Insights into the Sex-Related Effects of Dietary Polyphenols and Metabolic Disruptors on Inflammatory and (Neuro) Endocrine Pathways in Obesity: The HEAL Project
Abstract
:1. Introduction
Study Objectives
2. Methodology
2.1. Design
2.2. Human Subjects
2.3. Eligibility Criteria
2.4. Exclusion Criteria
2.5. Ethical Considerations
2.6. Nutritional Questionnaires
2.7. Transport of Human Biological Samples
2.8. Adipose Tissue Culture
2.9. Human ATCM Effects on Different Cell Types
2.10. Animal Studies
2.11. Inflammatory and Oxidative Marker Analysis by ELISA Assays
2.12. Protein Determination by Western Blot Analysis
2.13. RNA Extraction, Reverse Transcription, and Real-Time PCR Analyses
2.14. Statistical Methods
3. Expected Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Collaboration NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [PubMed]
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Heindel, J.J.; Newbold, R.; Schug, T.T. Endocrine disruptors and obesity. Nat. Rev. Endocrinol. 2015, 11, 653–661. [Google Scholar] [CrossRef]
- Nicolaidis, S. Environment and obesity. Metabolism 2019, 100, 153942. [Google Scholar] [CrossRef]
- Chermon, D.; Birk, R. Deciphering the Interplay between Genetic Risk Scores and Lifestyle Factors on Individual Obesity Predisposition. Nutrients 2024, 16, 1296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Z. Association between joint physical activity and healthy dietary patterns and hypertension in US adults: Cross-sectional NHANES study. BMC Public Health 2024, 24, 855. [Google Scholar] [CrossRef] [PubMed]
- Egele, V.S.; Stark, R. Specific health beliefs mediate sex differences in food choice. Front. Nutr. 2023, 10, 1159809. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawaldeh, A.; Abbass, M.M.S. Unhealthy Dietary Habits and Obesity: The Major Risk Factors Beyond Non-Communicable Diseases in the Eastern Mediterranean Region. Front. Nutr. 2022, 9, 817808. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Vetrani, C.; Barrea, L.; Savastano, S.; Colao, A. Obesity: A gender-view. J. Endocrinol. Investig. 2024, 47, 299–306. [Google Scholar] [CrossRef]
- Stevens, J.; Katz, E.G.; Huxley, R.R. Associations between gender, age and waist circumference. Eur. J. Clin. Nutr. 2010, 64, 6–15. [Google Scholar] [CrossRef]
- Sood, S.; Feehan, J.; Itsiopoulos, C.; Wilson, K.; Plebanski, M.; Scott, D.; Hebert, J.R.; Shivappa, N.; Mousa, A.; George, E.S.; et al. Higher Adherence to a Mediterranean Diet Is Associated with Improved Insulin Sensitivity and Selected Markers of Inflammation in Individuals Who Are Overweight and Obese without Diabetes. Nutrients 2022, 14, 4437. [Google Scholar] [CrossRef] [PubMed]
- Martini, D. Health Benefits of Mediterranean Diet. Nutrients 2019, 11, 1802. [Google Scholar] [CrossRef] [PubMed]
- Giona, L.; Musillo, C.; De Cristofaro, G.; Ristow, M.; Zarse, K.; Siems, K.; Tait, S.; Cirulli, F.; Berry, A. Western diet-induced cognitive and metabolic dysfunctions in aged mice are prevented by rosmarinic acid in a sex-dependent fashion. Clin. Nutr. 2024, 43, 2236–2248. [Google Scholar] [CrossRef] [PubMed]
- Gil-Cardoso, K.; Ginés, I.; Pinent, M.; Ardévol, A.; Blay, M.; Terra, X. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr. Res. Rev. 2016, 29, 234–248. [Google Scholar] [CrossRef]
- Belwal, T.; Nabavi, S.F.; Nabavi, S.M.; Habtemariam, S. Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients 2017, 9, 1111. [Google Scholar] [CrossRef]
- Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci. 2019, 22, 72–82. [Google Scholar] [CrossRef]
- de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef]
- El-Sonbaty, Y.A.; Suddek, G.M.; Megahed, N.; Gameil, N.M. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie 2019, 167, 119–134. [Google Scholar] [CrossRef]
- Scazzocchio, B.; Filardi, T.; Vari, R.; Brunelli, R.; Galoppi, P.; Morano, S.; Masella, R.; Santangelo, C. Protocatechuic acid influences immune-metabolic changes in the adipose tissue of pregnant women with gestational diabetes mellitus. Food Funct. 2021, 12, 7490–7500. [Google Scholar] [CrossRef]
- Ormazabal, P.; Scazzocchio, B.; Vari, R.; Santangelo, C.; D’Archivio, M.; Silecchia, G.; Iacovelli, A.; Giovannini, C.; Masella, R. Effect of protocatechuic acid on insulin responsiveness and inflammation in visceral adipose tissue from obese individuals: Possible role for PTP1B. Int. J. Obes. 2018, 42, 2012–2021. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef] [PubMed]
- Papalou, O.; Kandaraki, E.A.; Papadakis, G.; Diamanti-Kandarakis, E. Endocrine Disrupting Chemicals: An Occult Mediator of Metabolic Disease. Front. Endocrinol. 2019, 10, 112. [Google Scholar] [CrossRef]
- Sargis, R.M.; Heindel, J.J.; Padmanabhan, V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front. Endocrinol. 2019, 10, 33. [Google Scholar] [CrossRef]
- Shabir, S.; Singh, S.K.; Bhardwaj, R.; Alsanie, W.F.; Alamri, A.S.; Alhomrani, M.; Alsharif, A.; Vamanu, E.; Singh, M.P. Role of nutraceutical against exposure to pesticide residues: Power of bioactive compounds. Front. Nutr. 2024, 17, 1342881. [Google Scholar]
- Liang, Y.; Zhan, J.; Liu, D.; Luo, M.; Han, J.; Liu, X.; Liu, C.; Cheng, Z.; Zhou, Z.; Wang, P. Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through impacting gut and gut microbiota. Microbiome 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Pinos, H.; Carrillo, B.; Merchan, A.; Biosca-Brull, J.; Perez-Fernandez, C.; Colomina, M.T.; Sanchez-Santed, F.; Martin-Sanchez, F.; Collado, P.; Arias, J.L.; et al. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7170. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, Q.; Li, Y.; Yue, M.; Su, Q.; Luo, J.; Li, Y.; Zeng, S.; Gao, J. Urinary neonicotinoid concentrations and obesity: A cross-sectional study among Chinese adolescents. Environ. Pollut. 2024, 345, 123516. [Google Scholar] [CrossRef]
- D’Archivio, M.; Coppola, L.; Masella, R.; Tammaro, A.; La Rocca, C. Sex and Gender Differences on the Impact of Metabolism-Disrupting Chemicals on Obesity: A Systematic Review. Nutrients 2024, 16, 181. [Google Scholar] [CrossRef]
- Zuscikova, L.; Bazany, D.; Greifova, H.; Knizatova, N.; Kovacik, A.; Lukac, N.; Jambor, T. Screening of Toxic Effects of Neonicotinoid Insecticides with a Focus on Acetamiprid: A Review. Toxics 2023, 11, 598. [Google Scholar] [CrossRef]
- Godbole, A.M.; Moonie, S.; Coughenour, C.; Zhang, C.; Chen, A.; Vuong, A.M. Exploratory analysis of the associations between neonicotinoids and measures of adiposity among US adults: NHANES 2015–2016. Chemosphere 2022, 300, 134450. [Google Scholar] [CrossRef]
- Janesick, A.S.; Dimastrogiovanni, G.; Vanek, L.; Boulos, C.; Chamorro-Garcia, R.; Tang, W.; Blumberg, B. On the Utility of ToxCast and ToxPi as Methods for Identifying New Obesogens. Environ. Health Perspect. 2016, 124, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, F.; Xu, Y.; Qiu, J.; Qian, Y. Gut Flora-Mediated Metabolic Health, the Risk Produced by Dietary Exposure to Acetamiprid and Tebuconazole. Foods 2021, 10, 835. [Google Scholar] [CrossRef]
- Cardoso, F. The brain-fat connection. Science 2022, 378, 485. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Environ. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.L.; Kuller, L.H.; Lopez, O.L.; Diehr, P.; O’Meara, E.S.; Longstreth, W.T., Jr.; Luchsinger, J.A. Midlife and late-life obesity and the risk of dementia: Cardiovascular health study. Arch. Neurol. 2009, 66, 336–342. [Google Scholar] [CrossRef]
- Rosendo-Silva, D.; Viana, S.; Carvalho, E.; Reis, F.; Matafome, P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern. Emerg. Med. 2023, 18, 1287–1302. [Google Scholar] [CrossRef]
- Parimisetty, A.; Dorsemans, A.C.; Awada, R.; Ravanan, P.; Diotel, N.; Lefebvre d’Hellencourt, C. Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. J. Neuroinflam. 2016, 13, 67. [Google Scholar] [CrossRef]
- Salas-Venegas, V.; Flores-Torres, R.P.; Rodriguez-Cortes, Y.M.; Rodriguez-Retana, D.; Ramirez-Carreto, R.J.; Concepcion-Carrillo, L.E.; Perez-Flores, L.J.; Alarcon-Aguilar, A.; Lopez-Diazguerrero, N.E.; Gomez-Gonzalez, B.; et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 2022, 16, 798995. [Google Scholar] [CrossRef]
- Venerosi, A.; Tait, S.; Stecca, L.; Chiarotti, F.; De Felice, A.; Cometa, M.F.; Volpe, M.T.; Calamandrei, G.; Ricceri, L. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring—A mouse study. Environ. Health 2015, 14, 32. [Google Scholar] [CrossRef]
- Lori, G.; Coppola, L.; Casella, M.; Tinari, A.; Masciola, I.; Tait, S. Chlorpyrifos induces autophagy by suppressing the mTOR pathway in immortalized GnRH neurons. Chemosphere 2024, 362, 142723. [Google Scholar] [CrossRef]
- Tzounakou, A.M.; Stathori, G.; Paltoglou, G.; Valsamakis, G.; Mastorakos, G.; Vlahos, N.F.; Charmandari, E. Childhood Obesity, Hypothalamic Inflammation, and the Onset of Puberty: A Narrative Review. Nutrients 2024, 16, 1720. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, B.; Vari, R.; Silenzi, A.; Giammarioli, S.; Masotti, A.; Baldassarre, A.; Santangelo, C.; D’Archivio, M.; Giovannini, C.; Del Corno, M.; et al. Dietary habits affect fatty acid composition of visceral adipose tissue in subjects with colorectal cancer or obesity. Eur. J. Nutr. 2020, 59, 1463–1472. [Google Scholar] [CrossRef]
- Dello Russo, C.; Cappoli, N.; Coletta, I.; Mezzogori, D.; Paciello, F.; Pozzoli, G.; Navarra, P.; Battaglia, A. The human microglial HMC3 cell line: Where do we stand? A systematic literature review. J. Neuroinflam. 2018, 15, 259. [Google Scholar] [CrossRef] [PubMed]
- De Simone, R.; Vissicchio, F.; Mingarelli, C.; De Nuccio, C.; Visentin, S.; Ajmone-Cat, M.A.; Minghetti, L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta 2013, 1832, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Mellon, P.L.; Windle, J.J.; Goldsmith, P.C.; Padula, C.A.; Roberts, J.L.; Weiner, R.I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 1990, 5, 1–10. [Google Scholar] [CrossRef]
- Vincentini, O.; Prota, V.; Cecchetti, S.; Bertuccini, L.; Tinari, A.; Iosi, F.; De Angelis, I. Towards the Standardization of Intestinal In Vitro Advanced Barrier Model for Nanoparticles Uptake and Crossing: The SiO2 Case Study. Cells 2022, 11, 3357. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Peer review of the pesticide risk assessment of theactive substance acetamiprid. EFSA J. 2016, 14, e04610. [CrossRef]
- Ajmone-Cat, M.A.; D’Urso, M.C.; di Blasio, G.; Brignone, M.S.; De Simone, R.; Minghetti, L. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain Behav. Immun. 2016, 55, 225–235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santangelo, C.; Scazzocchio, B.; Varì, R.; Ajmone-Cat, M.A.; Tammaro, A.; Tait, S.; Masciola, I.; Tassinari, R.; Vincentini, O.; Di Benedetto, R.; et al. Insights into the Sex-Related Effects of Dietary Polyphenols and Metabolic Disruptors on Inflammatory and (Neuro) Endocrine Pathways in Obesity: The HEAL Project. Nutrients 2024, 16, 3595. https://doi.org/10.3390/nu16213595
Santangelo C, Scazzocchio B, Varì R, Ajmone-Cat MA, Tammaro A, Tait S, Masciola I, Tassinari R, Vincentini O, Di Benedetto R, et al. Insights into the Sex-Related Effects of Dietary Polyphenols and Metabolic Disruptors on Inflammatory and (Neuro) Endocrine Pathways in Obesity: The HEAL Project. Nutrients. 2024; 16(21):3595. https://doi.org/10.3390/nu16213595
Chicago/Turabian StyleSantangelo, Carmela, Beatrice Scazzocchio, Rosaria Varì, Maria Antonietta Ajmone-Cat, Alessia Tammaro, Sabrina Tait, Irene Masciola, Roberta Tassinari, Olimpia Vincentini, Rita Di Benedetto, and et al. 2024. "Insights into the Sex-Related Effects of Dietary Polyphenols and Metabolic Disruptors on Inflammatory and (Neuro) Endocrine Pathways in Obesity: The HEAL Project" Nutrients 16, no. 21: 3595. https://doi.org/10.3390/nu16213595
APA StyleSantangelo, C., Scazzocchio, B., Varì, R., Ajmone-Cat, M. A., Tammaro, A., Tait, S., Masciola, I., Tassinari, R., Vincentini, O., Di Benedetto, R., Berry, A., Cirulli, F., Maranghi, F., De Simone, R., & D’Archivio, M. (2024). Insights into the Sex-Related Effects of Dietary Polyphenols and Metabolic Disruptors on Inflammatory and (Neuro) Endocrine Pathways in Obesity: The HEAL Project. Nutrients, 16(21), 3595. https://doi.org/10.3390/nu16213595