Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle
Abstract
:1. Introduction
2. Dietary and Nutritional Condition in Individuals with Schizophrenia
3. Socioeconomic Factors in Nutritional Inequality Reduce Nutrition Quality in People with Schizophrenia
4. Disordered Eating Behavior in Schizophrenia Influencing the Consumption of Nutrients Causes Nutritional Inequality
5. Current Nutritional Research in Therapeutic Strategies of Schizophrenia
Paper | Intervention | Control | Duration | Reported Effects Compared to Control |
---|---|---|---|---|
Jamilian et al., 2014 [53] | Original antipsychotic treatment plus Omega-3 fatty acids | Original antipsychotic treatment plus placebo | 8 weeks | Significant decrease in symptoms of schizophrenia |
Ghaderi et al., 2019 [55] | Vitamins plus probiotics | Placebo | 12 weeks | Significant improvement in the general and total Positive and Negative Syndrome Scale (PANSS) scores; Significant improvement in fasting glucose, insulin resistance, fasting total cholesterol, and triglyceride |
Rosse et al., 1992 [58] | Tryptophan (TRP)-deficient diet | NA | 4 days | Minimal improvements in objective ratings of the severity of psychotic symptomatology |
Hare et al., 2023 [59] | A single oral dose of tryptophan (6 g) | Placebo | Acute | No significant effect on cognitive assessment; significant increase in cerebral blood flow in healthy controls but not in people with schizophrenia |
Huang et al., 2022 [62] | Olanzapine plus probiotics | Olanzapine | 12 weeks | No significant difference in weight gain; significant decrease in insulin resistance index (IRI) |
Huang et al., 2022 [62] | Olanzapine plus probiotics and dietary fiber | Olanzapine | 12 weeks | Significantly lower weight gain and IRI increase induced by olanzapine |
Vaughan et al., 1999 [65] | Megavitamin treatment with vitamins A, B, C, D, E | 25 mg of vitamin C | 5 months | No consistent self-reported symptomatic or behavioral differences |
McCreadie et al., 2005 [60] | Provided free fruit and vegetables | Usual diet | 6 months | Significant increase in fruit and vegetable intake during intervention while consumption fell to pre-intervention levels 12 months after intervention |
6. Nutrigenetics of Schizophrenia: An Under-Researched Territory
7. Nutritional Implications of Gene-Nutrition Interaction in Schizophrenia: Where Nutrigenomics May Kick In
8. Holistic Schizophrenia Prevention and Management Across the Life Cycle: A Nutritional Perspective
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hjorthøj, C.; Stürup, A.E.; McGrath, J.J.; Nordentoft, M. Years of potential life lost and life expectancy in schizophrenia: A systematic review and meta-analysis. Lancet Psychiatry 2017, 4, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Solmi, M.; Croatto, G.; Schneider, L.K.; Rohani-Montez, S.C.; Fairley, L.; Smith, N.; Bitter, I.; Gorwood, P.; Taipale, H.; et al. Mortality in people with schizophrenia: A systematic review and meta-analysis of relative risk and aggravating or attenuating factors. World Psychiatry 2022, 21, 248–271. [Google Scholar] [CrossRef] [PubMed]
- Jayanama, K.; Theou, O.; Godin, J.; Cahill, L.; Shivappa, N.; Hébert, J.R.; Wirth, M.D.; Park, Y.M.; Fung, T.T.; Rockwood, K. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. BMC Med. 2021, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef]
- Chien, S.C.; Chandramouli, C.; Lo, C.I.; Lin, C.F.; Sung, K.T.; Huang, W.H.; Lai, Y.H.; Yun, C.H.; Su, C.H.; Yeh, H.I.; et al. Associations of obesity and malnutrition with cardiac remodeling and cardiovascular outcomes in Asian adults: A cohort study. PLoS Med. 2021, 18, e1003661. [Google Scholar]
- Kazemi, A.; Sasani, N.; Mokhtari, Z.; Keshtkar, A.; Babajafari, S.; Poustchi, H.; Hashemian, M.; Malekzadeh, R. Comparing the risk of cardiovascular diseases and all-cause mortality in four lifestyles with a combination of high/low physical activity and healthy/unhealthy diet: A prospective cohort study. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 138. [Google Scholar] [CrossRef]
- Brown, S.; Birtwistle, J.; Roe, L.; Thompson, C. The unhealthy lifestyle of people with schizophrenia. Psychol. Med. 1999, 29, 697–701. [Google Scholar] [CrossRef]
- van Zonneveld, S.M.; Haarman, B.C.M.; van den Oever, E.J.; Nuninga, J.O.; Sommer, I.E.C. Unhealthy diet in schizophrenia spectrum disorders. Curr. Opin. Psychiatry 2022, 35, 177–185. [Google Scholar] [CrossRef]
- Nisbett, N. Understanding the nourishment of bodies at the centre of food and health systems–systemic, bodily and new materialist perspectives on nutritional inequity. Soc. Sci. Med. 2019, 228, 9–16. [Google Scholar] [CrossRef]
- Dipasquale, S.; Pariante, C.M.; Dazzan, P.; Aguglia, E.; McGuire, P.; Mondelli, V. The dietary pattern of patients with schizophrenia: A systematic review. J. Psychiatr. Res. 2013, 47, 197–207. [Google Scholar] [CrossRef]
- Kim, E.J.; Lim, S.Y.; Lee, H.J.; Lee, J.Y.; Choi, S.; Kim, S.Y.; Kim, J.M.; Shin, I.S.; Yoon, J.S.; Yang, S.J.; et al. Low dietary intake of n-3 fatty acids, niacin, folate, and vitamin C in Korean patients with schizophrenia and the development of dietary guidelines for schizophrenia. Nutr. Res. 2017, 45, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, S.B.; Ward, P.B.; Samaras, K.; Firth, J.; Stubbs, B.; Tripodi, E.; Burrows, T.L. Dietary intake of people with severe mental illness: Systematic review and meta-analysis. Br. J. Psychiatry 2019, 214, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Simonelli-Muñoz, A.J.; Fortea, M.I.; Salorio, P.; Gallego-Gomez, J.I.; Sánchez-Bautista, S.; Balanza, S. Dietary habits of patients with schizophrenia: A self-reported questionnaire survey. Int. J. Ment. Health Nurs. 2012, 21, 220–228. [Google Scholar] [CrossRef]
- Zurrón Madera, P.; Casaprima Suárez, S.; Álvarez, L.G.; García-Portilla González, M.P.; Junquera Fernández, R.; Lluch Canut, M.T. Eating and nutritional habits in patients with schizophrenia. Rev. Psiquiatr. Salud Ment. (Engl. Ed.) 2022, 15, 54–60. [Google Scholar] [CrossRef]
- Fawzi, M.H.; Fawzi, M.M. Disordered eating attitudes in Egyptian antipsychotic naive patients with schizophrenia. Compr. Psychiatry 2012, 53, 259–268. [Google Scholar] [CrossRef]
- Hunt, G.E.; Large, M.M.; Cleary, M.; Lai, H.M.X.; Saunders, J.B. Prevalence of comorbid substance use in schizophrenia spectrum disorders in community and clinical settings, 1990–2017: Systematic review and meta-analysis. Drug Alcohol Depend. 2018, 191, 234–258. [Google Scholar] [CrossRef]
- Kranzler, H.R. Overview of Alcohol Use Disorder. Am. J. Psychiatry 2023, 180, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.J.; Wilson, M.; Banks, M.; Rezannah, F.; Daglish, M. Prevalence of malnutrition and nutritional risk factors in patients undergoing alcohol and drug treatment. Nutrition 2012, 28, 738–743. [Google Scholar] [CrossRef]
- Butts, M.; Sundaram, V.L.; Murughiyan, U.; Borthakur, A.; Singh, S. The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review. Nutrients 2023, 15, 1571. [Google Scholar] [CrossRef]
- Kale, A.; Naphade, N.; Sapkale, S.; Kamaraju, M.; Pillai, A.; Joshi, S.; Mahadik, S. Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: Implications for altered one-carbon metabolism. Psychiatry Res. 2010, 175, 47–53. [Google Scholar] [CrossRef]
- Krebs, M.O.; Bellon, A.; Mainguy, G.; Jay, T.M.; Frieling, H. One-carbon metabolism and schizophrenia: Current challenges and future directions. Trends Mol. Med. 2009, 15, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Raghubeer, S.; Matsha, T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients 2021, 13, 4562. [Google Scholar] [CrossRef] [PubMed]
- Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef]
- Hoffman, D.J.; Powell, T.L.; Barrett, E.S.; Hardy, D.B. Developmental origins of metabolic diseases. Physiol. Rev. 2021, 101, 739–795. [Google Scholar] [CrossRef]
- Nobs, S.P.; Zmora, N.; Elinav, E. Nutrition Regulates Innate Immunity in Health and Disease. Annu. Rev. Nutr. 2020, 40, 189–219. [Google Scholar] [CrossRef]
- Fang, Y.; Xia, J.; Lian, Y.; Zhang, M.; Kang, Y.; Zhao, Z.; Wang, L.; Yin, P.; Wang, Z.; Ye, C.; et al. The burden of cardiovascular disease attributable to dietary risk factors in the provinces of China, 2002–2018: A nationwide population-based study. Lancet Reg. Health-West. Pac. 2023, 37, 100784. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Lin, D.; Kim, H.; Wada, K.; Aboumrad, M.; Powell, E.; Zwain, G.; Benson, C.; Near, A. Unemployment, homelessness, and other societal outcomes in patients with schizophrenia: A real-world retrospective cohort study of the United States Veterans Health Administration database: Societal burden of schizophrenia among US veterans. BMC Psychiatry 2022, 22, 458. [Google Scholar] [CrossRef]
- Li, Y.; Hou, C.-L.; Ma, X.-R.; Zhong, B.-L.; Zang, Y.; Jia, F.-J.; Lin, Y.-Q.; Lai, K.-Y.; Chiu, H.-F.; Ungvari, G.-S.; et al. Quality of life in Chinese patients with schizophrenia treated in primary care. Psychiatry Res. 2017, 254, 80–84. [Google Scholar] [CrossRef]
- Dicken, S.J.; Batterham, R.L. Ultra-processed food: A global problem requiring a global solution. Lancet Diabetes Endocrinol. 2022, 10, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Gutwinski, S.; Schreiter, S.; Deutscher, K.; Fazel, S. The prevalence of mental disorders among homeless people in high-income countries: An updated systematic review and meta-regression analysis. PLoS Med. 2021, 18, e1003750. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Blanck, H.M.; Garfield, K.M.; Wassung, A.; Petersen, R. A Food is Medicine approach to achieve nutrition security and improve health. Nat. Med. 2022, 28, 2238–2240. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Reis Marques, T.; Howes, O.D. Schizophrenia—An Overview. JAMA Psychiatry 2020, 77, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Torres, N.; Rocha-Gonzalez, I.; Alameda, L.; Rodriguez-Gangoso, A.; Vilches, A.; Canal-Rivero, M.; Crespo-Facorro, B.; Ruiz-Veguilla, M. Metabolic syndrome in antipsychotic-naïve patients with first-episode psychosis: A systematic review and meta-analysis. Psychol. Med. 2021, 51, 2307–2320. [Google Scholar] [CrossRef]
- de Beaurepaire, R. Binge Eating Disorders in Antipsychotic-Treated Patients With Schizophrenia: Prevalence, Antipsychotic Specificities, and Changes Over Time. J. Clin. Psychopharmacol. 2021, 41, 114–120. [Google Scholar] [CrossRef]
- Benarroch, L.; Kowalchuk, C.; Wilson, V.; Teo, C.; Guenette, M.; Chintoh, A.; Nesarajah, Y.; Taylor, V.; Selby, P.; Fletcher, P.; et al. Atypical antipsychotics and effects on feeding: From mice to men. Psychopharmacology 2016, 233, 2629–2653. [Google Scholar] [CrossRef]
- Cernea, S.; Dima, L.; Correll, C.U.; Manu, P. Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics. Drugs 2020, 80, 1763–1781. [Google Scholar] [CrossRef]
- Bretler, T.; Weisberg, H.; Koren, O.; Neuman, H. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med. 2019, 17, 112. [Google Scholar] [CrossRef]
- Blouin, M.; Tremblay, A.; Jalbert, M.-E.; Venables, H.; Bouchard, R.H.; Roy, M.A.; Alméras, N. Adiposity and Eating Behaviors in Patients Under Second Generation Antipsychotics. Obesity 2008, 16, 1780–1787. [Google Scholar] [CrossRef]
- Mukherjee, S.; Skrede, S.; Milbank, E.; Andriantsitohaina, R.; López, M.; Fernø, J. Understanding the Effects of Antipsychotics on Appetite Control. Front. Nutr. 2022, 8, 815456. [Google Scholar] [CrossRef] [PubMed]
- Kouidrat, Y.; Amad, A.; Lalau, J.-D.; Loas, G. Eating Disorders in Schizophrenia: Implications for Research and Management. Schizophr. Res. Treat. 2014, 2014, 791573. [Google Scholar] [CrossRef]
- Braga, R.J.; Reynolds, G.P.; Siris, S.G. Anxiety comorbidity in schizophrenia. Psychiatry Res. 2013, 210, 791573. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, Y.; An, F.-R.; Zhang, L.; Ungvari, G.S.; Jackson, T.; Yuan, Z.; Xiang, Y.-T. Prevalence of comorbid depression in schizophrenia: A meta-analysis of observational studies. J. Affect. Disord. 2020, 273, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Dakanalis, A.; Mentzelou, M.; Papadopoulou, S.K.; Papandreou, D.; Spanoudaki, M.; Vasios, G.K.; Pavlidou, E.; Mantzorou, M.; Giaginis, C. The Association of Emotional Eating with Overweight/Obesity, Depression, Anxiety/Stress, and Dietary Patterns: A Review of the Current Clinical Evidence. Nutrients 2023, 15, 1173. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Keefe, R.S.E.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.C.K.; Wang, L.; Lui, S.S.Y. Theories and models of negative symptoms in schizophrenia and clinical implications. Nat. Rev. Psychol. 2022, 1, 454–467. [Google Scholar] [CrossRef]
- Wang, L.L.; Tam, M.H.W.; Ho, K.K.Y.; Hung, K.S.Y.; Wong, J.O.Y.; Lui, S.S.Y.; Chan, R.C.K. Bridge centrality network structure of negative symptoms in people with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 589–600. [Google Scholar] [CrossRef]
- Kulkarni, D.P.; Kamath, V.D.; Stewart, J.T. Swallowing Disorders in Schizophrenia. Dysphagia 2017, 32, 467–471. [Google Scholar] [CrossRef]
- Thornicroft, G.; Sunkel, C.; Alikhon Aliev, A.; Baker, S.; Brohan, E.; El Chammay, R.; Davies, K.; Demissie, M.; Duncan, J.; Fekadu, W.; et al. The Lancet Commission on ending stigma and discrimination in mental health. Lancet 2022, 400, 1438–1480. [Google Scholar] [CrossRef]
- Domany, Y.; Weiser, M. Insights into metabolic dysregulations associated with antipsychotics. Lancet Psychiatry 2020, 7, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, H.; Solhi, H.; Jamilian, M. Randomized, Placebo-Controlled Clinical Trial of Omega-3 as Supplemental Treatment in Schizophrenia. Glob. J. Health Sci. 2014, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Nobile, M.; Ciappolino, V.; Delvecchio, G.; Tesei, A.; Turolo, S.; Crippa, A.; Mazzocchi, A.; Altamura, C.A.; Brambilla, P. The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD. Int. J. Mol. Sci. 2017, 18, 2608. [Google Scholar] [CrossRef] [PubMed]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry 2019, 19, 77. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Vaughan, T.; Galanter, M.; Kaplan, J.; Green, R. Behavioral Changes of Chronic Schizophrenic Patients Given L-5-Hydroxytryptophan. Science 1972, 177, 1124–1126. [Google Scholar] [CrossRef]
- Rastogi, R.B.; Singhal, R.L.; Lapierre, Y.D. Effects of short- and long-term neuroleptic treatment on brain serotonin synthesis and turnover: Focus on the serotonin hypothesis of schizophrenia. Life Sci. 1981, 29, 735–741. [Google Scholar] [CrossRef]
- Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M.; Karimi, M.A.; Mehrzad, F.; Bahmani, F.; Asemi, Z. Effect of a Low-Tryptophan Diet as an Adjuvant to Conventional Neuroleptic Therapy in Schizophrenia. Clin. Neuropharmacol. 1992, 15, 129–141. [Google Scholar]
- Hare, S.M.; Adhikari, B.M.; Mo, C.; Chen, S.; Wijtenburg, S.A.; Seneviratne, C.; Kane-Gerard, S.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Schwarcz, R.; et al. Tryptophan challenge in individuals with schizophrenia and healthy controls: Acute effects on circulating kynurenine and kynurenic acid, cognition and cerebral blood flow. Neuropsychopharmacology 2023, 48, 1594–1601. [Google Scholar] [CrossRef]
- McCreadie, R.G.; Kelly, C.; Connolly, M.; Williams, S.; Baxter, G.; Lean, M.; Paterson, J.R. Dietary improvement in people with schizophrenia: Randomised controlled trial. Br. J. Psychiatry 2005, 187, 346–351. [Google Scholar] [CrossRef]
- Newcomer, J.W. Metabolic considerations in the use of antipsychotic medications: A review of recent evidence. J. Clin. Psychiatry 2007, 68 (Suppl. 1), 20–27. [Google Scholar] [PubMed]
- Huang, J.; Kang, D.; Zhang, F.; Yang, Y.; Liu, C.; Xiao, J.; Long, Y.; Lang, B.; Peng, X.; Wang, W.; et al. Probiotics Plus Dietary Fiber Supplements Attenuate Olanzapine-Induced Weight Gain in Drug-Naïve First-Episode Schizophrenia Patients: Two Randomized Clinical Trials. Schizophr. Bull. 2022, 48, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Osmond, H.; Hoffer, A. Massive Niacin Treatment in Schizophrenia. Lancet 1962, 279, 316–320. [Google Scholar] [CrossRef]
- Pitt, B.; Pollitt, N. Ascorbic Acid and Chronic Schizophrenia. Br. J. Psychiatry 1971, 118, 227–228. [Google Scholar] [CrossRef]
- Vaughan, K.; McConaghy, N. Megavitamin and Dietary Treatment in Schizophrenia: A Randomised, Controlled Trial. Aust. N. Z. J. Psychiatry 1999, 33, 84–88. [Google Scholar] [CrossRef]
- Peña-Romero, A.C.; Navas-Carrillo, D.; Marín, F.; Orenes-Piñero, E. The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 3030–3041. [Google Scholar] [CrossRef] [PubMed]
- Marcum, J.A. Nutrigenetics/Nutrigenomics, Personalized Nutrition, and Precision Healthcare. Curr. Nutr. Rep. 2020, 9, 338–345. [Google Scholar] [CrossRef]
- Wuni, R.; Kuhnle, G.G.C.; Wynn-Jones, A.A.; Vimaleswaran, K.S. A Nutrigenetic Update on CETP Gene–Diet Interactions on Lipid-Related Outcomes. Curr. Atheroscler. Rep. 2022, 24, 119–132. [Google Scholar] [CrossRef]
- Usategui-Martín, R.; De Luis-Román, D.-A.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D Receptor (VDR) Gene Polymorphisms Modify the Response to Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef]
- The Coffee and Caffeine Genetics Consortium; Cornelis, M.C.; Byrne, E.M.; Esko, T.; Nalls, M.A.; Ganna, A.; Paynter, N.; Monda, K.L.; Amin, N.; Fischer, K.; et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol. Psychiatry 2015, 20, 647–656. [Google Scholar] [CrossRef]
- Fujimaki, M.; Saiki, S.; Li, Y.; Kaga, N.; Taka, H.; Hatano, T.; Ishikawa, K.I.; Oji, Y.; Mori, A.; Okuzumi, A.; et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018, 90, e404–e411. [Google Scholar] [CrossRef] [PubMed]
- Takeshige-Amano, H.; Saiki, S.; Fujimaki, M.; Ueno, S.I.; Li, Y.; Hatano, T.; Ishikawa, K.I.; Oji, Y.; Mori, A.; Okuzumi, A.; et al. Shared Metabolic Profile of Caffeine in Parkinsonian Disorders. Mov. Disord. 2020, 35, 1438–1447. [Google Scholar] [CrossRef]
- Trubetskoy, V.; Pardiñas, A.F.; Qi, T.; Panagiotaropoulou, G.; Awasthi, S.; Bigdeli, T.B.; Bryois, J.; Chen, C.Y.; Dennison, C.A.; Hall, L.S.; et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022, 604, 502–508. [Google Scholar] [CrossRef]
- Hunjan, A.K.; Hübel, C.; Lin, Y.; Eley, T.C.; Breen, G. Association between polygenic propensity for psychiatric disorders and nutrient intake. Commun. Biol. 2021, 4, 965. [Google Scholar] [CrossRef]
- Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in Personalized Nutrition: Can You “Eat for Your Genes”? Nutrients 2020, 12, 3118. [Google Scholar] [CrossRef]
- Blokland, G.A.M.; Grove, J.; Chen, C.-Y.; Cotsapas, C.; Tobet, S.; Handa, R.; Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.; et al. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol. Psychiatry 2022, 91, 102–117. [Google Scholar] [CrossRef]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef]
- Maruvada, P.; Lampe, J.W.; Wishart, D.S.; Barupal, D.; Chester, D.N.; Dodd, D.; Djoumbou-Feunang, Y.; Dorrestein, P.C.; Dragsted, L.O.; Draper, J.; et al. Perspective: Dietary Biomarkers of Intake and Exposure—Exploration with Omics Approaches. Adv. Nutr. 2020, 11, 200–215. [Google Scholar] [CrossRef]
- Voruganti, V.S. Precision Nutrition: Recent Advances in Obesity. Physiology 2023, 38, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Samieri, C.; Yassine, H.N.; Melo van Lent, D.; Lefèvre-Arbogast, S.; van de Rest, O.; Bowman, G.L.; Scarmeas, N. Personalized nutrition for dementia prevention. Alzheimer’s Dement. 2022, 18, 1424–1437. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Rashidi, N.; Nurgali, K.; Apostolopoulos, V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 9968. [Google Scholar] [CrossRef] [PubMed]
- Kuuskmäe, C.; Philips, M.A.; Kilk, K.; Haring, L.; Kangro, R.; Seppo, I.; Zilmer, M.; Vasar, E. Kynurenine pathway dynamics in patients with schizophrenia spectrum disorders across the disease trajectory. Psychiatry Res. 2023, 328, 115423. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Chang, H.Y. Epigenomics: Technologies and Applications. Circ. Res. 2018, 122, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Stover, P.J.; James, W.P.T.; Krook, A.; Garza, C. Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J. Intern. Med. 2018, 284, 37–49. [Google Scholar] [CrossRef]
- Ma, Y.; Ordovas, J.M. The integration of epigenetics and genetics in nutrition research for CVD risk factors. Proc. Nutr. Soc. 2017, 76, 333–346. [Google Scholar] [CrossRef]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef]
- Jacka, F.N. Nutritional Psychiatry: Where to Next? EBioMedicine 2017, 17, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, K.L.; Buss, C.; Wadhwa, P.D.; Entringer, S. The Interplay Between Nutrition and Stress in Pregnancy: Implications for Fetal Programming of Brain Development. Biol. Psychiatry 2019, 85, 135–149. [Google Scholar] [CrossRef]
- Susser, E.S. Schizophrenia After Prenatal Exposure to the Dutch Hunger Winter of 1944–1945. Arch. Gen. Psychiatry 1992, 49, 983–988. [Google Scholar] [CrossRef]
- St Clair, D. Rates of Adult Schizophrenia Following Prenatal Exposure to the Chinese Famine of 1959–1961. JAMA 2005, 294, 557–562. [Google Scholar] [CrossRef]
- Sullivan, S.; Wills, A.; Lawlor, D.; McGrath, J.; Zammit, S. Prenatal vitamin D status and risk of psychotic experiences at age 18 years—A longitudinal birth cohort. Schizophr. Res. 2013, 148, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Paquin, V.; Lapierre, M.; Veru, F.; King, S. Early Environmental Upheaval and the Risk for Schizophrenia. Annu. Rev. Clin. Psychol. 2021, 17, 285–311. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Small, S.A.; Girgis, R.R. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am. J. Psychiatry 2019, 176, 794–810. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhu, X.; Chen, Z.; Fan, C.H.; Kwan, H.S.; Wong, C.H.; Shek, K.Y.; Zuo, Z.; Lam, T.N. A Review of Food–Drug Interactions on Oral Drug Absorption. Drugs 2017, 77, 1833–1855. [Google Scholar] [CrossRef]
- Xu, Y.; Amdanee, N.; Zhang, X. Antipsychotic-Induced Constipation: A Review of the Pathogenesis, Clinical Diagnosis, and Treatment. CNS Drugs 2021, 35, 1265–1274. [Google Scholar] [CrossRef]
- Matrisciano, F. Functional Nutrition as Integrated Intervention for In- and Outpatientwith Schizophrenia. Curr. Neuropharmacol. 2023, 21, 2409–2423. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Chang, T.-H.; Wu, B.-J. Prognostic impact of nutritional risk assessment in patients with chronic schizophrenia. Schizophr. Res. 2018, 192, 137–141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhou, D.; Chen, J. Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle. Nutrients 2024, 16, 3738. https://doi.org/10.3390/nu16213738
Yan Y, Zhou D, Chen J. Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle. Nutrients. 2024; 16(21):3738. https://doi.org/10.3390/nu16213738
Chicago/Turabian StyleYan, Yiming, Disheng Zhou, and Jianhua Chen. 2024. "Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle" Nutrients 16, no. 21: 3738. https://doi.org/10.3390/nu16213738
APA StyleYan, Y., Zhou, D., & Chen, J. (2024). Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle. Nutrients, 16(21), 3738. https://doi.org/10.3390/nu16213738