The Effectiveness of Heat-Killed Pediococcus acidilactici K15 in Preventing Respiratory Tract Infections in Preterm Infants: A Pilot Double-Blind, Randomized, Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Clinical Test Foods
2.2. Subjects and Clinical Study Design (Figure 1)
2.3. Outcomes
2.4. Subgroup Analysis
2.5. Sample Collection
2.6. Measurement of s-IgA Levels in Saliva Samples
2.7. Analysis of Gut Microbiota
2.8. Statistical and Bioinformatic Analyses
3. Results
3.1. Baseline Characteristics of Participants
3.2. Primary Outcome (Number of Febrile Days During the Study Period)
3.3. Secondary Outcomes
3.4. s-IgA Levels in Saliva Samples
3.5. 16S rRNA Gene Sequence Analysis of Fecal Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van den Berg, J.P.; Westerbeek, E.A.M.; van der Klis, F.R.M.; Berbers, G.A.M.; Van Elburg, R.M. Transplacental Transport of IgG Antibodies to Preterm Infants: A Review of the Literature. Early Hum. Dev. 2011, 87, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Melville, J.M.; Moss, T.J.M. The Immune Consequences of Preterm Birth. Front. Neurosci. 2013, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.T.; Bont, L.J.; Zar, H.; Polack, F.P.; Park, C.; Claxton, A.; Borok, G.; Butylkova, Y.; Wegzyn, C. Respiratory Syncytial Virus Hospitalization and Mortality: Systematic Review and Meta-Analysis. Pediatr. Pulmonol. 2017, 52, 556–569. [Google Scholar] [CrossRef]
- Korpela, K.; Blakstad, E.W.; Moltu, S.J.; Strømmen, K.; Nakstad, B.; Rønnestad, A.E.; Brække, K.; Iversen, P.O.; Drevon, C.A.; de Vos, W. Intestinal Microbiota Development and Gestational Age in Preterm Neonates. Sci. Rep. 2018, 8, 2453. [Google Scholar] [CrossRef]
- Henderickx, J.G.E.; Zwittink, R.D.; Van Lingen, R.A.; Knol, J.; Belzer, C. The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care. Front. Cell Infect. Microbiol. 2019, 9, 85. [Google Scholar] [CrossRef]
- Panigrahi, P.; Parida, S.; Nanda, N.C.; Satpathy, R.; Pradhan, L.; Chandel, D.S.; Baccaglini, L.; Mohapatra, A.; Mohapatra, S.S.; Misra, P.R.; et al. A Randomized Synbiotic Trial to Prevent Sepsis among Infants in Rural India. Nature 2017, 548, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Nocerino, R.; Paparo, L.; Terrin, G.; Pezzella, V.; Amoroso, A.; Cosenza, L.; Cecere, G.; De Marco, G.; Micillo, M.; Albano, F.; et al. Cow’s Milk and Rice Fermented with Lactobacillus Paracasei CBA L74 Prevent Infectious Diseases in Children: A Randomized Controlled Trial. Clin. Nutr. 2017, 36, 118–125. [Google Scholar] [CrossRef]
- Asama, T.; Uematsu, T.; Kobayashi, N.; Tatefuji, T.; Hashimoto, K. Oral Administration of Heat-Killed Lactobacillus Kunkeei YB38 Improves Murine Influenza Pneumonia by Enhancing IgA Production. Biosci. Microbiota Food Health 2017, 36, 1–9. [Google Scholar] [CrossRef]
- Damholt, A.; Keller, M.K.; Baranowski, K.; Brown, B.; Wichmann, A.; Melsaether, C.; Eskesen, D.; Westphal, V.; Arltoft, D.; Habicht, A.; et al. Lacticaseibacillus Rhamnosus GG DSM 33156 Effects on Pathogen Defence in the Upper Respiratory Tract: A Randomised, Double-Blind, Placebo-Controlled Paediatric Trial. Benef. Microbes 2022, 13, 13–23. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Modanloo, M.; Soltanian, S.; Akhlaghi, M.; Hoseinifar, S.H. The Effects of Single or Combined Administration of Galactooligosaccharide and Pediococcus Acidilactici on Cutaneous Mucus Immune Parameters, Humoral Immune Responses and Immune Related Genes Expression in Common Carp (Cyprinus carpio) Fingerlings. Fish Shellfish Immunol. 2017, 70, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Ikari, N.; Watanabe, Y.; Kubota, Y.; Yoshio, S.; Kanto, T.; Motohashi, S.; Shimojo, N.; Tsuji, N.M. Double-Stranded RNA Derived from Lactic Acid Bacteria Augments Th1 Immunity via Interferon-β from Human Dendritic Cells. Front. Immunol. 2018, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Ikari, N.; Kouchi, T.; Kowatari, Y.; Kubota, Y.; Shimojo, N.; Tsuji, N.M. The Molecular Mechanism for Activating IgA Production by Pediococcus Acidilactici K15 and the Clinical Impact in a Randomized Trial. Sci. Rep. 2018, 8, 5065. [Google Scholar] [CrossRef]
- Hishiki, H.; Kawashima, T.; Tsuji, N.M.; Ikari, N.; Takemura, R.; Kido, H.; Shimojo, N. A Double-Blind, Randomized, Placebo-Controlled Trial of Heat-Killed Pediococcus Acidilactici K15 for Prevention of Respiratory Tract Infections among Preschool Children. Nutrients 2020, 12, 1989. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Dastogeer, K.M.G.; Sarkodee-Addo, E.; Tokiwa, C.; Isawa, T.; Shinozaki, S.; Okazaki, S. Impact of Azospirillum Sp. B510 on the Rhizosphere Microbiome of Rice under Field Conditions. Agronomy 2022, 12, 1367. [Google Scholar] [CrossRef]
- Shen, H.; Maeda, M.; Wang, X.; Shiratori, Y.; Nagamine, T.; Senoo, K. Mites as a Natural Weapon against Soil-Borne Fungal Diseases. Preprint 2022, 1–42. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic Biomarker Discovery and Explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Fukuchi, M.; Sugita, M.; Banjo, M.; Yonekura, K.; Sasuga, Y. The Impact of a Competitive Event and the Efficacy of a Lactic Acid Bacteria-Fermented Soymilk Extract on the Gut Microbiota and Urinary Metabolites of Endurance Athletes: An Open-Label Pilot Study. PLoS ONE 2022, 17, e0262906. [Google Scholar] [CrossRef]
- Vouloumanou, E.K.; Makris, G.C.; Karageorgopoulos, D.E.; Falagas, M.E. Probiotics for the Prevention of Respiratory Tract Infections: A Systematic Review. Int. J. Antimicrob. Agents 2009, 34, 197.e1-197.e10. [Google Scholar] [CrossRef]
- King, S.; Tancredi, D.; Lenoir-Wijnkoop, I.; Gould, K.; Vann, H.; Connors, G.; Sanders, M.E.; Linder, J.A.; Shane, A.L.; Merenstein, D. Does Probiotic Consumption Reduce Antibiotic Utilization for Common Acute Infections? A Systematic Review and Meta-Analysis. Eur. J. Public Health 2019, 29, 494–499. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, B.R.; Hao, Q. Probiotics for Preventing Acute Upper Respiratory Tract Infections. Cochrane Database Syst. Rev. 2022, 2022, CD006895. [Google Scholar] [CrossRef]
- De Araujo, G.V.; De Oliveira Junior, M.H.; Peixoto, D.M.; Sarinho, E.S.C. Probiotics for the Treatment of Upper and Lower Respiratory-Tract Infections in Children: Systematic Review Based on Randomized Clinical Trials. J. Pediatr. 2015, 91, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.A.; Guedes, G.H.B.F.; Epifanio, M.; Wagner, M.B.; Jones, M.H.; Mattiello, R. Network Meta-Analysis of Probiotics to Prevent Respiratory Infections in Children and Adolescents. Pediatr. Pulmonol. 2017, 52, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, K.; Darand, M.; Garousi, N.; Dehghani, A.; Alizadeh, S. Effect of Infant Formula Supplemented with Prebiotics and Probiotics on Incidence of Respiratory Tract Infections: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Complement. Ther. Med. 2021, 63, 102795. [Google Scholar] [CrossRef] [PubMed]
- Luoto, R.; Ruuskanen, O.; Waris, M.; Kalliomäki, M.; Salminen, S.; Isolauri, E. Prebiotic and Probiotic Supplementation Prevents Rhinovirus Infections in Preterm Infants: A Randomized, Placebo-Controlled Trial. J. Allergy Clin. Immunol. 2014, 133, 405–413. [Google Scholar] [CrossRef]
- Aryayev, M.L.; Senkivska, L.I.; Bredeleva, N.K.; Talashova, I.V. Prophylaxis of Acute Respiratory Infections via Improving the Immune System in Late Preterm Newborns with E. Coli Strain Nissle 1917: A Controlled Pilot Trial. Pilot Feasibility Stud. 2018, 4, 79. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic Cells and the Control of Immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Rutayisire, E.; Huang, K.; Liu, Y.; Tao, F. The Mode of Delivery Affects the Diversity and Colonization Pattern of the Gut Microbiota during the First Year of Infants’ Life: A Systematic Review. BMC Gastroenterol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Xu, W.; Judge, M.P.; Maas, K.; Hussain, N.; McGrath, J.M.; Henderson, W.A.; Cong, X. Systematic Review of the Effect of Enteral Feeding on Gut Microbiota in Preterm Infants. J. Obstet. Gynecol. Neonatal Nurs. 2018, 47, 451–463. [Google Scholar] [CrossRef]
- McDonnell, L.; Gilkes, A.; Ashworth, M.; Rowland, V.; Harries, T.H.; Armstrong, D.; White, P. Association between Antibiotics and Gut Microbiome Dysbiosis in Children: Systematic Review and Meta-Analysis. Gut Microbes 2021, 13, 1–18. [Google Scholar] [CrossRef]
- Goodrich, J.K.; Davenport, E.R.; Beaumont, M.; Jackson, M.A.; Knight, R.; Ober, C.; Spector, T.D.; Bell, J.T.; Clark, A.G.; Ley, R.E. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe 2016, 19, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Nermes, M.; Kantele, J.M.; Atosuo, T.J.; Salminen, S.; Isolauri, E. Interaction of Orally Administered Lactobacillus Rhamnosus GG with Skin and Gut Microbiota and Humoral Immunity in Infants with Atopic Dermatitis. Clin. Exp. Allergy 2011, 41, 370–377. [Google Scholar] [CrossRef]
- Lemoine, A.; Tounian, P.; Adel-Patient, K.; Thomas, M. Pre-, pro-, Syn-, and Postbiotics in Infant Formulas: What Are the Immune Benefits for Infants? Nutrients 2023, 15, 1231. [Google Scholar] [CrossRef]
- Canani, R.B.; De Filippis, F.; Nocerino, R.; Laiola, M.; Paparo, L.; Calignano, A.; De Caro, C.; Coretti, L.; Chiariotti, L.; Gilbert, J.A.; et al. Specific Signatures of the Gut Microbiota and Increased Levels of Butyrate in Children Treated with Fermented Cow’s Milk Containing Heat-Killed Lactobacillus Paracasei CBA L74. Appl. Environ. Microbiol. 2017, 83, e01206-17. [Google Scholar] [CrossRef]
- Sakamoto, M.; Iino, T.; Ohkuma, M. Faecalimonas Umbilicata Gen. Nov., Sp. Nov., Isolated from Human Faeces, and Reclassification of Eubacterium Contortum, Eubacterium Fissicatena and Clostridium Oroticum as Faecalicatena Contorta Gen. Nov., Comb. Nov., Faecalicatena Fissicatena Comb. Nov. and Faecalicatena Orotica Comb. Nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 1219–1227. [Google Scholar] [CrossRef]
- Rossi, O.; Van Berkel, L.A.; Chain, F.; Tanweer Khan, M.; Taverne, N.; Sokol, H.; Duncan, S.H.; Flint, H.J.; Harmsen, H.J.M.; Langella, P.; et al. Faecalibacterium Prausnitzii A2-165 Has a High Capacity to Induce IL-10 in Human and Murine Dendritic Cells and Modulates T Cell Responses. Sci. Rep. 2016, 6, 18507. [Google Scholar] [CrossRef]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
K15 (n = 20) | Placebo (n = 18) | p | ||
---|---|---|---|---|
Male, n (%) | 12 (60.0) | 12 (66.7) | 0.7449 | |
Female, n (%) | 8 (40.0) | 6 (33.3) | ||
Gestational weeks, median [range] | 32.5 [24–35] | 32 [25–35] | 0.8972 | |
Birth weight (g), median [range] | 1554 [677–2296] | 1822 [558–2139] | 0.5006 | |
Older siblings, n (%) | 10 (50.0) | 8 (44.4) | 0.7568 | |
Familial history of allergic diseases, n (%) | 15 (75.0) | 10 (55.6) | 0.3071 | |
History of RDS, n (%) | 5 (25.0) | 6 (33.3) | 0.7240 | |
History of mechanical ventilation including NIV, n (%) | 12 (60.0) | 11 (61.1) | >0.999 | |
Days of mechanical ventilation, median [range] | 2 [0–109] | 3.5 [0–94] | 0.8990 | |
Nutrition before starting baby food | Exclusive breastfeeding, n (%) | 5 (25.0) | 4 (22.2) | 0.9074 |
Combination, n (%) | 3 (15.0) | 4 (22.2) | ||
Exclusive formula, n (%) | 12 (60.0) | 10 (55.6) | ||
Days of discharge, median [range] | 39 [11–166] | 39.5 [11–132] | 0.8397 | |
Starting age of weaning in months, median [range] | 7 [5–10] | 7 [5–9] | 0.9573 | |
Nursery school attendance at one year old, n (%) | 6 (30.0) | 6 (33.3) | >0.999 |
Group | N | Mean | SD | Difference (K15-Placebo) | |||
---|---|---|---|---|---|---|---|
Mean | SD | 95% CI | p-Value | ||||
K15 | 20 | 4.5 | 1.4 | −2.1 | 7.1 | [−6.8, 2.6] | 0.2508 |
Placebo | 18 | 6.6 | 1.9 |
(a) Incidence and Severity of Respiratory Tract Infections in Each Group | |||||||||
K15 (n = 20) | Placebo (n = 18) | p | |||||||
Incidence of respiratory tract infections, n (%) | 20 (100) | 16 (88.9) | 0.2176 | ||||||
Total days of respiratory tract infections, median [range] | 41.5 [2–129] | 35.5 [0–334] | 0.8378 | ||||||
Respiratory syncytial virus infection, n (%) | 1 (5.0) | 1 (5.6) | >0.9999 | ||||||
Hospital visit, n (%) | 19 (95.0) | 16 (88.9) | 0.5946 | ||||||
Total days of hospital visits, median [range] | 4.5 [0–17] | 4.5 [0–29] | 0.9066 | ||||||
Hospital admission with respiratory tract infection, n (%) | 0 (0.0) | 2 (11.1) | 0.2065 | ||||||
Oxygen use, n (%) | 0 (0.0) | 2 (11.1) | 0.2065 | ||||||
Mechanical ventilation, n (%) | 0 (0.0) | 2 (11.1) | 0.2065 | ||||||
(b) The changes in serumIgG, IgA, and IgM levels between, before and after the study period in each group | |||||||||
IgG, mg/dL (mean ± SD) | IgA, mg/dL (mean ± SD) | IgM, mg/dL (mean ± SD) | |||||||
Before | After | p | Before | After | p | Before | After | p | |
K15 (n = 20) | 383 ± 189 | 566 ± 129 | 0.4882 | <10.0 ± 0.0 | 27.6 ± 13.4 | 0.2509 | 23.7 ± 12.4 | 81.5 ± 29.3 | 0.5094 |
Placebo (n = 18) | 371 ± 209 | 602 ± 184 | <10.0 ± 0.0 | 35.0 ± 24.6 | 21.4 ± 5.9 | 67.7 ± 26.7 | |||
(c) Adverse effects in each group during the study period | |||||||||
K15 (n = 20) | Placebo (n = 18) | p | |||||||
Gastrointestinal tract symptoms, n (%) | 13 (65.0) | 12 (66.7) | >0.9999 | ||||||
Total days with gastrointestinal tract symptoms, mean ± SD | 12.4 ± 25.5 | 7.8 ± 17.9 | 0.8474 | ||||||
Skin symptoms, n (%) | 11 (55.0) | 6 (33.3) | 0.2097 | ||||||
Total days with skin symptoms, mean ± SD | 4.2 ± 7.8 | 3.1 ± 6.3 | 0.6000 |
K15 (n = 20) | Placebo (n = 18) | p | |
---|---|---|---|
Before | 34.6 ± 32.1 | 24.9 ± 16.2 | 0.2448 |
After | 33.3 ± 16.4 | 31.8 ± 13.5 | 0.7713 |
Change rate (after/before) | 1.46 ± 1.02 | 1.75 ± 1.44 | 0.4734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeshita, K.; Hishiki, H.; Takei, H.; Ikari, N.; Tanaka, S.; Iijima, Y.; Ogata, H.; Fujishiro, K.; Tominaga, T.; Konno, Y.; et al. The Effectiveness of Heat-Killed Pediococcus acidilactici K15 in Preventing Respiratory Tract Infections in Preterm Infants: A Pilot Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2024, 16, 3635. https://doi.org/10.3390/nu16213635
Takeshita K, Hishiki H, Takei H, Ikari N, Tanaka S, Iijima Y, Ogata H, Fujishiro K, Tominaga T, Konno Y, et al. The Effectiveness of Heat-Killed Pediococcus acidilactici K15 in Preventing Respiratory Tract Infections in Preterm Infants: A Pilot Double-Blind, Randomized, Placebo-Controlled Study. Nutrients. 2024; 16(21):3635. https://doi.org/10.3390/nu16213635
Chicago/Turabian StyleTakeshita, Kenichi, Haruka Hishiki, Haruka Takei, Naho Ikari, Saori Tanaka, Yuta Iijima, Hitoshi Ogata, Kensuke Fujishiro, Takahiro Tominaga, Yuki Konno, and et al. 2024. "The Effectiveness of Heat-Killed Pediococcus acidilactici K15 in Preventing Respiratory Tract Infections in Preterm Infants: A Pilot Double-Blind, Randomized, Placebo-Controlled Study" Nutrients 16, no. 21: 3635. https://doi.org/10.3390/nu16213635
APA StyleTakeshita, K., Hishiki, H., Takei, H., Ikari, N., Tanaka, S., Iijima, Y., Ogata, H., Fujishiro, K., Tominaga, T., Konno, Y., Iwase, Y., Nakano, T., Endo, M., Ishiwada, N., Osone, Y., Kawaguchi, T., Horiba, T., Takemura, R., Hamada, H., & Shimojo, N. (2024). The Effectiveness of Heat-Killed Pediococcus acidilactici K15 in Preventing Respiratory Tract Infections in Preterm Infants: A Pilot Double-Blind, Randomized, Placebo-Controlled Study. Nutrients, 16(21), 3635. https://doi.org/10.3390/nu16213635