Dietary Factors and Cardiovascular Diseases: Comprehensive Insights from the National Health and Nutrition Examination Survey 2017–2020 and Mendelian Randomization Analysis
Abstract
:1. Introduction
2. Methods
2.1. Overall Study Design
2.2. Observational Study
2.2.1. Sample Population in the NHANES
2.2.2. Intake of Macronutrients
2.2.3. CVD Conditions
2.2.4. Covariate Information
2.3. Statistical Analysis for Observational Study
2.4. Mendelian Randomization
2.4.1. Study Design
2.4.2. Selection of Genetic Tools
2.4.3. Outcome Data
2.5. Statistical Analysis for Mendelian Randomization
3. Results
3.1. Population Characteristics of the NHANES
3.2. Associations Between Dietary Factors and CVD Incidence
3.3. MR Analysis of Dietary Factors and CVDs
3.4. Dose-Response Relationship Analysis
3.5. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perry, A.S.; Dooley, E.E.; Master, H.; Spartano, N.L.; Brittain, E.L.; Gabriel, K.P. Physical activity over the lifecourse and cardiovascular disease. Circ. Res. 2023, 132, 1725–1740. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, V.; Colombo, F. Cardiovascular disease should be a priority for health systems globally. BMJ 2023, 382, e076576. [Google Scholar] [CrossRef] [PubMed]
- Ho, F.K.; Gray, S.R.; Welsh, P.; Petermann-Rocha, F.; Foster, H.; Waddell, H.; Anderson, J.; Lyall, D.; Sattar, N.; Gill, J.M.R.; et al. Associations of fat and carbohydrate intake with cardiovascular disease and mortality: Prospective cohort study of UK Biobank participants. BMJ 2020, 368, m688. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.K.; Tong, T.Y.N.; Watling, C.Z.; Reynolds, A.; Piernas, C.; Schmidt, J.A.; Papier, K.; Carter, J.L.; Key, T.J.; Perez-Cornago, A. Associations between types and sources of dietary carbohydrates and cardiovascular disease risk: A prospective cohort study of UK Biobank participants. BMC Med. 2023, 21, 34. [Google Scholar] [CrossRef]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease a prospective cohort study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef]
- Zhang, X.; Kapoor, D.; Jeong, S.-J.; Fappi, A.; Stitham, J.; Shabrish, V.; Sergin, I.; Yousif, E.; Rodriguez-Velez, A.; Yeh, Y.-S.; et al. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat. Metab. 2024, 6, 359–377. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Knapp, A.; Johnson, A.; Wong, J.M.W.; Greco, K.F.; Ma, C.; Mora, S.; Ludwig, D.S. Effects of a low-carbohydrate diet on insulin-resistant dyslipoproteinemia—A randomized controlled feeding trial. Am. J. Clin. Nutr. 2022, 115, 154–162. [Google Scholar] [CrossRef]
- Gribbin, S.; Enticott, J.; Hodge, A.M.; Moran, L.; Thong, E.; Joham, A.; Zaman, S. Association of carbohydrate and saturated fat intake with cardiovascular disease and mortality in Australian women. Heart 2022, 108, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.; Zieba, J.K.; Foegeding, N.J.; Torres, T.P.; Shelton, C.D.; Shealy, N.G.; Byndloss, A.J.; Cevallos, S.A.; Gertz, E.; Tiffany, C.R.; et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 2021, 373, 813–818. [Google Scholar] [CrossRef]
- Zeng, W.; Jin, Q.; Wang, X. Reassessing the effects of dietary fat on cardiovascular disease in China: A review of the last three decades. Nutrients 2023, 15, 4214. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Resolved: There is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 2013, 14, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, Z.; Gregg, E.W.; Flanders, W.D.; Merritt, R.; Hu, F.B. Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Intern. Med. 2014, 174, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013, 345, e7492. [Google Scholar] [CrossRef]
- Johnson, R.K.; Appel, L.J.; Brands, M.; Howard, B.V.; Lefevre, M.; Lustig, R.H.; Sacks, F.; Steffen, L.M.; Wylie-Rosett, J. Dietary sugars intake and cardiovascular health: A scientific statement from the American heart association. Circulation 2009, 120, 1011–1020. [Google Scholar] [CrossRef]
- Sievenpiper, J.L.; de Souza, R.J.; Mirrahimi, A.; Yu, M.E.; Carleton, A.J.; Beyene, J.; Chiavaroli, L.; Di Buono, M.; Jenkins, A.L.; Leiter, L.A.; et al. Effect of fructose on body weight in controlled feeding trials: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 156, 291–304. [Google Scholar] [CrossRef]
- Tappy, L.; Lê, K.-A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1088–1096. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- Maki, K.C.; Slavin, J.L.; Rains, T.M.; Kris-Etherton, P.M. Limitations of observational evidence: Implications for evidence-based dietary recommendations. Adv. Nutr. 2014, 5, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Chartier, J.-P.; Côté, J.A.; Labonté, M.; Brassard, D.; Tessier-Grenier, M.; Desroches, S.; Couture, P.; Lamarche, B. Comprehensive review of the impact of dairy foods and dairy fat on cardiometabolic risk. Adv. Nutr. 2016, 7, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Dyerberg, J.; Elwood, P.; Hermansen, K.; Hu, F.B.; Jakobsen, M.U.; Kok, F.J.; Krauss, R.M.; Lecerf, J.M.; LeGrand, P.; et al. The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: Where does the evidence stand in 2010? Am. J. Clin. Nutr. 2011, 93, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Oyelese, Y. Randomized controlled trials: Not always the “gold standard” for evidence in obstetrics and gynecology. Am. J. Obstet. Gynecol. 2023, 230, 417–425. [Google Scholar] [CrossRef]
- Sekula, P.; Del Greco, M.F.; Pattaro, C.; Köttgen, A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 2016, 27, 3253–3265. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The strobe-MR statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef]
- Paulose-Ram, R.; Graber, J.E.; Woodwell, D.; Ahluwalia, N. The National Health and Nutrition Examination Survey (NHANES), 2021–2022: Adapting data collection in a COVID-19 environment. Am. J. Public Health 2021, 111, 2149–2156. [Google Scholar] [CrossRef]
- Cao, Y.; Li, P.; Zhang, Y.; Qiu, M.; Li, J.; Ma, S.; Yan, Y.; Li, Y.; Han, Y. Association of systemic immune inflammatory index with all-cause and cause-specific mortality in hypertensive individuals: Results from NHANES. Front. Immunol. 2023, 14, 1087345. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Z. Association of nickel exposure with body mass index, waist circumference and incidence of obesity in US adults. Chemosphere 2023, 338, 139599. [Google Scholar] [CrossRef]
- Li, W.; Zheng, Q.; Xu, M.; Zeng, C.; Deng, X. Association between circulating 25-hydroxyvitamin D metabolites and periodontitis: Results from the NHANES 2009–2012 and Mendelian randomization study. J. Clin. Periodontol. 2022, 50, 252–264. [Google Scholar] [CrossRef]
- Meddens, S.F.W.; de Vlaming, R.; Bowers, P.; Burik, C.A.P.; Linnér, R.K.; Lee, C.; Okbay, A.; Turley, P.; Rietveld, C.A.; Fontana, M.A.; et al. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol. Psychiatry 2020, 26, 2056–2069. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Z.; He, S.; Chen, Y.; Liu, J. Unveiling the influence of daily dietary patterns on brain cortical structure: Insights from bidirectional Mendelian randomization. Food Funct. 2023, 14, 10418–10429. [Google Scholar] [CrossRef]
- Feng, R.; Lu, M.; Xu, J.; Zhang, F.; Yang, M.; Luo, P.; Xu, K.; Xu, P. Pulmonary embolism and 529 human blood metabolites: Genetic correlation and two-sample Mendelian randomization study. BMC Genet. 2022, 23, 69. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, Y.; Smerin, D.; Xiong, X.; Chen, Z.; Gu, L. Genetically predicted type 2 diabetes mellitus mediates the causal association between plasma uric acid and ischemic stroke. Int. Immunopharmacol. 2024, 134, 112267. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: A systematic review and meta-analysis. Nutr. J. 2013, 12, 48. [Google Scholar] [CrossRef]
- McCommis, K.S.; Kovacs, A.; Weinheimer, C.J.; Shew, T.M.; Koves, T.R.; Ilkayeva, O.R.; Kamm, D.R.; Pyles, K.D.; King, M.T.; Veech, R.L.; et al. Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient mice. Nat. Metab. 2020, 2, 1232–1247. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Frost, G. Carbohydrate and human health: Is it all about quality? Lancet 2019, 393, 384–386. [Google Scholar] [CrossRef]
- Sievenpiper, J.L. Low-carbohydrate diets and cardiometabolic health: The importance of carbohydrate quality over quantity. Nutr. Rev. 2020, 78, 69–77. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Mejia, S.B.; Kendall, C.W.; Sievenpiper, J.L. Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta-analyses. Ann. N. Y. Acad. Sci. 2017, 1392, 43–57. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Liu, J.; Zhu, M.; Zhao, G.; Bao, W.; Hu, F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014, 349, g4490. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Dehghan, M.; Mente, A.; Bangdiwala, S.I.; Rangarajan, S.; Srichaikul, K.; Mohan, V.; Avezum, A.; Díaz, R.; Rosengren, A.; et al. Glycemic index, glycemic load, and cardiovascular disease and mortality. N. Engl. J. Med. 2021, 384, 1312–1322. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Ye, Z.; Liu, M.; Zhang, Z.; Zhang, Y.; Li, H.; He, P.; Li, Q.; Liu, C.; et al. Inverse association between variety of proteins with appropriate quantity from different food sources and new-onset hypertension. Hypertension 2022, 79, 1017–1027. [Google Scholar] [CrossRef]
- Smith, G.D.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef]
- Valk, R.; Hammill, J.; Grip, J. Saturated fat: Villain and bogeyman in the development of cardiovascular disease? Eur. J. Prev. Cardiol. 2022, 29, 2312–2321. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef]
- Virtanen, H.E.; Voutilainen, S.; Koskinen, T.T.; Mursu, J.; Kokko, P.; Ylilauri, M.P.; Tuomainen, T.-P.; Salonen, J.T.; Virtanen, J.K. Dietary proteins and protein sources and risk of death: The Kuopio Ischaemic heart disease risk factor study. Am. J. Clin. Nutr. 2019, 109, 1462–1471. [Google Scholar] [CrossRef]
- Song, M.; Fung, T.T.; Hu, F.B.; Willett, W.C.; Longo, V.D.; Chan, A.T.; Giovannucci, E.L. Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern. Med. 2016, 176, 1453–1463. [Google Scholar] [CrossRef]
Trait | Year | Total No. or Case/Control | Ancestry | PMID | Dataset |
---|---|---|---|---|---|
Relative carbohydrate intake | 2020 | 268,922 | European | 32393786 | SSGAC19 consortium |
Relative fat intake | 2020 | 268,922 | European | 32393786 | SSGAC19 consortium |
Relative protein intake | 2020 | 268,922 | European | 32393786 | SSGAC19 consortium |
Relative sugar intake | 2020 | 235,391 | European | 32393786 | SSGAC19 consortium |
Heart failure | 2020 | 47,309/930,014 | European | 31919418 | ebi-a-GCST009541 |
Coronary artery disease | 2021 | 352,063 | European | 34017140 | ebi-a-GCST90013864 |
Stroke | 2021 | 6925/477,673 | European | 33959723 | ebi-a-GCST90038613 |
Hypertension | 2021 | 129,909/354,689 | European | 33959723 | ebi-a-GCST90038604 |
Characteristic | Total (n = 5464) | Quartile 1 (n = 1366) | Quartile 2 (n = 1366) | Quartile 3 (n = 1366) | Quartile 4 (n = 1366) | p-Value |
---|---|---|---|---|---|---|
Age (year), mean value (SE) | 50.477 (17.259) | 52.197 (17.389) | 51.203 (17.708) | 51.114 (17.227) | 47.396 (16.312) | <0.001 |
Gender (%) | <0.001 | |||||
Male | 2606 (47.694) | 470 (34.407) | 537 (39.312) | 687 (50.293) | 912 (66.764) | |
Female | 2858 (52.306) | 896 (65.593) | 829 (60.688) | 679 (49.707) | 454 (33.236) | |
Race (%) | 0.018 | |||||
Mexican American | 602 (11.018) | 120 (8.785) | 161 (11.786) | 150 (10.981) | 171 (12.518) | |
Other Hispanic | 510 (9.334) | 134 (9.810) | 136 (9.956) | 114 (8.346) | 126 (9.224) | |
Non-Hispanic White | 2094 (38.324) | 512 (37.482) | 527 (38.580) | 525 (38.433) | 530 (38.799) | |
Non-Hispanic Black | 1467 (26.848) | 415 (30.381) | 351 (25.695) | 367 (26.867) | 334 (24.451) | |
Other Race—Including Multi-Racial | 791 (14.477) | 185 (13.543) | 191 (13.982) | 210 (15.373) | 205 (15.007) | |
Education level (%) | <0.001 | |||||
Less than 9th grade | 282 (5.161) | 74 (5.417) | 63 (4.612) | 66 (4.832) | 79 (5.783) | |
9–11th grade (Includes 12th grade with no diploma) | 552 (10.102) | 159 (11.640) | 119 (8.712) | 120 (8.785) | 154 (11.274) | |
High school graduate/GED or equivalent | 1281 (23.444) | 356 (26.061) | 309 (22.621) | 316 (23.133) | 300 (21.962) | |
Some college or AA degree | 1922 (35.176) | 470 (34.407) | 507 (37.116) | 449 (32.870) | 496 (36.310) | |
College graduate or above | 1427 (26.116) | 307 (22.474) | 368 (26.940) | 415 (30.381) | 337 (24.671) | |
Poor income ratio (%) | 0.001 | |||||
<1 | 1022 (18.704) | 284 (20.791) | 226 (16.545) | 231 (16.911) | 281 (20.571) | |
1–1.99 | 1393 (25.494) | 356 (26.061) | 345 (25.256) | 341 (24.963) | 351 (25.695) | |
2–3.99 | 1525 (27.910) | 343 (25.110) | 389 (28.477) | 389 (28.477) | 404 (29.575) | |
≥4 | 1524 (27.892) | 383 (28.038) | 406 (29.722) | 405 (29.649) | 330 (24.158) | |
Body mass index (%) | 0.004 | |||||
<25 | 1380 (25.256) | 318 (23.280) | 331 (24.231) | 360 (26.354) | 371 (27.160) | |
25 to <30 | 1668 (30.527) | 403 (29.502) | 395 (28.917) | 427 (31.259) | 443 (32.430) | |
≥30 | 2416 (44.217) | 645 (47.218) | 640 (46.852) | 579 (42.387) | 552 (40.410) | |
Smoked at least 100 (%) | <0.001 | |||||
Yes | 2321 (42.478) | 590 (43.192) | 524 (38.360) | 567 (41.508) | 640 (46.852) | |
No | 3143 (57.522) | 776 (56.808) | 842 (61.640) | 799 (58.492) | 726 (53.148) | |
Ever drink alcohol (%) | 0.090 | |||||
Yes | 5017 (91.819) | 1250 (91.508) | 1235 (90.410) | 1265 (92.606) | 1267 (92.753) | |
No | 447 (8.181) | 116 (8.492) | 131 (9.590) | 101 (7.394) | 99 (7.247) | |
High cholesterol level (%) | 0.001 | |||||
Yes | 1957 (35.816) | 500 (36.603) | 518 (37.921) | 509 (37.262) | 430 (31.479) | |
No | 3507 (64.184) | 866 (63.397) | 848 (62.079) | 857 (62.738) | 936 (68.521) | |
Diabetes (%) | <0.001 | |||||
Yes | 846 (15.483) | 259 (18.960) | 233 (17.057) | 197 (14.422) | 157 (11.493) | |
No | 4618 (84.517) | 1107 (81.040) | 1133 (82.943) | 1169 (85.578) | 1209 (88.507) | |
Heart failure (%) | 0.006 | |||||
Yes | 192 (3.522) | 57 (4.185) | 61 (4.485) | 43 (3.152) | 31 (2.271) | |
No | 5259 (96.478) | 1305 (95.815) | 1299 (95.515) | 1321 (96.848) | 1334 (97.729) | |
Coronary artery disease (%) | 0.044 | |||||
Yes | 253 (4.640) | 64 (4.692) | 72 (5.294) | 72 (5.275) | 45 (3.302) | |
No | 5199 (95.360) | 1300 (95.308) | 1288 (94.706) | 1293 (94.725) | 1318 (96.698) | |
Stroke (%) | 0.035 | |||||
Yes | 269 (4.929) | 85 (6.232) | 60 (4.399) | 70 (5.132) | 54 (3.956) | |
No | 5188 (95.071) | 1279 (93.768) | 1304 (95.601) | 1294 (94.868) | 1311 (96.044) | |
High blood pressure (%) | <0.001 | |||||
Yes | 2073 (37.939) | 567 (41.508) | 509 (37.262) | 545 (39.898) | 452 (33.089) | |
No | 3391 (62.061) | 799 (58.492) | 857 (62.738) | 821 (60.102) | 914 (66.911) |
Characteristic | Total (n = 5464) | Quartile 1 (n = 1366) | Quartile 2 (n = 1366) | Quartile 3 (n = 1366) | Quartile 4 (n = 1366) | p-Value |
---|---|---|---|---|---|---|
Age (year), mean value (SE) | 50.477 (17.259) | 52.165 (17.406) | 51.054 (17.481) | 50.518 (17.175) | 48.172 (16.738) | <0.001 |
Gender (%) | <0.001 | |||||
Male | 2606 (47.694) | 474 (34.700) | 527 (38.580) | 691 (50.586) | 914 (66.911) | |
Female | 2858 (52.306) | 892 (65.300) | 839 (61.420) | 675 (49.414) | 452 (33.089) | |
Race (%) | <0.001 | |||||
Mexican American | 602 (11.018) | 147 (10.761) | 153 (11.201) | 161 (11.786) | 141 (10.322) | |
Other Hispanic | 510 (9.334) | 165 (12.079) | 126 (9.224) | 118 (8.638) | 101 (7.394) | |
Non-Hispanic White | 2094 (38.324) | 404 (29.575) | 545 (39.898) | 557 (40.776) | 588 (43.045) | |
Non-Hispanic Black | 1467 (26.848) | 413 (30.234) | 323 (23.646) | 351 (25.695) | 380 (27.818) | |
Other Race—Including Multi-Racial | 791 (14.477) | 237 (17.350) | 219 (16.032) | 179 (13.104) | 156 (11.420) | |
Education level (%) | <0.001 | |||||
Less than 9th grade | 282 (5.161) | 114 (8.346) | 55 (4.026) | 69 (5.051) | 44 (3.221) | |
9–11th grade (Includes 12th grade with no diploma) | 552 (10.102) | 168 (12.299) | 125 (9.151) | 127 (9.297) | 132 (9.663) | |
High school graduate/GED or equivalent | 1281 (23.444) | 337 (24.671) | 318 (23.280) | 320 (23.426) | 306 (22.401) | |
Some college or AA degree | 1922 (35.176) | 446 (32.650) | 485 (35.505) | 469 (34.334) | 522 (38.214) | |
College graduate or above | 1427 (26.116) | 301 (22.035) | 383 (28.038) | 381 (27.892) | 362 (26.501) | |
Poor income ratio (%) | <0.001 | |||||
<1 | 1022 (18.704) | 318 (23.280) | 232 (16.984) | 235 (17.204) | 237 (17.350) | |
1–1.99 | 1393 (25.494) | 381 (27.892) | 357 (26.135) | 328 (24.012) | 327 (23.939) | |
2–3.99 | 1525 (27.910) | 344 (25.183) | 361 (26.428) | 431 (31.552) | 389 (28.477) | |
≥4 | 1524 (27.892) | 323 (23.646) | 416 (30.454) | 372 (27.233) | 413 (30.234) | |
Body mass index (%) | 0.807 | |||||
<25 | 1380 (25.256) | 365 (26.720) | 346 (25.329) | 338 (24.744) | 331 (24.231) | |
25 to <30 | 1668 (30.527) | 418 (30.600) | 416 (30.454) | 414 (30.307) | 420 (30.747) | |
≥30 | 2416 (44.217) | 583 (42.679) | 604 (44.217) | 614 (44.949) | 615 (45.022) | |
Smoked at least 100 (%) | <0.001 | |||||
Yes | 2321 (42.478) | 537 (39.312) | 540 (39.531) | 582 (42.606) | 662 (48.463) | |
No | 3143 (57.522) | 829 (60.688) | 826 (60.469) | 784 (57.394) | 704 (51.537) | |
Ever drink alcohol (%) | <0.001 | |||||
Yes | 5017 (91.819) | 1179 (86.310) | 1258 (92.094) | 1276 (93.411) | 1304 (95.461) | |
No | 447 (8.181) | 187 (13.690) | 108 (7.906) | 90 (6.589) | 62 (4.539) | |
High cholesterol level (%) | 0.853 | |||||
Yes | 1957 (35.816) | 491 (35.944) | 494 (36.164) | 496 (36.310) | 476 (34.846) | |
No | 3507 (64.184) | 875 (64.056) | 872 (63.836) | 870 (63.690) | 890 (65.154) | |
Diabetes (%) | 0.014 | |||||
Yes | 846 (15.483) | 249 (18.228) | 201 (14.714) | 200 (14.641) | 196 (14.348) | |
No | 4618 (84.517) | 1117 (81.772) | 1165 (85.286) | 1166 (85.359) | 1170 (85.652) | |
Heart failure (%) | 0.123 | |||||
Yes | 192 (3.522) | 60 (4.412) | 50 (3.663) | 44 (3.233) | 38 (2.784) | |
No | 5259 (96.478) | 1300 (95.588) | 1315 (96.337) | 1317 (96.767) | 1327 (97.216) | |
Coronary artery disease (%) | 0.784 | |||||
Yes | 253 (4.640) | 65 (4.772) | 60 (4.409) | 69 (5.059) | 59 (4.322) | |
No | 5199 (95.360) | 1297 (95.228) | 1301 (95.591) | 1295 (94.941) | 1306 (95.678) | |
Stroke (%) | 0.013 | |||||
Yes | 269 (4.929) | 78 (5.710) | 82 (6.021) | 51 (3.742) | 58 (4.246) | |
No | 5188 (95.071) | 1288 (94.290) | 1280 (93.979) | 1312 (96.258) | 1308 (95.754) | |
High blood pressure (%) | 0.059 | |||||
Yes | 2073 (37.939) | 546 (39.971) | 539 (39.458) | 497 (36.384) | 491 (35.944) | |
No | 3391 (62.061) | 820 (60.029) | 827 (60.542) | 869 (63.616) | 875 (64.056) |
Characteristic | Total (n = 5464) | Quartile 1 (n = 1366) | Quartile 2 (n = 1366) | Quartile 3 (n = 1366) | Quartile 4 (n = 1366) | p-Value |
---|---|---|---|---|---|---|
Age (year), mean value (SE) | 50.477 (17.259) | 52.239 (17.445) | 51.972 (17.812) | 50.034 (17.168) | 47.665 (16.200) | <0.001 |
Gender (%) | <0.001 | |||||
Male | 2606 (47.694) | 399 (29.209) | 504 (36.896) | 722 (52.855) | 981 (71.816) | |
Female | 2858 (52.306) | 967 (70.791) | 862 (63.104) | 644 (47.145) | 385 (28.184) | |
Race (%) | <0.001 | |||||
Mexican American | 602 (11.018) | 120 (8.785) | 131 (9.590) | 167 (12.225) | 184 (13.470) | |
Other Hispanic | 510 (9.334) | 134 (9.810) | 124 (9.078) | 112 (8.199) | 140 (10.249) | |
Non-Hispanic White | 2094 (38.324) | 475 (34.773) | 542 (39.678) | 544 (39.824) | 533 (39.019) | |
Non-Hispanic Black | 1467 (26.848) | 448 (32.796) | 370 (27.086) | 345 (25.256) | 304 (22.255) | |
Other Race—Including Multi-Racial | 791 (14.477) | 189 (13.836) | 199 (14.568) | 198 (14.495) | 205 (15.007) | |
Education level (%) | <0.001 | |||||
Less than 9th grade | 282 (5.161) | 81 (5.930) | 67 (4.905) | 66 (4.832) | 68 (4.978) | |
9–11th grade (Includes 12th grade with no diploma) | 552 (10.102) | 166 (12.152) | 118 (8.638) | 136 (9.956) | 132 (9.663) | |
High school graduate/GED or equivalent | 1281 (23.444) | 362 (26.501) | 333 (24.378) | 289 (21.157) | 297 (21.742) | |
Some college or AA degree | 1922 (35.176) | 476 (34.846) | 471 (34.480) | 484 (35.432) | 491 (35.944) | |
College graduate or above | 1427 (26.116) | 281 (20.571) | 377 (27.599) | 391 (28.624) | 378 (27.672) | |
Poor income ratio (%) | <0.001 | |||||
<1 | 1022 (18.704) | 303 (22.182) | 244 (17.862) | 247 (18.082) | 228 (16.691) | |
1–1.99 | 1393 (25.494) | 393 (28.770) | 358 (26.208) | 325 (23.792) | 317 (23.206) | |
2–3.99 | 1525 (27.910) | 368 (26.940) | 389 (28.477) | 370 (27.086) | 398 (29.136) | |
≥4 | 1524 (27.892) | 302 (22.108) | 375 (27.452) | 424 (31.040) | 423 (30.966) | |
Body mass index (%) | 0.245 | |||||
<25 | 1380 (25.256) | 327 (23.939) | 379 (27.745) | 337 (24.671) | 337 (24.671) | |
25 to <30 | 1668 (30.527) | 411 (30.088) | 414 (30.307) | 414 (30.307) | 429 (31.406) | |
≥30 | 2416 (44.217) | 628 (45.974) | 573 (41.947) | 615 (45.022) | 600 (43.924) | |
Smoked at least 100 (%) | 0.030 | |||||
Yes | 2321 (42.478) | 556 (40.703) | 552 (40.410) | 596 (43.631) | 617 (45.168) | |
No | 3143 (57.522) | 810 (59.297) | 814 (59.590) | 770 (56.369) | 749 (54.832) | |
Ever drink alcohol (%) | <0.001 | |||||
Yes | 5017 (91.819) | 1200 (87.848) | 1245 (91.142) | 1270 (92.972) | 1302 (95.315) | |
No | 447 (8.181) | 166 (12.152) | 121 (8.858) | 96 (7.028) | 64 (4.685) | |
High cholesterol level (%) | 0.541 | |||||
Yes | 1957 (35.816) | 495 (36.237) | 503 (36.823) | 491 (35.944) | 468 (34.261) | |
No | 3507 (64.184) | 871 (63.763) | 863 (63.177) | 875 (64.056) | 898 (65.739) | |
Diabetes (%) | 0.093 | |||||
Yes | 846 (15.483) | 229 (16.764) | 209 (15.300) | 223 (16.325) | 185 (13.543) | |
No | 4618 (84.517) | 1137 (83.236) | 1157 (84.700) | 1143 (83.675) | 1181 (86.457) | |
Heart failure (%) | 0.020 | |||||
Yes | 192 (3.522) | 61 (4.482) | 56 (4.103) | 36 (2.643) | 39 (2.861) | |
No | 5259 (96.478) | 1300 (95.518) | 1309 (95.897) | 1326 (97.357) | 1324 (97.139) | |
Coronary artery disease (%) | 0.562 | |||||
Yes | 253 (4.640) | 64 (4.702) | 72 (5.282) | 59 (4.322) | 58 (4.255) | |
No | 5199 (95.360) | 1297 (95.298) | 1291 (94.718) | 1306 (95.678) | 1305 (95.745) | |
Stroke (%) | <0.001 | |||||
Yes | 269 (4.929) | 94 (6.902) | 70 (5.136) | 56 (4.100) | 49 (3.587) | |
No | 5188 (95.071) | 1268 (93.098) | 1293 (94.864) | 1310 (95.900) | 1317 (96.413) | |
High blood pressure (%) | 0.006 | |||||
Yes | 2073 (37.939) | 559 (40.922) | 539 (39.458) | 486 (35.578) | 489 (35.798) | |
No | 3391 (62.061) | 807 (59.078) | 827 (60.542) | 880 (64.422) | 877 (64.202) |
Characteristic | Total (n = 5464) | Quartile 1 (n = 1366) | Quartile 2 (n = 1366) | Quartile 3 (n = 1366) | Quartile 4 (n = 1366) | p-Value |
---|---|---|---|---|---|---|
Age (year), mean value (SE) | 50.477 (17.259) | 50.822 (17.317) | 51.272 (17.509) | 50.810 (17.523) | 49.005 (16.604) | 0.003 |
Gender (%) | <0.001 | |||||
Male | 2606 (47.694) | 556 (40.703) | 582 (42.606) | 652 (47.731) | 816 (59.736) | |
Female | 2858 (52.306) | 810 (59.297) | 784 (57.394) | 714 (52.269) | 550 (40.264) | |
Race (%) | <0.001 | |||||
Mexican American | 602 (11.018) | 149 (10.908) | 162 (11.859) | 149 (10.908) | 142 (10.395) | |
Other Hispanic | 510 (9.334) | 145 (10.615) | 132 (9.663) | 123 (9.004) | 110 (8.053) | |
Non-Hispanic White | 2094 (38.324) | 506 (37.042) | 492 (36.018) | 515 (37.701) | 581 (42.533) | |
Non-Hispanic Black | 1467 (26.848) | 345 (25.256) | 349 (25.549) | 395 (28.917) | 378 (27.672) | |
Other Race—Including Multi-Racial | 791 (14.477) | 221 (16.179) | 231 (16.911) | 184 (13.470) | 155 (11.347) | |
Education level (%) | <0.001 | |||||
Less than 9th grade | 282 (5.161) | 89 (6.515) | 64 (4.685) | 60 (4.392) | 69 (5.051) | |
9–11th grade (Includes 12th grade with no diploma) | 552 (10.102) | 147 (10.761) | 133 (9.736) | 121 (8.858) | 151 (11.054) | |
High school graduate/GED or equivalent | 1281 (23.444) | 327 (23.939) | 307 (22.474) | 302 (22.108) | 345 (25.256) | |
Some college or AA degree | 1922 (35.176) | 476 (34.846) | 454 (33.236) | 488 (35.725) | 504 (36.896) | |
College graduate or above | 1427 (26.116) | 327 (23.939) | 408 (29.868) | 395 (28.917) | 297 (21.742) | |
Poor income ratio (%) | <0.001 | |||||
<1 | 1022 (18.704) | 269 (19.693) | 228 (16.691) | 226 (16.545) | 299 (21.889) | |
1–1.99 | 1393 (25.494) | 345 (25.256) | 347 (25.403) | 333 (24.378) | 368 (26.940) | |
2–3.99 | 1525 (27.910) | 342 (25.037) | 375 (27.452) | 401 (29.356) | 407 (29.795) | |
≥4 | 1524 (27.892) | 410 (30.015) | 416 (30.454) | 406 (29.722) | 292 (21.376) | |
Body mass index (%) | 0.662 | |||||
<25 | 1380 (25.256) | 344 (25.183) | 329 (24.085) | 359 (26.281) | 348 (25.476) | |
25 to <30 | 1668 (30.527) | 401 (29.356) | 428 (31.332) | 407 (29.795) | 432 (31.625) | |
≥30 | 2416 (44.217) | 621 (45.461) | 609 (44.583) | 600 (43.924) | 586 (42.899) | |
Smoked at least 100 (%) | <0.001 | |||||
Yes | 2321 (42.478) | 572 (41.874) | 546 (39.971) | 540 (39.531) | 663 (48.536) | |
No | 3143 (57.522) | 794 (58.126) | 820 (60.029) | 826 (60.469) | 703 (51.464) | |
Ever drink alcohol (%) | 0.077 | |||||
Yes | 5017 (91.819) | 1239 (90.703) | 1245 (91.142) | 1260 (92.240) | 1273 (93.192) | |
No | 447 (8.181) | 127 (9.297) | 121 (8.858) | 106 (7.760) | 93 (6.808) | |
High cholesterol level (%) | 0.034 | |||||
Yes | 1957 (35.816) | 484 (35.432) | 523 (38.287) | 499 (36.530) | 451 (33.016) | |
No | 3507 (64.184) | 882 (64.568) | 843 (61.713) | 867 (63.470) | 915 (66.984) | |
Diabetes (%) | <0.001 | |||||
Yes | 846 (15.483) | 270 (19.766) | 242 (17.716) | 191 (13.982) | 143 (10.469) | |
No | 4618 (84.517) | 1096 (80.234) | 1124 (82.284) | 1175 (86.018) | 1223 (89.531) | |
Heart failure (%) | 0.359 | |||||
Yes | 192 (3.522) | 55 (4.035) | 53 (3.894) | 41 (3.010) | 43 (3.150) | |
No | 5259 (96.478) | 1308 (95.965) | 1308 (96.106) | 1321 (96.990) | 1322 (96.850) | |
Coronary artery disease (%) | 0.736 | |||||
Yes | 253 (4.640) | 61 (4.479) | 70 (5.128) | 64 (4.696) | 58 (4.258) | |
No | 5199 (95.360) | 1301 (95.521) | 1295 (94.872) | 1299 (95.304) | 1304 (95.742) | |
Stroke (%) | 0.748 | |||||
Yes | 269 (4.929) | 69 (5.059) | 66 (4.835) | 73 (5.356) | 61 (4.469) | |
No | 5188 (95.071) | 1295 (94.941) | 1299 (95.165) | 1290 (94.644) | 1304 (95.531) | |
High blood pressure (%) | 0.122 | |||||
Yes | 2073 (37.939) | 533 (39.019) | 528 (38.653) | 531 (38.873) | 481 (35.212) | |
No | 3391 (62.061) | 833 (60.981) | 838 (61.347) | 835 (61.127) | 885 (64.788) |
Characteristic | Log-Transformed | Q1 | Q2 | Q3 | Q4 | p-Trend | |
---|---|---|---|---|---|---|---|
Carbohydrate | Heart failure | ||||||
Model 1 | 0.645 (0.494–0.849) ** | 1.00 | 1.103 (0.774–1.577) | 0.729 (0.490–1.077) | 0.513 (0.329–0.786) ** | <0.001 | |
Model 2 | 0.694 (0.517–0.941) * | 1.00 | 1.122 (0.779–1.619) | 0.710 (0.471–1.061) | 0.611 (0.384–0.956) * | 0.008 | |
Model 3 | 0.791 (0.585–1.079) | 1.00 | 1.269 (0.871–1.854) | 0.845 (0.556–1.279) | 0.714 (0.444–1.131) | 0.076 | |
Fat | Heart failure | ||||||
Model 1 | 0.677 (0.530–0.872) ** | 1.00 | 0.764 (0.524–1.108) | 0.733 (0.500–1.067) | 0.579 (0.384–0.862) ** | 0.008 | |
Model 2 | 0.691 (0.530–0.91) ** | 1.00 | 0.778 (0.528–1.139) | 0.748 (0.504–1.103) | 0.649 (0.422–0.987) * | 0.044 | |
Model 3 | 0.722 (0.549–0.954) * | 1.00 | 0.794 (0.533–1.177) | 0.786 (0.522–1.177) | 0.677 (0.433–1.046) | 0.088 | |
Protein | Heart failure | ||||||
Model 1 | 0.574 (0.437–0.760) *** | 1.00 | 0.858 (0.595–1.232) | 0.594 (0.395–0.882) * | 0.625 (0.418–0.923) * | 0.005 | |
Model 2 | 0.593 (0.435–0.815) ** | 1.00 | 0.818 (0.562–1.187) | 0.593 (0.388–0.897) * | 0.730 (0.474–1.113) | 0.051 | |
Model 3 | 0.645 (0.471–0.889) ** | 1.00 | 0.896 (0.610–1.315) | 0.622 (0.402–0.952) * | 0.781 (0.502–1.204) | 0.101 | |
Coronary artery disease | |||||||
Model 1 | 0.751 (0.582–0.974) * | 1.00 | 1.092 (0.780–1.530) | 0.864 (0.605–1.230) | 0.879 (0.616–1.250) | 0.272 | |
Model 2 | 0.680 (0.506–0.918) * | 1.00 | 0.997 (0.700–1.422) | 0.738 (0.504–1.077) | 0.842 (0.571–1.239) | 0.188 | |
Model 3 | 0.684 (0.504–0.931) * | 1.00 | 0.989 (0.687–1.424) | 0.664 (0.446–0.983) * | 0.778 (0.519–1.162) | 0.077 | |
Stroke | |||||||
Model 1 | 0.566 (0.445–0.724) *** | 1.00 | 0.73 (0.533–0.997) * | 0.553 (0.393–0.772) *** | 0.481 (0.336–0.680) *** | <0.001 | |
Model 2 | 0.649 (0.495–0.857) ** | 1.00 | 0.719 (0.520–0.989) * | 0.605 (0.423–0.856) ** | 0.622 (0.424–0.903) * | 0.004 | |
Model 3 | 0.747 (0.568–0.988) * | 1.00 | 0.769 (0.553–1.065) | 0.650 (0.452–0.928) * | 0.680 (0.460–0.996) | 0.020 |
Exposure | Outcome | Heterogeneity Test MR–Egger | Heterogeneity Test IVW | Pleiotropy Test MR–Egger | |||
---|---|---|---|---|---|---|---|
Q | p | Q | p | Intercept | p | ||
Relative carbohydrate intake | Heart failure | 70.511 | <0.001 | 78.254 | <0.001 | −0.013 | 0.051 |
Coronary artery disease | 82.673 | <0.001 | 82.675 | <0.001 | <0.001 | 0.976 | |
Stroke | 64.774 | 0.010 | 64.791 | 0.014 | <0.001 | 0.918 | |
Hypertension | 100.365 | <0.001 | 101.891 | <0.001 | 0.001 | 0.440 | |
Relative fat intake | Heart failure | 34.434 | 0.077 | 35.089 | 0.087 | 0.005 | 0.506 |
Coronary artery disease | 33.992 | 0.085 | 35.359 | 0.082 | 0.008 | 0.336 | |
Stroke | 44.966 | 0.030 | 45.120 | 0.038 | <0.001 | 0.754 | |
Hypertension | 61.165 | <0.001 | 61.349 | <0.001 | <0.001 | 0.782 | |
Relative protein intake | Heart failure | 40.098 | 0.065 | 40.298 | 0.079 | 0.002 | 0.711 |
Coronary artery disease | 25.615 | 0.646 | 27.551 | 0.594 | 0.007 | 0.175 | |
Stroke | 32.983 | 0.517 | 32.986 | 0.566 | <0.001 | 0.957 | |
Hypertension | 27.338 | 0.605 | 29.861 | 0.524 | −0.001 | 0.123 | |
Relative sugar intake | Heart failure | 31.477 | 0.392 | 34.639 | 0.298 | −0.011 | 0.093 |
Coronary artery disease | 57.634 | 0.003 | 57.991 | 0.003 | −0.004 | 0.665 | |
Stroke | 131.978 | <0.001 | 132.299 | <0.001 | <0.001 | 0.776 | |
Hypertension | 29.916 | 0.789 | 29.996 | 0.820 | <0.001 | 0.778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Gao, Y.; Smerin, D.; Amin, M.R.; Chen, Z.; Jian, Z.; Gu, L.; Xiong, X. Dietary Factors and Cardiovascular Diseases: Comprehensive Insights from the National Health and Nutrition Examination Survey 2017–2020 and Mendelian Randomization Analysis. Nutrients 2024, 16, 3829. https://doi.org/10.3390/nu16223829
Wang C, Gao Y, Smerin D, Amin MR, Chen Z, Jian Z, Gu L, Xiong X. Dietary Factors and Cardiovascular Diseases: Comprehensive Insights from the National Health and Nutrition Examination Survey 2017–2020 and Mendelian Randomization Analysis. Nutrients. 2024; 16(22):3829. https://doi.org/10.3390/nu16223829
Chicago/Turabian StyleWang, Chaoqun, Yikun Gao, Daniel Smerin, Mohammad Rohul Amin, Zhibiao Chen, Zhihong Jian, Lijuan Gu, and Xiaoxing Xiong. 2024. "Dietary Factors and Cardiovascular Diseases: Comprehensive Insights from the National Health and Nutrition Examination Survey 2017–2020 and Mendelian Randomization Analysis" Nutrients 16, no. 22: 3829. https://doi.org/10.3390/nu16223829
APA StyleWang, C., Gao, Y., Smerin, D., Amin, M. R., Chen, Z., Jian, Z., Gu, L., & Xiong, X. (2024). Dietary Factors and Cardiovascular Diseases: Comprehensive Insights from the National Health and Nutrition Examination Survey 2017–2020 and Mendelian Randomization Analysis. Nutrients, 16(22), 3829. https://doi.org/10.3390/nu16223829