The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Data Collection
2.2. Bioelectrical Impedance Analysis
2.3. Biochemical Tests
2.4. Physical Activity (PA) Measured by Accelerometer
2.5. Sleep Duration Measured Using an Accelerometer
2.6. Nutritional Value of Daily Food Consumption
2.7. SCFAs
2.7.1. Chemicals
2.7.2. Sample Preparation
2.7.3. Analyzes
2.8. Statistical Analyzes
3. Results
3.1. Anthropometric and Biochemical Characteristics
3.2. Correlation of Lifestyle Factors and SCFAs
3.3. Fecal SCFA Profile: Percentage of SCFAs Depending on Various Fiber Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolters, M.; Ahrens, J.; Romaní-Pérez, M.; Watkins, C.; Sanz, Y.; Benítez-Páez, A.; Stanton, C.; Günther, K. Dietary fat, the gut microbiota, and metabolic health—A systematic review conducted within the MyNewGut project. Clin. Nutr. 2019, 38, 2504–2520. [Google Scholar] [CrossRef] [PubMed]
- Asnicar, F.; Berry, S.E.; Valdes, A.M.; Nguyen, L.H.; Piccinno, G.; Drew, D.A.; Leeming, E.; Gibson, R.; Le Roy, C.; Khatib, H.A.; et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med. 2021, 27, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Bolte, L.A.; Vich Vila, A.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M.J.E.; Fu, J.; et al. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021, 70, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vermeire, S. The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- Evans, J.M.; Morris, L.S.; Marchesi, J.R. The gut microbiome: The role of a virtual organ in the endocrinology of the host. J. Endocrinol. 2013, 218, R37–R47. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef]
- de la Cuesta-Zuluaga, J.; Mueller, N.T.; Álvarez-Quintero, R.; Velásquez-Mejía, E.P.; Sierra, J.A.; Corrales-Agudelo, V.; Carmona, J.A.; Abad, J.M.; Escobar, J.S. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018, 11, 51. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- U-Din, M.; Ahmed, B.A.; Syed, S.A.; Ong, F.J.; Oreskovich, S.M.; Gunn, E.; Surette, M.G.; Punthakee, Z.; Steinberg, G.R.; Morrison, K.M. Characteristics of Abdominal Visceral Adipose Tissue, Metabolic Health and the Gut Microbiome in Adults. J. Clin. Endocrinol. Metab. 2023, 10, dgad604. [Google Scholar] [CrossRef] [PubMed]
- Ikeue, K.; Kusakabe, T.; Yamakage, H.; Ishii, K.; Satoh-Asahara, N. A body shape index is useful for BMI-independently identifying Japanese patients with obesity at high risk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2023; in press. [Google Scholar] [CrossRef]
- Lochs, H.; Allison, S.P.; Meier, R.; Pirlich, M.; Kondrup, J.; Schneider, S.; van den Berghe, G.; Pichard, C. Introductory to the ESPEN Guidelines on Enteral Nutrition: Terminology, definitions and general topics. Clin. Nutr. 2006, 25, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sport. Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Wong, J.M.; de Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Ang, Z.; Ding, J.L. GPR41 and GPR43 in Obesity and Inflammation—Protective or Causative? Front. Immunol. 2016, 7, 28. [Google Scholar] [CrossRef]
- Shimizu, H.; Masujima, Y.; Ushiroda, C.; Mizushima, R.; Taira, S.; Ohue-Kitano, R.; Kimura, I. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep. 2019, 9, 16574. [Google Scholar] [CrossRef]
- Larraufie, P.; Martin-Gallausiaux, C.; Lapaque, N.; Dore, J.; Gribble, F.M.; Reimann, F.; Blottiere, H.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 2018, 8, 74. [Google Scholar] [CrossRef]
- Hernández, M.A.G.; Canfora, E.E.; Jocken, J.W.E.; Blaak, E.E. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef]
- Murugesan, S.; Ulloa-Martínez, M.; Martínez-Rojano, H.; Galván-Rodríguez, F.M.; Miranda-Brito, C.; Romano, M.C.; Piña-Escobedo, A.; Pizano-Zárate, M.L.; Hoyo-Vadillo, C.; García-Mena, J. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2015, 34, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Łoniewski, I.; Szulińska, M.; Kaczmarczyk, M.; Podsiadło, K.; Styburski, D.; Skonieczna-Żydecka, K.; Bogdański, P. Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: A cross-sectional study. J. Transl. Med. 2022, 20, 585. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci. Rep. 2016, 6, 37589. [Google Scholar] [CrossRef]
- Xiong, R.G.; Zhou, D.D.; Wu, S.X.; Huang, S.Y.; Saimaiti, A.; Yang, Z.J.; Shang, A.; Zhao, C.N.; Gan, R.Y.; Li, H.B. Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods 2022, 11, 2863. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, T.F.; Grześkowiak, Ł.; Franceschini, S.C.; Bressan, J.; Ferreira, C.L.; Peluzio, M.C. Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors. Br. J. Nutr. 2013, 109, 914–919. [Google Scholar] [CrossRef]
- Rahat-Rozenbloom, S.; Fernandes, J.; Gloor, G.B.; Wolever, T.M. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int. J. Obes. 2014, 38, 1525–1531. [Google Scholar] [CrossRef]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Kappo, K.A.; Petzke, K.J.; Kipp, A.P.; Blaut, M.; Klaus, S. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol. Nutr. Food Res. 2016, 60, 2611–2621. [Google Scholar] [CrossRef]
- Granado-Serrano, A.B.; Martín-Garí, M.; Sánchez, V.; Riart Solans, M.; Berdún, R.; Ludwig, I.A.; Rubió, L.; Vilaprinyó, E.; Portero-Otín, M.; Serrano, J.C.E. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 2019, 9, 1772. [Google Scholar] [CrossRef] [PubMed]
- Mezhal, F.; Oulhaj, A.; Abdulle, A.; AlJunaibi, A.; Alnaeemi, A.; Ahmad, A.; Leinberger-Jabari, A.; Al Dhaheri, A.S.; AlZaabi, E.; Al-Maskari, F.; et al. High prevalence of cardiometabolic risk factors amongst young adults in the United Arab Emirates: The UAE Healthy Future Study. BMC Cardiovasc. Disord. 2023, 23, 137. [Google Scholar] [CrossRef] [PubMed]
- Strack, C.; Behrens, G.; Sag, S.; Mohr, M.; Zeller, J.; Lahmann, C.; Hubauer, U.; Loew, T.; Maier, L.; Fischer, M.; et al. Gender differences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biol. Sex Differ. 2022, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.W.; Yi, J.J.; Ohrr, H. Total cholesterol and all-cause mortality by sex and age: A prospective cohort study among 12.8 million adults. Sci. Rep. 2019, 9, 1596. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Szentirmai, É.; Millican, N.S.; Massie, A.R.; Kapás, L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci. Rep. 2019, 9, 7035. [Google Scholar] [CrossRef]
- Heath, A.M.; Haszard, J.J.; Galland, B.C.; Lawley, B.; Rehrer, N.J.; Drummond, L.N.; Sims, I.M.; Taylor, R.W.; Otal, A.; Taylor, B.; et al. Association between the faecal short-chain fatty acid propionate and infant sleep. Eur. J. Clin. Nutr. 2020, 74, 1362–1365. [Google Scholar] [CrossRef]
- Vlahoyiannis, A.; Giannaki, C.D.; Sakkas, G.K.; Aphamis, G.; Andreou, E. A Systematic Review, Meta-Analysis and Meta-Regression on the Effects of Carbohydrates on Sleep. Nutrients 2021, 13, 1283. [Google Scholar] [CrossRef]
- Daneshzad, E.; Keshavarz, S.A.; Qorbani, M.; Larijani, B.; Azadbakht, L. Association between a low-carbohydrate diet and sleep status, depression, anxiety, and stress score. J. Sci. Food Agric. 2020, 100, 2946–2952. [Google Scholar] [CrossRef]
- McRae Duraccio, K.; Whitacre, C.; Krietsch, K.N.; Zhang, N.; Summer, S.; Price, M.; Saelens, B.A.; Beebe, D.W. Losing sleep by staying up late leads adolescents to consume more carbohydrates and a higher glycemic load. Sleep 2022, 45, zsab269. [Google Scholar] [CrossRef]
- Hughes, R.L. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front. Nutr. 2020, 6, 191. [Google Scholar] [CrossRef]
- Carey, R.A.; Montag, D. Exploring the relationship between gut microbiota and exercise: Short-chain fatty acids and their role in metabolism. BMJ Open Sport Exerc. Med. 2021, 7, e000930. [Google Scholar] [CrossRef] [PubMed]
- Tzemah Shahar, R.; Koren, O.; Matarasso, S.; Shochat, T.; Magzal, F.; Agmon, M. Attributes of Physical Activity and Gut Microbiome in Adults: A Systematic Review. Int. J. Sport. Med. 2020, 41, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Estaki, M.; Pither, J.; Baumeister, P.; Little, J.P.; Gill, S.K.; Ghosh, S.; Ahmadi-Vand, Z.; Marsden, K.R.; Gibson, D.L. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 2016, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.M.; Mailing, L.J.; Niemiro, G.M.; Moore, R.; Cook, M.D.; White, B.A.; Holscher, H.D.; Woods, J.A. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med. Sci. Sport. Exerc. 2018, 50, 747–757. [Google Scholar] [CrossRef]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R.; et al. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes 2018, 9, 102. [Google Scholar] [CrossRef]
- Sasaki, D.; Sasaki, K.; Ikuta, N.; Yasuda, T.; Fukuda, I.; Kondo, A.; Osawa, R. Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci. Rep. 2018, 8, 435. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Li, H.; Wang, R.; Tang, J.; Huang, T.; et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 2019, 68, 1417–1429. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Miles-Brown, J.; Pellizzon, M.; Ulman, E.; Ricci, M.; Zhang, L.; Patterson, A.D.; Vijay-Kumar, M.; Gewirtz, A.T. Lack of soluble fiber drives diet-induced adiposity in mice. Am. J. Physiol. Liver Physiol. 2015, 309, 528–541. [Google Scholar] [CrossRef] [PubMed]
Total n = 77 | Females n = 46 | Males n = 31 | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | |
Basic parameters | |||||||
Age (years) | 36.75 | 4.69 | 36.26 | 4.46 | 37.48 | 5.00 | 0.354 |
Body weight (kg) | 72.07 | 14.42 | 62.99 | 8.25 | 85.55 | 10.51 | <0.001 |
Height (cm) | 172.75 | 9.69 | 166.72 | 6.51 | 181.69 | 6.01 | <0.001 |
BMI (kg/m2) | 23.96 | 3.12 | 22.64 | 2.52 | 25.91 | 2.93 | <0.001 |
WC (cm) | 83.86 | 11.61 | 77.60 | 8.16 | 93.16 | 9.60 | <0.001 |
ABSI | 0.077 | 0.005 | 0.075 | 0.004 | 0.079 | 0.004 | <0.001 |
Body composition parameters | |||||||
VAT (cm2) | 118.21 | 82.94 | 84.02 | 51.25 | 168.94 | 95.05 | <0.001 |
SAT (cm2) | 97.73 | 35.41 | 88.59 | 32.90 | 111.29 | 35.14 | 0.006 |
VAT/SAT | 1.15 | 0.58 | 0.93 | 0.31 | 1.49 | 0.72 | <0.001 |
FFM (kg) | 51.98 | 10.40 | 44.39 | 3.71 | 63.25 | 5.80 | <0.001 |
FFM (%) | 72.27 | 5.62 | 71.05 | 5.63 | 74.10 | 5.18 | 0.022 |
FM (kg) | 20.34 | 6.52 | 18.69 | 5.65 | 22.78 | 7.03 | 0.011 |
FM (%) | 27.74 | 5.54 | 29.04 | 5.46 | 25.81 | 5.17 | 0.016 |
TBW (Lt) | 36.98 | 7.86 | 31.24 | 3.00 | 45.50 | 4.19 | <0.001 |
TBW (%) | 51.28 | 3.62 | 49.93 | 3.14 | 53.28 | 3.40 | <0.001 |
Biochemical parameters | |||||||
TC (mg/dL) | 199.32 | 29.80 | 199.19 | 26.60 | 199.53 | 34.46 | 0.775 |
HDL-C (mg/dL) | 61.46 | 14.55 | 67.22 | 14.57 | 52.90 | 9.53 | <0.001 |
LDL-C (mg/dL) | 120.35 | 23.88 | 116.37 | 21.42 | 126.26 | 26.38 | 0.162 |
TG (mg/dL) | 94.87 | 47.72 | 78.35 | 26.63 | 119.38 | 60.55 | <0.001 |
CRP (mg/L) | 1.54 | 2.85 | 1.20 | 1.21 | 2.05 | 4.23 | 0.270 |
Fasting blood glucose (mg/dL) | 97.55 | 7.33 | 96.57 | 5.79 | 99.00 | 9.06 | 0.192 |
Fasting insulin (μU/mL) | 8.18 | 4.64 | 7.12 | 2.88 | 9.77 | 6.14 | 0.153 |
HOMA-IR | 2.00 | 1.24 | 1.71 | 0.74 | 2.44 | 1.65 | 0.111 |
Physical activity and sleep parameters | |||||||
MPA (min/day) | 61.69 | 31.34 | 52.53 | 16.89 | 75.29 | 41.71 | 0.034 |
VPA (min/day) | 9.00 | 15.32 | 5.06 | 7.55 | 14.85 | 21.21 | 0.039 |
MVPA (min/day) | 70.48 | 43.72 | 57.39 | 19.51 | 89.92 | 60.15 | 0.037 |
TST (h/night) | 7.27 | 1.27 | 7.45 | 1.41 | 7.01 | 0.98 | 0.136 |
Short-chain fatty acids in stool | |||||||
C 2:0 (AA) (%) | 60.80 | 6.02 | 61.62 | 5.83 | 59.57 | 6.19 | 0.122 |
C 3:0 (PA) (%) | 15.67 | 3.49 | 15.62 | 2.97 | 15.74 | 4.20 | 0.640 |
C 4:0 i (IBA) (%) | 2.49 | 1.31 | 2.61 | 1.33 | 2.30 | 1.27 | 0.383 |
C 4:0 n (BA) (%) | 14.81 | 6.08 | 13.99 | 5.92 | 16.02 | 6.20 | 0.161 |
C 5:0 i (IVA) (%) | 2.25 | 1.35 | 2.39 | 1.42 | 2.06 | 1.25 | 0.345 |
C 5:0 n (VA) (%) | 2.73 | 0.94 | 2.65 | 1.02 | 2.85 | 0.82 | 0.406 |
C 6:0 i (ICA) (%) | 0.04 | 0.04 | 0.04 | 0.03 | 0.04 | 0.04 | 0.934 |
C 6:0 n (CA) (%) | 1.22 | 1.36 | 1.08 | 0.97 | 1.42 | 1.79 | 0.771 |
Diet parameters | |||||||
Energy (kcal/d) | 2040.59 | 448.92 | 1803.27 | 263.01 | 2413.53 | 428.68 | <0.001 |
Protein (g/d) | 85.35 | 23.90 | 73.37 | 16.53 | 104.18 | 21.57 | <0.001 |
Fats (g/d) | 77.83 | 21.02 | 70.50 | 14.85 | 89.34 | 24.21 | <0.001 |
Carbohydrates (g/d) | 242.06 | 63.76 | 220.98 | 39.35 | 275.20 | 79.75 | 0.001 |
Total fiber (g/d) | 25.12 | 9.09 | 23.28 | 8.84 | 28.02 | 8.87 | 0.027 |
Insoluble fiber (g/d) | 16.35 | 6.2 | 14.9 | 6.2 | 18.4 | 5.6 | 0.01 |
Soluble fiber (g/d) | 8.71 | 4.6 | 8.7 | 3.7 | 10.3 | 4.7 | 0.15 |
C 2:0 (AA) | C 3:0 (PA) | C 4:0 i (IBA) | C 4:0 n (BA) | C 5:0 i (IVA) | C 5:0 n (VA) | C 6:0 i (ICA) | C 6:0 n (CA) | Total | |
---|---|---|---|---|---|---|---|---|---|
Age (yr) | −0.04 | −0.06 | 0.16 | −0.01 | 0.15 | 0.09 | 0.07 | 0.16 | −0.03 |
BMI (kg/m2) | −0.14 | −0.10 | −0.34 * | −0.15 | −0.33 * | −0.29 * | 0.04 | −0.18 | −0.15 |
WC (cm) | −0.27 | −0.17 | −0.26 | −0.23 | −0.22 | −0.31 * | −0.06 | −0.12 | −0.27 |
ABSI | −0.23 | −0.09 | −0.02 | −0.11 | 0.03 | −0.14 | −0.09 | 0.04 | −0.20 |
VAT/SAT | −0.36 * | −0.30 * | −0.07 | −0.39 ** | 0.01 | −0.18 | −0.11 | 0.00 | −0.36 * |
FFM (%) | 0.11 | 0.07 | 0.39 ** | 0.14 | 0.39 ** | 0.32 * | 0.00 | 0.17 | 0.14 |
FM (%) | −0.11 | −0.07 | −0.39 ** | −0.13 | −0.39 ** | −0.32 * | 0.01 | −0.17 | −0.13 |
TBW (%) | 0.09 | 0.08 | 0.33 * | 0.11 | 0.33 * | 0.22 | 0.02 | 0.04 | 0.11 |
TC (mg/dL) | −0.21 | −0.15 | −0.18 | −0.07 | −0.15 | −0.16 | −0.29 | −0.05 | −0.18 |
HDL-C (mg/dL) | 0.02 | −0.02 | −0.14 | 0.19 | −0.07 | −0.03 | −0.16 | 0.17 | 0.05 |
LDL-C (mg/dL) | −0.26 | −0.18 | −0.12 | −0.24 | −0.12 | −0.16 | −0.23 | −0.14 | −0.25 |
TG (mg/dL) | 0.01 | 0.03 | 0.00 | 0.03 | −0.03 | −0.05 | 0.08 | −0.13 | 0.00 |
CRP (mg/L) | −0.15 | −0.08 | −0.02 | −0.02 | −0.02 | 0.07 | 0.06 | 0.18 | −0.14 |
Fasting blood glucose (mg/dL) | −0.04 | −0.09 | −0.07 | −0.10 | −0.01 | 0.00 | 0.03 | 0.11 | −0.05 |
Fasting insulin (μU/mL) | −0.13 | 0.02 | 0.02 | −0.24 | 0.03 | 0.02 | 0.03 | −0.03 | −0.13 |
HOMA-IR | −0.13 | 0.01 | 0.02 | −0.25 | 0.03 | 0.02 | 0.02 | −0.02 | −0.14 |
MVPA (min/d) | −0.26 | −0.10 | −0.07 | −0.10 | −0.07 | −0.24 | −0.07 | −0.12 | −0.21 |
TST (h/night) | 0.34 * | 0.33 * | −0.09 | 0.23 | −0.12 | 0.12 | 0.32 * | −0.01 | 0.33 * |
Energy (kcal/d) | 0.04 | 0.04 | −0.21 | 0.19 | −0.14 | −0.03 | −0.05 | 0.08 | 0.08 |
Carbohydrates (g/d) | 0.16 | 0.12 | −0.28 | 0.25 | −0.29 | −0.07 | −0.07 | 0.05 | 0.25 |
Protein (g/d) | 0.08 | 0.04 | 0.03 | 0.16 | 0.07 | 0.10 | −0.07 | 0.12 | 0.12 |
Fats (g/d) | 0.14 | 0.12 | 0.07 | 0.25 | 0.12 | 0.20 | 0.11 | 0.13 | 0.21 |
Total fiber (g/d) | 0.36 * | 0.30 * | −0.14 | 0.45 ** | −0.15 | 0.11 | 0.10 | 0.03 | 0.38 * |
Insoluble fiber (g/d) | 0.30 * | 0.27 | −0.15 | 0.44 ** | −0.12 | 0.11 | 0.05 | 0.11 | 0.34 * |
Soluble fiber (g/d) | 0.45 ** | 0.39 ** | −0.11 | 0.48 ** | −0.17 | 0.21 | 0.25 | 0.11 | 0.46 ** |
C 2:0 (AA) | C 3:0 (PA) | C 4:0 i (IBA) | C 4:0 n (BA) | C 5:0 i (IVA) | C 5:0 n (VA) | C 6:0 i (ICA) | C 6:0 n (CA) | Total | |
---|---|---|---|---|---|---|---|---|---|
Age (yr) | −0.15 | −0.11 | 0.06 | −0.05 | 0.04 | 0.07 | 0.05 | 0.21 | −0.14 |
BMI (kg/m2) | −0.10 | −0.23 | −0.12 | −0.21 | −0.16 | −0.11 | −0.03 | 0.21 | −0.17 |
WC (cm) | −0.19 | −0.36 * | −0.07 | −0.38 * | −0.10 | −0.15 | −0.12 | 0.07 | −0.32 |
ABSI | −0.15 | −0.27 | 0.12 | −0.32 | 0.13 | 0.02 | −0.13 | 0.02 | −0.26 |
VAT/SAT | −0.08 | −0.17 | 0.22 | −0.22 | 0.19 | 0.11 | −0.10 | 0.10 | −0.15 |
FFM (%) | 0.06 | 0.17 | 0.09 | 0.16 | 0.08 | 0.07 | −0.07 | −0.12 | 0.13 |
FAT (%) | −0.10 | −0.18 | −0.09 | −0.23 | −0.10 | −0.12 | 0.05 | 0.06 | −0.18 |
TBW (%) | −0.06 | 0.04 | 0.24 | 0.08 | 0.23 | 0.07 | 0.04 | 0.04 | 0.04 |
TC (mg/dL) | 0.11 | 0.11 | −0.14 | 0.15 | −0.07 | −0.01 | −0.15 | 0.09 | 0.15 |
HDL-C (mg/dL) | −0.18 | −0.06 | −0.20 | −0.16 | −0.15 | −0.30 | −0.25 | −0.19 | −0.16 |
LDL-C (mg/dL) | 0.19 | 0.16 | −0.09 | 0.31 | 0.01 | 0.09 | −0.05 | 0.08 | 0.24 |
TG (mg/dL) | 0.01 | −0.06 | 0.18 | 0.06 | 0.18 | 0.22 | 0.05 | 0.38 * | 0.06 |
CRP (mg/L) | 0.08 | 0.18 | 0.28 | 0.25 | 0.33 | 0.37 * | 0.27 | 0.13 | 0.17 |
Fasting blood glucose (mg/dL) | 0.36 * | 0.35 | 0.01 | 0.19 | −0.05 | 0.04 | −0.09 | −0.35 | 0.30 |
Fasting insulin (μU/mL) | 0.08 | 0.03 | −0.09 | −0.14 | −0.17 | −0.08 | −0.04 | −0.20 | −0.03 |
HOMA-IR | 0.12 | 0.06 | −0.09 | −0.10 | −0.17 | −0.06 | −0.03 | −0.21 | 0.01 |
MVPA (min/d) | 0.33 | 0.27 | −0.02 | 0.18 | −0.10 | 0.12 | 0.08 | 0.17 | 0.28 |
TST (h/night) | −0.35 | −0.29 | 0.03 | −0.37 | 0.09 | −0.19 | −0.01 | 0.13 | −0.31 |
Energy (kcal/d) | 0.11 | 0.11 | −0.37 * | 0.09 | −0.47 * | −0.09 | −0.09 | 0.01 | 0.06 |
Protein (g/d) | 0.26 | 0.23 | −0.32 | 0.19 | −0.37 | −0.07 | −0.02 | 0.02 | 0.24 |
Carbohydrates (g/d) | 0.14 | 0.20 | −0.09 | 0.28 | −0.19 | 0.26 | 0.32 | 0.35 | 0.14 |
Fats (g/d) | 0.11 | −0.16 | −0.55 ** | −0.05 | −0.58 ** | −0.49 ** | −0.56 ** | −0.24 | −0.02 |
Total fiber (g/d) | 0.61 *** | 0.39 * | −0.16 | 0.64 *** | −0.16 | 0.48 ** | 0.12 | 0.39 * | 0.62 *** |
Insoluble fiber (g/d) | 0.46 * | 0.20 | 0.09 | 0.47 * | 0.08 | 0.43 * | 0.08 | 0.31 | 0.45 * |
Soluble fiber (g/d) | 0.44 * | 0.21 | −0.21 | 0.48 ** | −0.21 | 0.08 | 0.06 | 0.09 | 0.44 * |
Fiber Intake ≥ 25 g (n = 17) | Fiber Intake < 25 g (n = 27) | ||||
---|---|---|---|---|---|
SCFA (%) | Median | IQR | Median | IQR | p-Value * |
C 2:0 (AA) (%) | 60.31 | 8.46 | 60.35 | 6.11 | 0.376 |
C 3:0 (PA) (%) | 15.75 | 3.89 | 15.06 | 4.09 | 0.599 |
C 4:0 i (IBA) (%) | 2.02 | 2.54 | 2.87 | 1.59 | 0.157 |
C 4:0 n (BA) (%) | 17.50 | 8.02 | 12.54 | 8.66 | 0.070 |
C 5:0 i (IVA) (%) | 1.66 | 2.37 | 2.66 | 1.82 | 0.179 |
C 5:0 n (VA) (%) | 2.17 | 0.93 | 2.81 | 0.71 | 0.042 |
C 6:0 i (ICA) (%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.703 |
C 6:0 n (CA) (%) | 0.54 | 1.11 | 1.11 | 1.44 | 0.390 |
Fiber Intake ≥ 25 g (n = 17) | Fiber Intake < 25 g (n = 11) | ||||
---|---|---|---|---|---|
SCFA (%) | Median | IQR | Median | IQR | p-Value * |
C 2:0 (AA) (%) | 57.98 | 7.42 | 59.25 | 11.88 | 0.175 |
C 3:0 (PA) (%) | 13.71 | 4.94 | 14.26 | 8.41 | 0.487 |
C 4:0 i (IBA) (%) | 1.49 | 0.85 | 3.46 | 1.51 | <0.001 |
C 4:0 n (BA) (%) | 19.22 | 5.09 | 11.97 | 9.39 | <0.001 |
C 5:0 i (IVA) (%) | 1.23 | 1.14 | 3.16 | 1.62 | 0.002 |
C 5:0 n (VA) (%) | 2.71 | 1.08 | 2.79 | 1.42 | 0.430 |
C 6:0 i (ICA) (%) | 0.03 | 0.03 | 0.05 | 0.07 | 0.264 |
C 6:0 n (CA) (%) | 1.60 | 1.89 | 0.97 | 1.18 | 0.329 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, J.; Samborowska, E.; Jaworski, M.; Toczyłowska, K.; Szostak-Węgierek, D. The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet. Nutrients 2024, 16, 266. https://doi.org/10.3390/nu16020266
Ostrowska J, Samborowska E, Jaworski M, Toczyłowska K, Szostak-Węgierek D. The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet. Nutrients. 2024; 16(2):266. https://doi.org/10.3390/nu16020266
Chicago/Turabian StyleOstrowska, Joanna, Emilia Samborowska, Maciej Jaworski, Klaudia Toczyłowska, and Dorota Szostak-Węgierek. 2024. "The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet" Nutrients 16, no. 2: 266. https://doi.org/10.3390/nu16020266
APA StyleOstrowska, J., Samborowska, E., Jaworski, M., Toczyłowska, K., & Szostak-Węgierek, D. (2024). The Potential Role of SCFAs in Modulating Cardiometabolic Risk by Interacting with Adiposity Parameters and Diet. Nutrients, 16(2), 266. https://doi.org/10.3390/nu16020266