossRef]
- Dobbins, J.W.; Binder, H.J. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 1976, 70, 1096–1100. [Google Scholar] [CrossRef]
- Witting, C.; Langman, C.B.; Assimos, D.; Baum, M.A.; Kausz, A.; Milliner, D.; Tasian, G.; Worcester, E.; Allain, M.; West, M.; et al. Pathophysiology and treatment of enteric hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2021, 16, 487–495. [Google Scholar] [CrossRef]
- Earnest, D.L.; Johnson, G.; Williams, H.E.; Admirand, W.H. Hyperoxaluria in patients with ileal resection: An abnormality in dietary oxalate absorption. Gastroenterology 1974, 66, 1114–1122. [Google Scholar] [CrossRef]
- Nazzal, L.; Puri, S.; Goldfarb, D.S. Enteric hyperoxaluria: An important cause of end-stage kidney disease. Nephrol. Dial. Transplant. 2016, 31, 375–382. [Google Scholar] [CrossRef]
- Hueppelshaeuser, R.; von Unruh, G.E.; Habbig, S.; Beck, B.B.; Buderus, S.; Hesse, A.; Hoppe, B. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr. Nephrol. 2012, 27, 1103–1109. [Google Scholar] [CrossRef]
- Hessov, I.; Hasselblad, C.; Fasth, S.; Hultén, L. Magnesium deficiency after ileal resections for Crohn’s disease. Scand. J. Gastroenterol. 1983, 18, 643–649. [Google Scholar] [CrossRef]
- Caudarella, R.; Rizzoli, E.; Pironi, L.; Malavolta, N.; Martelli, G.; Poggioli, G.; Gozzetti, G.; Miglioli, M. Renal stone formation in patients with inflammatory bowel disease. Scanning Microsc. 1993, 7, 371–380. [Google Scholar]
- Best, W.R.; Becktel, J.M.; Singleton, J.W. Rederived values of the eight coefficients of the Crohn’s Disease Activity Index (CDAI). Gastroenterology 1979, 77, 843–846. [Google Scholar] [CrossRef]
- Siener, R.; Pitzer, M.S.; Speller, J.; Hesse, A. Risk profile of patients with brushite stone disease and the impact of diet. Nutrients 2023, 15, 4092. [Google Scholar] [CrossRef]
- Hesse, A.; Tiselius, H.-G.; Siener, R.; Hoppe, B. Urinary Stones: Diagnosis, Treatment, and Prevention of Recurrence, 3rd ed.; Karger: Basel, Switzerland, 2009; ISBN 978-3-8055-9149-2. [Google Scholar]
- Tiselius, H.-G. A Simplified estimate of the ion-activity product of calcium phosphate in urine. Eur. Urol. 1984, 10, 191–195. [Google Scholar] [CrossRef]
- Tiselius, H.-G. Medical evaluation of nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 1031–1050. [Google Scholar] [CrossRef]
- Werness, P.G.; Brown, C.M.; Smith, L.H.; Finlayson, B. EQUIL2: A BASIC computer program for the calculation of urinary saturation. J. Urol. 1985, 134, 1242–1244. [Google Scholar] [CrossRef]
- von Unruh, G.E.; Langer, M.A.; Paar, D.W.; Hesse, A. Mass spectrometric-selected ion monitoring assay for an oxalate absorption test applying [13C2]oxalate. J. Chromatogr. B Biomed. Sci. Appl. 1998, 716, 343–349. [Google Scholar] [CrossRef]
- von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Reference range for gastrointestinal oxalate absorption measured with a standardized [13C2]oxalate absorption test. J. Urol. 2003, 169, 687–690. [Google Scholar] [CrossRef]
- Voss, S.; Hesse, A.; Zimmermann, D.J.; Sauerbruch, T.; von Unruh, G.E. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the [13C2]oxalate absorption test. J. Urol. 2006, 175, 1711–1715. [Google Scholar] [CrossRef]
- Andersson, H.; Filipsson, S.; Hultén, L. Urinary oxalate excretion related to ileocolic surgery in patients with Crohn’s disease. Scand. J. Gastroenterol. 1978, 13, 465–469. [Google Scholar] [CrossRef]
- Böhles, H.; Beifuss, O.J.; Brandl, U.; Pichl, J.; Akçetin, Z.; Demling, L. Urinary factors of kidney stone formation in patients with Crohn’s disease. Klin. Wochenschr. 1988, 66, 87–91. [Google Scholar] [CrossRef]
- Rudman, D.; Dedonis, J.L.; Fountain, M.T.; Chandler, J.B.; Gerron, G.G.; Fleming, G.A.; Kutner, M.H. Hypocitraturia in patients with gastrointestinal malabsorption. N. Engl. J. Med. 1980, 303, 657–661. [Google Scholar] [CrossRef]
- Dobbins, J.W. Nephrolithiasis and intestinal disease. J. Clin. Gastroenterol. 1985, 7, 21–24. [Google Scholar] [CrossRef]
- Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis 2016, 44, 33–43. [Google Scholar] [CrossRef]
- Massironi, S.; Viganò, C.; Palermo, A.; Pirola, L.; Mulinacci, G.; Allocca, M.; Peyrin-Biroulet, L.; Danese, S. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2023, 8, 579–590. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional aspects in inflammatory bowel diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- Prieto, J.M.; Andrade, A.R.; Magro, D.O.; Imbrizi, M.; Nishitokukado, I.; Ortiz-Agostinho, C.L.; dos Santos, F.M.; Luzia, L.A.; Rondo, P.H.; Leite, A.Z.; et al. Nutritional global status and its impact in Crohn’s disease. J. Can. Assoc. Gastroenterol. 2021, 4, 290–295. [Google Scholar] [CrossRef]
- Siener, R.; Struwe, F.; Hesse, A. Effect of L-methionine on the risk of phosphate stone formation. Urology 2016, 98, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Asplin, J.R. Neglected analytes in the 24-h urine: Ammonium and sulfate. Curr. Opin. Nephrol. Hypertens. 2022, 31, 168–174. [Google Scholar] [CrossRef]
- Ennis, J.L.; Asplin, J.R. The role of the 24-h urine collection in the management of nephrolithiasis. Int. J. Surg. 2016, 36, 633–637. [Google Scholar] [CrossRef]
- Stam, S.P.; Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; de Meijer, V.E.; van Beek, A.P.; Gansevoort, R.T.; Bakker, S.J. Muscle mass determined from urinary creatinine excretion rate, and muscle performance in renal transplant recipients. J. Cachexia Sarcopenia Muscle 2019, 10, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; McNicholas, D.; Creavin, B.; Kelly, M.E.; Walsh, T.; Beddy, D. Sarcopenia and inflammatory bowel disease: A systematic review. Inflamm. Bowel Dis. 2019, 25, 67–73. [Google Scholar] [CrossRef]
- Gelzayd, E.A.; Breuer, R.I.; Kirsner, J.B. Nephrolithiasis in inflammatory bowel disease. Am. J. Dig. Dis. 1968, 13, 1027–1034. [Google Scholar] [CrossRef]
- Dobbins, J.W.; Binder, H.J. Importance of the colon in enteric hyperoxaluria. N. Engl. J. Med. 1977, 296, 298–301. [Google Scholar] [CrossRef]
- Hylander, E.; Jarnum, S.; Jensen, H.J.; Thale, M. Enteric hyperoxaluria: Dependence on small intestinal resection, colectomy, and steatorrhoea in chronic inflammatory bowel disease. Scand. J. Gastroenterol. 1978, 13, 577–588. [Google Scholar] [CrossRef]
- Peyrin-Biroulet, L.; Harmsen, W.S.; Tremaine, W.J.; Zinsmeister, A.R.; Sandborn, W.J.; Loftus, E.V. Cumulative length of bowel resection in a population-based cohort of patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 2016, 14, 1439–1444. [Google Scholar] [CrossRef]
- Bambach, C.P.; Robertson, W.G.; Peacock, M.; Hill, G.L. Effect of intestinal surgery on the risk of urinary stone formation. Gut 1981, 22, 257–263. [Google Scholar] [CrossRef]
- Siener, R.; Petzold, J.; Bitterlich, N.; Alteheld, B.; Metzner, C. Determinants of urolithiasis in patients with intestinal fat malabsorption. Urology 2013, 81, 17–24. [Google Scholar] [CrossRef]
- Siener, R.; Machaka, I.; Alteheld, B.; Bitterlich, N.; Metzner, C. Effect of fat-soluble vitamins A, D, E and K on vitamin status and metabolic profile in patients with fat malabsorption with and without urolithiasis. Nutrients 2020, 12, 3110. [Google Scholar] [CrossRef]
- Andersson, H.; Jagenburg, R. Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy. Gut 1974, 15, 360–366. [Google Scholar] [CrossRef]
- Kumar, R.; Ghoshal, U.C.; Singh, G.; Mittal, R.D. Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: Possible role in renal stone formation. J. Gastroenterol. Hepatol. 2004, 19, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Siener, R. Nutrition and kidney stone disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The oxalate content of fruit and vegetable juices, nectars and drinks. J. Food Compos. Anal. 2016, 45, 108–112. [Google Scholar] [CrossRef]
- Voss, S.; Zimmermann, D.J.; Hesse, A.; von Unruh, G.E. The effect of oral administration of calcium and magnesium on intestinal oxalate absorption in humans. Isotopes Environ. Health Stud. 2004, 40, 199–205. [Google Scholar] [CrossRef]
- von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Dependence of oxalate absorption on the daily calcium intake. J. Am. Soc. Nephrol. 2004, 15, 1567–1573. [Google Scholar] [CrossRef]
- Lieske, J.C.; Lingeman, J.E.; Ferraro, P.M.; Wyatt, C.M.; Tosone, C.; Kausz, A.T.; Knauf, F. Randomized placebo-controlled trial of reloxaliase in enteric hyperoxaluria. NEJM Evid. 2022, 1, EVIDoa2100053. [Google Scholar] [CrossRef]
CD Patients Total | CD Patients with IR | CD Patients without IR | CD Patients with UL | CD Patients without UL | |||
---|---|---|---|---|---|---|---|
n = 27 | n = 18 | n = 9 | n = 9 | n = 18 | |||
Mean ± SD n (%) | Mean ± SD n (%) | Mean ± SD n (%) | p Value a | Mean ± SD n (%) | Mean ± SD n (%) | p Value b | |
Women | 13 (48.1%) | 10 (55.6%) | 3 (33.3%) | 0.420 | 5 (55.6%) | 8 (44.4%) | 0.695 |
Men | 14 (51.9%) | 8 (44.4%) | 6 (66.7%) | 4 (44.4%) | 10 (55.6%) | ||
Age (years) | 40.8 ± 13.4 | 46.7 ± 10.9 | 28.9 ± 9.8 | 0.001 | 44.4 ± 8.2 | 38.9 ± 15.3 | 0.269 |
Weight (kg) | 67.0 ± 14.4 | 67.4 ± 16.1 | 66.2 ± 11.0 | 0.990 | 65.2 ± 14.6 | 67.9 ± 14.6 | 0.658 |
Height (m) | 1.73 ± 0.09 | 1.71 ± 0.09 | 1.76 ± 0.08 | 0.216 | 1.72 ± 0.08 | 1.73 ± 0.09 | 0.604 |
BMI (kg/m²) | 22.4 ± 4.2 | 22.9 ± 4.4 | 21.5 ± 3.9 | 0.375 | 22.0 ± 4.0 | 22.6 ± 4.4 | 0.860 |
Smokers | 12 (44.4%) | 9 (50.0%) | 3 (33.3%) | 0.683 | 5 (55.6%) | 7 (38.9%) | 0.448 |
CDAI | 148 ± 110 c | 173 ± 107 d | 108 ± 108 | 0.201 | 177 ± 74 e | 140 ± 119 | 0.363 |
Diarrhea (n) | 18 (66.7%) | 15 (83.3%) | 3 (33.3%) | 0.026 | 8 (88.9%) | 10 (55.6%) | 0.193 |
Ileal resection (n) | 18 (66.7%) | 18 (100%) | 0 (0%) | - | 9 (100.0%) | 9 (50.0%) | 0.012 |
Length of ileum resection (cm) | 51 ± 27 f | 51 ± 27 f | - | - | 71 ± 26 g | 36 ± 15 h | 0.002 |
Colon resection (n) | 11/22 (50.0%) i | 11/13 (84.6%) i | 0 (0%) | <0.001 j | 6/8 (75.0%) k | 5/14 (35.7%) l | 0.183 |
Length of colon resection (cm) | 22 ± 16 m | 22 ± 16 m | - | - | 25 ± 10 n | 19 ± 20 l | 0.262 |
Urolithiasis (n) | 9 (33.3%) | 9 (50.0%) | 0 (0%) | 0.012 j | 9 (100%) | 0 (0%) | - |
CD Patients Total | CD Patients with IR | CD Patients without IR | CD Patients with UL | CD Patients without UL | |||
---|---|---|---|---|---|---|---|
n = 27 | n = 18 | n = 9 | n = 9 | n = 18 | |||
Mean ± SD | Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | p Value b | |
Volume (L/24 h) | 2.063 ± 1.027 | 1.824 ± 0.810 | 2.539 ± 1.285 | 0.067 | 1.762 ± 0.560 | 2.213 ± 1.181 | 0.403 |
Density (g/cm³) | 1.011 ± 0.004 | 1.010 ± 0.003 | 1.013 ± 0.005 | 0.325 | 1.011 ± 0.004 | 1.011 ± 0.004 | 0.789 |
Urinary pH | 5.91 ± 0.46 | 5.69 ± 0.31 | 6.35 ± 0.38 | <0.001 | 5.68 ± 0.34 | 6.03 ± 0.47 | 0.078 |
Sodium (mmol/24 h) | 194 ± 111 | 165 ± 91 | 252 ± 131 | 0.097 | 170 ± 86 | 207 ± 123 | 0.604 |
Potassium (mmol/24 h) | 47 ± 25 | 38 ± 13 | 64 ± 34 | 0.065 | 36 ± 11 | 52 ± 28 | 0.180 |
Calcium (mmol/24 h) | 3.73 ± 2.88 | 2.62 ± 1.61 | 5.95 ± 3.60 | 0.023 | 3.22 ± 1.53 | 3.98 ± 3.37 | 0.820 |
Magnesium (mmol/24 h) | 2.65 ± 1.69 | 2.17 ± 1.59 | 3.63 ± 1.54 | 0.012 | 2.11 ± 1.09 | 2.92 ± 1.90 | 0.269 |
Ammonium (mmol/24 h) | 42.5 ± 22.5 | 45.7 ± 25.0 | 36.2 ± 16.0 | 0.382 | 48.7 ± 25.5 | 39.5 ± 21.0 | 0.368 |
Chloride (mmol/24 h) | 204 ± 104 | 184 ± 95 | 243 ± 114 | 0.106 | 188 ± 79 | 212 ± 115 | 0.596 |
Phosphate (mmol/24 h) | 25.5 ± 9.1 | 24.9 ± 8.9 | 26.7 ± 9.8 | 0.631 | 28.4 ± 9.5 | 24.1 ± 8.8 | 0.322 |
Sulfate (mmol/24 h) | 16.1 ± 7.5 | 12.9 ± 5.5 | 22.3 ± 7.3 | 0.002 | 13.8 ± 6.1 | 17.2 ± 8.0 | 0.382 |
Creatinine (mmol/24 h) | 12.05 ± 4.29 | 11.84 ± 4.94 | 12.47 ± 2.77 | 0.470 | 13.19 ± 5.28 | 11.47 ± 3.75 | 0.659 |
Uric acid (mmol/24 h) | 3.26 ± 1.44 | 2.90 ± 1.42 | 3.98 ± 1.26 | 0.015 | 3.29 ± 1.54 | 3.25 ± 1.43 | 0.715 |
Oxalate (mmol/24 h) | 0.477 ± 0.230 | 0.501 ± 0.256 | 0.428 ± 0.167 | 0.561 | 0.623 ± 0.236 | 0.404 ± 0.194 | 0.027 |
Citrate (mmol/24 h) | 1.148 ± 1.285 | 0.821 ± 1.007 | 1.801 ± 1.579 | 0.046 | 0.661 ± 1.038 | 1.391 ± 1.353 | 0.076 |
AP Brushite index | 4.01 ± 3.70 | 3.34 ± 3.75 | 5.33 ± 3.43 | 0.118 | 4.71 ± 4.34 | 3.65 ± 3.42 | 0.375 |
AP Struvite index | 2.27 ± 4.85 | 0.65 ± 1.25 | 5.49 ± 7.46 | <0.001 | 0.65 ± 0.87 | 3.07 ± 5.79 | 0.212 |
AP Uric acid (10−9) | 1.25 ± 1.11 | 1.55 ± 1.08 | 0.67 ± 0.97 | 0.009 | 1.77 ± 1.30 | 1.00 ± 0.94 | 0.085 |
AP Calcium oxalate index | 1.41 ± 1.04 | 1.50 ± 1.20 | 1.23 ± 0.66 | 0.940 | 2.16 ± 1.11 | 1.04 ± 0.81 | 0.003 |
RS Brushite | 0.562 ± 0.545 | 0.327 ± 0.365 | 1.033 ± 0.555 | 0.002 | 0.403 ± 0.347 | 0.641 ± 0.615 | 0.980 |
RS Struvite | 0.029 ± 0.052 | 0.012 ± 0.020 | 0.065 ± 0.076 | <0.001 | 0.012 ± 0.014 | 0.038 ± 0.062 | 0.253 |
RS Uric acid | 1.807 ± 1.506 | 2.210 ± 1.435 | 1.001 ± 1.377 | 0.009 | 2.509 ± 1.695 | 1.456 ± 1.313 | 0.076 |
RS Calcium oxalate | 5.813 ± 3.787 | 6.120 ± 4.222 | 5.199 ± 2.842 | 0.820 | 8.481 ± 3.413 | 4.479 ± 3.285 | 0.005 |
CD Patients Total | Healthy Controls | CD Patients with IR | CD Patients without IR | CD Patients with UL | CD Patients without UL | |||||
---|---|---|---|---|---|---|---|---|---|---|
n = 27 | n = 27 | n = 18 | n = 9 | n = 9 | n = 18 | |||||
Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | p Value b | Mean ± SD | Mean ± SD | p Value c | p Value d | |
Volume (L/24 h) | 2.192 ± 0.985 | 2.142 ± 0.668 | 0.945 | 2.027 ± 0.773 | 2.522 ± 1.303 | 0.375 | 2.324 ± 0.791 | 2.126 ± 1.084 | 0.463 | 0.641 |
Density (g/cm3) | 1.013 ± 0.006 | 1.016 ± 0.006 | 0.095 | 1.013 ± 0.005 | 1.015 ± 0.008 | 0.501 | 1.011 ± 0.005 | 1.014 ± 0.006 | 0.154 | 0.027 |
Sodium (mmol/24 h) | 167 ± 98 | 182 ± 45 | 0.093 | 140 ± 77 | 222 ± 117 | 0.061 | 143 ± 85 | 180 ± 104 | 0.316 | 0.030 |
Potassium (mmol/24 h) | 45 ± 21 | 76 ± 23 | <0.001 | 41 ± 16 | 54 ± 27 | 0.280 | 43 ± 16 | 47 ± 23 | 0.950 | 0.001 |
Calcium (mmol/24 h) | 3.36 ± 2.41 | 4.42 ± 2.16 | 0.026 | 2.46 ± 1.41 | 5.18 ± 3.03 | 0.007 | 2.90 ± 1.32 | 3.60 ± 2.81 | 0.820 | 0.035 |
Magnesium (mmol/24 h) | 2.58 ± 1.57 | 5.22 ± 1.57 | <0.001 | 2.19 ± 1.38 | 3.35 ± 1.73 | 0.109 | 2.18 ± 1.05 | 2.78 ± 1.77 | 0.622 | <0.001 |
Phosphate (mmol/24 h) | 23.6 ± 8.1 e | 26.4 ± 8.7 | 0.499 | 23.0 ± 6.6 | 24.8 ± 11.1 f | 0.595 | 26.5 ± 4.8 | 22.0 ± 9.1 g | 0.177 | 0.699 |
Sulfate (mmol/24 h) | 15.4 ± 6.6 | 20.9 ± 4.9 | 0.001 | 12.6 ± 4.7 | 21.0 ± 6.4 | 0.002 | 13.2 ± 2.5 | 16.5 ± 7.8 | 0.322 | <0.001 |
Creatinine (mmol/24 h) | 10.88 ± 3.26 | 13.89 ± 3.34 | 0.002 | 10.96 ± 3.66 | 10.74 ± 2.47 | 0.930 | 11.80 ± 3.52 | 10.43 ± 3.13 | 0.440 | 0.067 |
Oxalate (mmol/24 h) | 0.468 ± 0.260 | 0.383 ± 0.087 | 0.595 | 0.531 ± 0.296 | 0.341 ± 0.078 | 0.131 | 0.706 ± 0.309 | 0.349 ± 0.115 | 0.001 | <0.001 |
Citrate (mmol/24 h) | 1.107 ± 0.964 | 3.968 ± 1.486 | <0.001 | 0.969 ± 0.926 | 1.385 ± 1.034 | 0.160 | 0.766 ± 0.679 | 1.278 ± 1.055 | 0.131 | <0.001 |
AP CaOx index | 1.11 ± 0.89 | 0.85 ± 0.61 | 0.138 | 1.17 ± 1.02 | 1.01 ± 0.60 | 1.000 | 1.60 ± 1.20 | 0.87 ± 0.59 | 0.076 | 0.014 |
CD Patients Total | Healthy Controls | CD Patients with IR | CD Patients without IR | CD Patients with UL | CD Patients without UL | |||||
---|---|---|---|---|---|---|---|---|---|---|
n = 27 | n = 27 | n = 18 | n = 9 | n = 9 | n = 18 | |||||
Mean ± SD | Mean ± SD | p Value a | Mean ± SD | Mean ± SD | p Value b | Mean ± SD | Mean ± SD | p Value c | p Value d | |
Unlabeled urinary oxalate (mmol/6 h) Fraction 1 | 0.112 ± 0.059 | 0.077 ± 0.034 | 0.009 | 0.116 ± 0.057 | 0.103 ± 0.064 | 0.410 | 0.149 ± 0.055 | 0.093 ± 0.052 | 0.007 | <0.001 |
Unlabeled urinary oxalate (mmol/6 h) Fraction 2 | 0.139 ± 0.110 | 0.103 ± 0.053 | 0.272 | 0.155 ± 0.130 | 0.106 ± 0.036 | 0.527 | 0.215 ± 0.157 | 0.100 ± 0.047 | 0.012 | 0.009 |
Unlabeled urinary oxalate (mmol/12 h) Fraction 3 | 0.231 ± 0.147 | 0.175 ± 0.050 | 0.258 | 0.264 ± 0.163 | 0.166 ± 0.081 | 0.131 | 0.306 ± 0.134 | 0.194 ± 0.141 | 0.020 | 0.002 |
Total unlabeled oxalate (mmol/24 h) | 0.481 ± 0.278 | 0.354 ± 0.096 | 0.148 | 0.535 ± 0.309 | 0.375 ± 0.168 | 0.189 | 0.670 ± 0.317 | 0.387 ± 0.206 | 0.005 | <0.001 |
[13C2]oxalate (mmol/6 h) Fraction 1 | 0.023 ± 0.014 | 0.022 ± 0.014 | 0.715 | 0.024 ± 0.013 | 0.021 ± 0.015 | 0.502 | 0.030 ± 0.014 | 0.020 ± 0.012 | 0.058 | 0.134 |
[13C2]oxalate (mmol/6 h) Fraction 2 | 0.016 ± 0.028 | 0.004 ± 0.003 | 0.001 | 0.018 ± 0.030 | 0.013 ± 0.024 | 0.073 | 0.028 ± 0.040 | 0.010 ± 0.017 | 0.010 | <0.001 |
[13C2]oxalate (mmol/12 h) Fraction 3 | 0.005 ± 0.012 | 0.001 ± 0.002 | 0.046 | 0.005 ± 0.006 | 0.007 ± 0.019 | 0.162 | 0.007 ± 0.007 | 0.004 ± 0.014 | 0.003 | <0.001 |
Total [13C2]oxalate (mmol/24 h) | 0.045 ± 0.039 | 0.027 ± 0.016 | 0.064 | 0.047 ± 0.031 | 0.041 ± 0.053 | 0.131 | 0.065 ± 0.033 | 0.035 ± 0.038 | 0.002 | <0.001 |
Total urinary oxalate (mmol/6 h) Fraction 1 | 0.135 ± 0.067 | 0.099 ± 0.044 | 0.024 | 0.140 ± 0.065 | 0.124 ± 0.074 | 0.433 | 0.179 ± 0.059 | 0.113 ± 0.061 | 0.009 | <0.001 |
Total urinary oxalate (mmol/6 h) Fraction 2 | 0.155 ± 0.121 | 0.107 ± 0.054 | 0.162 | 0.173 ± 0.141 | 0.119 ± 0.057 | 0.463 | 0.243 ± 0.167 | 0.111 ± 0.056 | 0.007 | 0.004 |
Total urinary oxalate (mmol/12 h) Fraction 3 | 0.237 ± 0.150 | 0.176 ± 0.051 | 0.221 | 0.269 ± 0.165 | 0.173 ± 0.093 | 0.131 | 0.314 ± 0.136 | 0.198 ± 0.145 | 0.020 | 0.001 |
Total urinary oxalate (mmol/24 h) | 0.526 ± 0.295 | 0.381 ± 0.104 | 0.133 | 0.582 ± 0.320 | 0.416 ± 0.211 | 0.176 | 0.736 ± 0.318 | 0.422 ± 0.225 | 0.003 | <0.001 |
Intestinal oxalate absorption (%) | 12.1 ± 10.2 | 7.2 ± 4.2 | 0.055 | 12.6 ± 8.0 | 10.9 ± 14.1 | 0.128 | 17.4 ± 8.1 | 9.4 ± 10.3 | 0.002 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R.; Ernsten, C.; Speller, J.; Scheurlen, C.; Sauerbruch, T.; Hesse, A. Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease. Nutrients 2024, 16, 264. https://doi.org/10.3390/nu16020264
Siener R, Ernsten C, Speller J, Scheurlen C, Sauerbruch T, Hesse A. Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease. Nutrients. 2024; 16(2):264. https://doi.org/10.3390/nu16020264
Chicago/Turabian StyleSiener, Roswitha, Charlotte Ernsten, Jan Speller, Christian Scheurlen, Tilman Sauerbruch, and Albrecht Hesse. 2024. "Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease" Nutrients 16, no. 2: 264. https://doi.org/10.3390/nu16020264
APA StyleSiener, R., Ernsten, C., Speller, J., Scheurlen, C., Sauerbruch, T., & Hesse, A. (2024). Intestinal Oxalate Absorption, Enteric Hyperoxaluria, and Risk of Urinary Stone Formation in Patients with Crohn’s Disease. Nutrients, 16(2), 264. https://doi.org/10.3390/nu16020264