Association Between Lifestyle Patterns and Abdominal Obesity with Biochemical and Inflammatory Biomarkers in Adolescents with Down Syndrome: The UP&DOWN Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Study Design
2.2. Lifestyles Variables
2.2.1. Physical Activity
2.2.2. Screen Time
2.2.3. Sleep Time
2.2.4. Adherence to the Mediterranean Diet
2.2.5. Abdominal Obesity
2.3. Haematological, Biochemical and Inflammatory Biomarkers
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doñate Carramiñana, L.; Guillén Sebastián, C.; Iglesia Altaba, I.; Nagore Gonzalez, C.; Alvarez Sauras, M.L.; García Enguita, S.; Rodriguez Martinez, G. Rapid Growth Between 0 and 2 Years Old in Healthy Infants Born at Term and Its Relationship with Later Obesity: A Systematic Review and Meta-Analysis of Evidence. Nutrients 2024, 16, 2939. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Global Strategy on Diet, Physical Activity and Health; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Lobstein, T.; Powis, J.; Jackson-Leach, R. World Obesity Atlas 2024. London. 2024. Available online: https://data.worldobesity.org/publications/?cat=22 (accessed on 9 October 2024).
- Lennox, N.; Beange, H.; Parmenter, T.; Santos-Teachout, R.; Evenhuis, H.; Kerr, M.; Stewart, L. Health guidelines for adults with an intelectual disability. Am. J. Ment. Retard. 2002, 99, 595–604. [Google Scholar]
- Belleri, P.; Mazzuca, G.; Pietrobelli, A.; Zampieri, N.; Piacentini, G.; Zaffanello, M.; Pecoraro, L. The Role of Diet and Physical Activity in Obesity and Overweight in Children with Down Syndrome in Developed Countries. Children 2024, 29, 1056. [Google Scholar] [CrossRef]
- Bertapelli, F.; Pitetti, K.H.; Agiovlasitis, S.; Guerra-Junior, G. Overweight and obesity in children and adolescents with Down syndrome-Prevalence, determinants, consequences, and interventions: A literature review. Res. Dev. Disabil. 2016, 57, 181–192. [Google Scholar] [CrossRef]
- AlDarwish, N.; AlSaab, A.; AlQusair, D.; AlWahsh, I.; Sebastian, T.; AlGindan, Y. Dietary pattern, physical activity and body composition of Children with and without Down Syndrome—A case control study. J. Intellect. Disabil. 2023, 11, 17446295231219618. [Google Scholar] [CrossRef]
- Aslam, A.A.; Baksh, R.A.; Pape, S.E.; Strydom, A.; Gulliford, M.C.; Chan, L.F.; GO-DS21 Consortium. Diabetes and obesity in Down syndrome across the lifespan: A retrospective cohort study using U.K. electronic health records. Diabetes Care 2022, 30, 2892–2899. [Google Scholar] [CrossRef]
- Bull, M.J.; Trotter, T.; Santoro, S.L.; Christensen, C.; Grout, R.W.; Council On Genetics; Burke, L.W.; Berry, S.A.; Geleske, T.A.; Holm, I.; et al. Health supervision for children and adolescents with Down syndrome. Pediatrics 2022, 1, e2022057010. [Google Scholar] [CrossRef] [PubMed]
- Bull, M.J. Down Syndrome. N. Engl. J. Med. 2020, 11, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Division of Behavioral and Social Sciences and Education; Board on Children, Youth, and Families; Committee on the Neurobiological and Socio-behavioral Science of Adolescent Development and Its Applications. The Promise of Adolescence: Realizing Opportunity for All Youth; Backes, E.P., Bonnie, R.J., Eds.; National Academies Press (US): Washington, DC, USA, 2019; Volume 2. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545476/ (accessed on 8 October 2024).
- Hu, L.; Shen, Q.; Yin, H.; Cui, L. Time-course effects of exercise intervention on executive function in adolescents with obesity. Front. Psychol. 2024, 24, 1346896. [Google Scholar] [CrossRef]
- Liu, F.; Kong, B.; Zhang, Z.; Chen, L.; Li, Y.; Xiong, J.; Yao, P.; Li, Y.; Tang, Y. Associations between adherence to 24-Hour Movement Guidelines with continuous metabolic syndrome score among Chinese children and adolescents. Public Health 2024, 14, 274–280. [Google Scholar] [CrossRef]
- Martinez-Gomez, D.; Eisenmann, J.C.; Gómez-Martínez, S.; Veses, A.; Marcos, A.; Veiga, O.L. Sedentary behaviour, adiposity and cardiovascular risk factors in adolescents. The AFINOS study. Rev. Esp. Cardiol. 2010, 63, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gomez, D.; Eisenmann, J.C.; Gomez-Martinez, S.; Hill, E.E.; Zapatera, B.; Veiga, O.L.; Marcos, A.; AFINOS Study Group. Sleep duration and emerging cardiometabolic risk markers in adolescents. The AFINOS study. Sleep Med. 2011, 12, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Sehn, A.P.; Silveira, J.F.C.; Brand, C.; Lemes, V.B.; Borfe, L.; Tornquist, L.; Pfeiffer, K.A.; Renner, J.D.P.; Andersen, L.B.; Burns, R.D.; et al. Screen time, sleep duration, leisure physical activity, obesity, and cardiometabolic risk in children and adolescents: A cross-lagged 2-year study. BMC Cardiovasc. Disord. 2024, 1, 525. [Google Scholar] [CrossRef] [PubMed]
- Matute-Llorente, A.; Gonzalez-Aguero, A.; Gomez-Cabello, A.; Vicente-Rodrıguez, G.; Casajus, J.A. Physical activity and cardiorespiratory fitness in adolescents with Down syndrome. Nutr. Hosp. 2013, 28, 1151–1155. [Google Scholar]
- Matute-Llorente, A.; Gonzalez-Aguero, A.; Gomez-Cabello, A.; Vicente-Rodrıguez, G.; Casajus, J.A. Decreased levels of physical activity in adolescents with Down syndrome are related with low bone mineral density: A cross-sectional study. BMC Endocr. Disord. 2013, 13, 22. [Google Scholar] [CrossRef]
- Zong, Z.; Zhang, Y.; Qiao, J.; Tian, Y.; Xu, S. The association between screen time exposure and myopia in children and adolescents: A meta-analysis. BMC Public Health 2024, 18, 1625. [Google Scholar] [CrossRef]
- Chen, Z.; Liao, X.; Yang, J.; Tian, Y.; Peng, K.; Liu, X.; Li, Y. Association of screen-based activities and risk of self-harm and suicidal behaviors among young people: A systematic review and meta-analysis of longitudinal studies. Psychiatry Res. 2024, 338, 115991. [Google Scholar] [CrossRef]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Li, G.; Haegele, J.A.; Zou, L.; Chen, S.; Li, C. Prevalence of meeting 24-hour movement guidelines and its associations with health indicators in people with disabilities: A systematic review and meta-analysis. Disabil. Health J. 2024, 17, 101616. [Google Scholar] [CrossRef]
- Zhang, L.; Oshri, A.; Carvalho, C.; Uddin, L.Q.; Geier, C.; Nagata, J.M.; Cummins, K.; Hoffman, E.A.; Tomko, R.L.; Chaarani, B.; et al. Prospective associations between Sleep, Sensation-Seeking and Mature Screen Usage in Early Adolescents: Findings from the Adolescent Brain Cognitive Development (ABCD) Study. Sleep 2024, 11, zsae234. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Ortega, F.B.; Ruiz, J.R.; Rey-López, J.P.; Béghin, L.; Manios, Y.; Cuenca-García, M.; Plada, M.; Diethelm, K.; Kafatos, A.; et al. Short sleep duration is associated with increased obesity markers in European adolescents: Effect of physical activity and dietary habits. The HELENA study. Int. J. Obes. 2011, 35, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, A.J. Sleep problems and associated comorbidities among adults with Down syndrome. J. Intellect. Disabil. Res. 2016, 60, 68–79. [Google Scholar] [CrossRef]
- Esbensen, A.J.; Hoffman, E. Reliability of parent report measures of sleep in children with Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Gardner, K.J.; Wang, W.; Klerman, E.B. Altered sleep architecture in children and adolescents with Down syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2023, 193, e32073. [Google Scholar] [CrossRef]
- Larruy-García, A.; Mahmood, L.; Miguel-Berges, M.L.; Masip, G.; Seral-Cortés, M.; De Miguel-Etayo, P.; Moreno, L.A. Diet Quality Scores, Obesity and Metabolic Syndrome in Children and Adolescents: A Systematic Review and Meta-Analysis. Curr. Obes. Rep. 2024, 13, 755–788. [Google Scholar] [CrossRef]
- Gómez-Álvarez, N.; Boppre, G.; Hermosilla-Palma, F.; Reyes-Amigo, T.; Oliveira, J.; Fonseca, H. Effects of Small-Sided Soccer Games on Physical Fitness and Cardiometabolic Health Biomarkers in Untrained Children and Adolescents: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 3, 5221. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.M.T. Cardiovascular Disease May Be Triggered by Gut Microbiota, Microbial Metabolites, Gut Wall Reactions, and Inflammation. Int. J. Mol. Sci. 2024, 2, 10634. [Google Scholar] [CrossRef] [PubMed]
- Podraza, J.; Gutowska, K.; Lenartowicz, A.; Wąsowski, M.; Jonas, M.I.; Bartoszewicz, Z.; Lisik, W.; Jonas, M.; Binda, A.; Jaworski, P.; et al. The Role of microRNA in the Regulation of Cortisol Metabolism in the Adipose Tissue in the Course of Obesity. Int. J. Mol. Sci. 2024, 7, 5058. [Google Scholar] [CrossRef]
- Koester-Weber, T.; Valtueña, J.; Breidenassel, C.; Beghin, L.; Plada, M.; Moreno, S.; Huybrechts, I.; Palacios, G.; Gómez-Martínez, S.; Albers, U.; et al. Reference values for leptin, cortisol, insulin and glucose, among European adolescents and their association with adiposity: The HELENA study. Nutr. Hosp. 2014, 30, 1181–1190. [Google Scholar]
- Gutierrez-Hervas, A.; Gómez-Martínez, S.; Izquierdo-Gómez, R.; Veiga, O.L.; Perez-Bey, A.; Castro-Piñero, J.; Marcos, A. Inflammation and fatness in adolescents with and without Down syndrome: UP & DOWN study. J. Intellect. Disabil. Res. 2020, 64, 170–179. [Google Scholar] [PubMed]
- Castro-Piñero, J.; Carbonell-Baeza, A.; Martinez-Gomez, A.; Gómez-Martinez, S.; Cabanas-Sánchez, V.; Santiago, C.; Veses, A.M.; Bandrés, F.; Gonzalez-Galo, A.; Gomez-Gallego, F.; et al. Follow-up in healthy schoolchildren and in adolescents with Down syndrome: Psycho-environmental and genetic determinants of physical activity and its impact on fitness, cardiovascular diseases, inflammatory biomarkers and mental health; The UP&DOWN Study. BMC Public Health. 2014, 14, 400. [Google Scholar]
- Martinez-Gomez, D.; Ruiz, J.R.; Ortega, F.B.; Veiga, O.L.; Moliner-Urdiales, D.; Mauro, B.; Galfo, M.; Manios, Y.; Widhalm, K.; Béghin, L.; et al. Recommended levels of physical activity to avoid an excess of body fat in European adolescents: The HELENA Study. Am. J. Prev. Med. 2010, 39, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Council on Communications and Media. Children, adolescents, and the media. Pediatrics 2013, 132, 958–961. [Google Scholar] [CrossRef]
- Paruthi, S.; Brooks, L.J.; D’Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.; Nichols, C.; Quan, S.F.; et al. Recommended amount of sleep for pediatric populations: A Consensus Statement of the American Academy of Sleep Medicine. J. Clin. Sleep. Med. 2016, 12, 785–786. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; Garcıa, A.; Perez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Marrodán, M.D.; Martínez-Álvarez, J.R.; González-Montero, M.; López-Ejeda, N.; Cabañas, M.D.; Prado, C. Diagnostic accuracy of waist to height ratio in screening of overweight and infant obesity. Med. Clin. 2013, 140, 296–301. [Google Scholar] [CrossRef]
- Amatori, S.; Sisti, D.; Perroni, F.; Brandi, G.; Rocchi, M.B.L.; Gobbi, E. Physical activity, sedentary behaviour and screen time among youths with Down syndrome during the COVID-19 pandemic. J. Intellect. Disabil. Res. 2022, 66, 903–912. [Google Scholar] [CrossRef]
- Roman-Viñas, B.; Chaput, J.P.; Katzmarzyk, P.T.; Fogelholm, M.; Lambert, E.V.; Maher, C.; Maia, J.; Olds, T.; Onywera, V.; Sarmiento, O.L.; et al. Proportion of children meeting recommendations for 24-hour movement guidelines and associations with adiposity in a 12-country study. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 123. [Google Scholar] [CrossRef]
- Santos, R.M.S.; Mendes, C.G.; Marques Miranda, D.; Romano-Silva, M.A. The association between screen time and attention in children: A Systematic Review. Dev. Neuropsychol. 2022, 47, 175–192. [Google Scholar] [CrossRef]
- Melville, C.A.; Oppewal, A.; Schafer Elinder, L.; Freiberger, E.; Guerra-Balic, M.; Hilgenkamp, T.I.M. Definitions, measurement and prevalence of sedentary behaviour in adults with intellectual disabilities: A systematic review. Prev. Med. 2017, 97, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Melville, C.A.; McGarty, A.; Harris, L.; Hughes-McCormack, L.; Baltzer, M.; McArthur, L.A. A population based, cross-sectional study of the prevalence and correlates of sedentary behaviour of adults with intellectual disabilities. J. Intellect. Disabil. Res. 2018, 62, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.; Jarrold, C. Serial order reconstruction in Down syndrome: Evidence for a selective deficit in verbal short-term memory. J. Child. Psychol. Psychiatry 2005, 46, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, A.J.; Schwichtenberg, A. Sleep in neurodevelopmental disorders. Int. Rev. Res. Dev. Disabil. 2016, 51, 153–191. [Google Scholar]
- Wijayaratne, P.R.; Williams, K.; Davey, M.J.; Horne, R.S.C.; Nixon, G.M. Prediction of obstructive sleep apnoea in children and adolescents with Down syndrome. J. Intellect. Disabil. Res. 2023, 67, 880–892. [Google Scholar] [CrossRef]
- Maris, M.; Verhulst, S.; Wojciechowski, M.; Van de Heyning, P.; Boudewyns, A. Sleep problems and obstructive sleep apnea in children with down syndrome, an overwiew. Int. J. Pediatr. Otorhinolaryngol. 2016, 82, 12–15. [Google Scholar] [CrossRef]
- Santos, R.A.; Costa, L.H.; Linhares, R.C.; Pradella-Hallinan, M.; Coelho, F.M.S.; Oliveira, G.D.P. Sleep disorders in Down syndrome: A systematic review. Arq. Neuropsiquiatr. 2022, 80, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Stores, R.J. Sleep problems in adults with Down syndrome and their family carriers. J. Appl. Res. Intellect. Disabil. 2019, 32, 831–840. [Google Scholar] [CrossRef]
- Esbensen, A.J.; Hoffman, E.K. Impact of sleep on executive functioning in school-age children with Down syndrome. J. Intellect. Disabil. Res. 2018, 62, 569–580. [Google Scholar] [CrossRef]
- Bai, X.; Li, X.; Ding, S.; Dai, D. Adherence to the Mediterranean diet and risk of gastric cancer: A systematic review and meta-analysis. Nutrients 2023, 1, 3826. [Google Scholar] [CrossRef]
- López-Gil, J.F.; García-Hermoso, A.; Martínez-González, M.Á.; Rodríguez-Artalejo, F. Mediterranean diet and cardiometabolic biomarkers in children and adolescents: A systematic review and meta-analysis. JAMA Netw. Open. 2024, 1, e2421976. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean diet on chronic non-communicable diseases and longevity. Nutrients 2021, 12, 2028. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean diet in healthy aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Siervo, M.; Shannon, O.M.; Llewellyn, D.J.; Stephan, B.C.; Fontana, L. Mediterranean diet and cognitive function: From methodology to mechanisms of action. Free Radic. Biol. Med. 2021, 20, 105–117. [Google Scholar] [CrossRef] [PubMed]
- AbdAllah, A.M.; Sarah, R.; Alaidaroos, T.; Obaid, R.; Abuznada, J. Nutritional status of some children and adolescents with down syndrome in Jeddah. Life Sci. J. 2013, 10, 1310–1318. [Google Scholar]
- Frazier, J.B.; Friedman, B. Swallow function in children with down syndrome: A retrospective study. Dev. Med. Child. Neurol. 1996, 38, 695–703. [Google Scholar] [CrossRef]
- Pecoraro, L.; Solfa, M.; Ferron, E.; Mirandola, M.; Lauriola, S.; Piacentini, G.; Pietrobelli, A. Mediterranean diet and physical activity in Down syndrome pediatric subjects: The DONUT STUDY. Int. J. Food Sci. Nutr. 2022, 77, 973–980. [Google Scholar] [CrossRef]
- Iaccarino Idelson, P.; Scalfi, L.; Valerio, G. Adherence to the Mediterranean diet in children and adolescents: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 283–299. [Google Scholar] [CrossRef]
- García Cabrera, S.; Herrera Fernández, N.; Rodríguez Hernández, C.; Nissensohn, M.; Román-Viñas, B.; Serra-Majem, L. KIDMED test; prevalence of low adherence to the Mediterranean diet in children and young: A systematic review. Nutr. Hosp. 2015, 1, 2390–2399. [Google Scholar]
- Romero-Robles, M.A.; Cami-Bernal, F.; Ortiz-Benique, Z.N.; Pinto-Ruiz, D.F.; Benites-Zapata, V.A.; Casas Patiño, D. Adherence to Mediterranean diet associated with health-related quality of life in children and adolescents: A systematic review. BMC Nutr. 2022, 23, 57. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M.; Molina Vila, M.D.; Reig García-Galbis, M. Evidences from clinical trials in Down syndrome: Diet, exercise and body composition. Int. J. Environ. Res. Public Health. 2020, 16, 4294. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Gensous, N.; Bacalini, M.G.; Conte, M.; Salvioli, S. Accelerated bio-cognitive aging in Down syndrome: State of the art and possible deceleration strategies. Aging Cell 2019, 18, e12903. [Google Scholar] [CrossRef] [PubMed]
- Basil, J.S.; Santoro, S.L.; Martin, L.J.; Healy, K.W.; Chini, B.A.; Saal, H.M. Retrospective study of obesity in children with down syndrome. J. Pediatr. 2016, 173, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Leti, T.; Guinot, M.; Favre-Juvin, A.; Bricout, V.A. Difference of catecholamine responses to exercise in men with trisomy 21, with or without chronotropic incompetence. Physiol. Behav. 2015, 142, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Ribas, L.; Koebnick, C.; Funtikova, A.; Gomez, S.F.; Fíto, M.; Perez-Rodrigo, C.; Serra-Majem, L. Prevalence of abdominal obesity in Spanish children and adolescents. PLoS ONE 2014, 27, e87549. [Google Scholar]
- Agostinis-Sobrinho, C.; Gómez-Martínez, S.; Nova, E.; Hernandez, A.; Labayen, I.; Kafatos, A.; Gottand, F.; Molnár, D.; Ferrari, M.; Moreno, L.A.; et al. Lifestyle patterns and endocrine, metabolic, and immunological biomarkers in European adolescents: The HELENA study. Pediatr. Diabetes 2019, 20, 23–31. [Google Scholar] [CrossRef]
- Pinto, A.J.; Bergouignan, A.; Dempsey, P.C.; Roschel, H.; Owen, N.; Gualano, B.; Dunstan, D.W. Physiology of sedentary behavior. Physiol. Rev. 2023, 1, 2561–2622. [Google Scholar] [CrossRef]
- Pascoe, M.; Bailey, A.P.; Craike, M.; Carter, T.; Patten, R.; Stepto, N.; Parker, A. Physical activity and exercise in youth mental health promotion: A scoping review. BMJ Open Sport. Exerc. Med. 2020, 6, e000677. [Google Scholar] [CrossRef]
- Cushing, P.; Spear, D.; Novak, P.; Rosenzweig, L.; Wallace, L.S.; Conway, C.; Wittenbrook, W.; Lemons, S.; Medlen, J.G. Academy of Nutrition and Dietetics: Standards of practice and standards of professional performance for registered dietitians (competent, proficient, and expert) in intellectual and developmental disabilities. J. Acad. Nutr. Diet. 2012, 112, 1454–1464. [Google Scholar] [CrossRef]
- Pereira-Da-Silva, L.; Rego, C.; Pietrobelli, A. The diet of preschool children in the Mediterranean countries of the European Union: A systematic review. Int. J. Environ. Res. Public Health 2016, 13, 572. [Google Scholar] [CrossRef]
- Calcaterra, V.; Vandoni, M.; Rossi, V.; Berardo, C.; Grazi, R.; Cordaro, E.; Tranfaglia, V.; Carnevale Pellino, V.; Cereda, C.; Zuccotti, G. Use of physical activity and exercise to reduce inflammation in children and adolescents with obesity. Int. J. Environ. Res. Public Health 2022, 5, 6908. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xu, X. Independent and combined associations of physical activity and screen time with biomarkers of inflammation in children and adolescents with overweight/obesity. Pediatr. Exerc. Sci. 2024, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Haapala, E.A.; Väistö, J.; Ihalainen, J.K.; González, C.T.; Leppänen, M.H.; Veijalainen, A.; Sallinen, T.; Eloranta, A.M.; Ekelund, U.; Schwab, U.; et al. Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children. Eur. J. Sport Sci. 2022, 22, 906–915. [Google Scholar] [CrossRef] [PubMed]
- West, S.L.; Banks, L.; Schneiderman, J.E.; Caterini, J.E.; Stephens, S.; White, G.; Dogra, S.; Wells, G.D. Physical activity for children with chronic disease: A narrative review and practical applications. BMC Pediatr. 2019, 8, 12. [Google Scholar] [CrossRef]
- Medeiros-Oliveira, V.C.; Viana, R.S.; Oliveira, A.C.; Nascimento-Ferreira, M.V.; De Moraes, A.C.F. Are sleep time and quality associated with inflammation in children and adolescents? A systematic review. Prev. Med. Rep. 2023, 17, 102327. [Google Scholar] [CrossRef]
Main Characteristics | Cluster 1 n = 32 | Cluster 2 n = 10 | Cluster 3 n = 41 | * p-Value |
---|---|---|---|---|
Sex | ||||
Female n (%) | 14 (43.8) | 4 (40) | 14 (34.2) | 0.473 |
Male n (%) | 18 (56.2) | 6 (60) | 27 (65.8) | |
Mean (SD) | Mean (SD) | Mean (SD) | ||
Age (years) | 14.9 (2.1) | 15.4 (2.3) | 15.6 (2.7) | 0.359 |
MVPA (minutes/day) | 34.0 (16.8) | 75.5 (15.3) | 44.8 (18.2) | 0.000 |
Screen time (minutes/day) | 162.1 (75.5) | 112.7 (72.5) | 110.2 (75.7) | 0.004 |
Sleep time (hours/day) | 10.0 (0.8) | 9.2 (0.6) | 9.8 (0.5) | 0.001 |
AMD | 6.9 (1.6) | 6.9 (0.7) | 8.8 (1.4) | 0.000 |
Abdominal obesity (WtHR) | 0.51 (0.6) | 0.51 (0.7) | 0.48 (0.4) | 0.004 |
Blood Variables | Cluster 1 | Cluster 2 | Cluster 3 | * p-Value | |||
---|---|---|---|---|---|---|---|
n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | ||
Red blood × 106 cells/mm3 | 30 | 4.4 (0.5) | 7 | 4.7 (0.3) | 37 | 4.5 (0.5) | 0.349 |
Haematocrit % | 30 | 42.7 (5.2) | 7 | 45.0 (2.5) | 37 | 43.8 (5.3) | 0.330 |
MCV fL | 30 | 97.2 (4.8) | 7 | 96.0 (3.3) | 37 | 96.7 (4.1) | 0.608 |
RDW % | 30 | 13.8 (1.5) | 7 | 14.3 (1.3) | 37 | 13.7 (1.1) | 0.556 |
Haemoglobin g/dL | 30 | 14.0 (1.7) | 7 | 14.8 (0.9) | 37 | 14.4 (1.844) | 0.351 |
HCM pg | 30 | 31.8 (1.4) | 7 | 31.6 (0.8) | 37 | 31.8 (1.6) | 0.912 |
CHCM g/dL | 30 | 32.7 (1.0) | 7 | 33.0 (1.3) | 37 | 32.9 (1.2) | 0.619 |
Leukocytes × 103 cells/mm3 | 30 | 4.9 (1.7) | 7 | 5.3 (2.2) | 37 | 5.4 (1.7) | 0.209 |
Lymphocytes × 103 cells/mm3 | 30 | 1.8 (1.4) | 7 | 1.7 (0.5) | 37 | 2.0 (0.7) | 0.120 |
Neutrophils × 103 cells/mm3 | 30 | 2.5 (0.9) | 7 | 3.0 (1.8) | 37 | 2.7 (1.2) | 0.709 |
Monocytes × 103 cells/mm3 | 30 | 0.4 (0.2) | 7 | 0.4 (0.2) | 37 | 0.4 (0.2) | 0.537 |
Basophils × 103 cells/mm3 | 30 | 0.05 (0.05) | 7 | 0.07 (0.05) | 37 | 0.07 (0.05) | 0.230 |
Eosinophils × 103 cells/mm3 | 30 | 0.14 (0.14) | 7 | 0.16 (0.16) | 37 | 0.16 (0.17) | 0.599 |
Platelets × 103 cells/mm3 | 30 | 246.3 (90.4) | 7 | 226.0 (42.8) | 37 | 260.4 (58.1) | 0.305 |
Glucose mg/dL | 30 | 87.2 (8.2) | 8 | 80.9 (9.3) | 38 | 84.5 (8.4) | 0.410 |
Triglycerides mg/dL | 30 | 77.4 (19.7) a | 8 | 56.0 (12) b | 38 | 70.8 (31.7) b | 0.015 |
Total Chol mg/dL | 30 | 160.2 (26.4) | 8 | 137.7 (19.9) | 38 | 148.9 (26.8) | 0.053 |
HDL-Chol mg/dL | 30 | 44.1 (6.9) | 8 | 43.1 (10.9) | 38 | 44.9 (9.0) | 0.837 |
LDL-Chol mg/dL | 30 | 100.6 (23.3) a | 8 | 83.3 (14.4) a,b | 38 | 89.9 (22.7) b | 0.048 |
CRP mg/L | 30 | 3.62 (9.60) | 8 | 2.99 (4.62) | 38 | 4.16 (9.53) | 0.564 |
C3 mg/dL | 30 | 121.3 (20.4) | 8 | 107.2 (19.0) | 38 | 118.9 (24.4) | 0.518 |
C4 mg/dL | 30 | 30.5 (9.2) | 8 | 27.0 (5.8) | 38 | 28.6 (10.0) | 0.395 |
IL-6 pg/mL | 30 | 38.0 (41.3) | 8 | 28.3 (18.6) | 38 | 38.4 (56.1) | 0.719 |
Leptin × 103 pg/mL | 26 | 11.6 (14.5) | 8 | 5.9 (4) | 33 | 6.4 (6.8) | 0.148 |
Adiponectin × 106 pg/mL | 30 | 10.6 (5.5) | 8 | 12.8 (5.5) | 38 | 12.0 (5.2) | 0.335 |
Galactin 3 × 103 pg/mL | 29 | 2.8 (1.7) a | 8 | 1.2 (758.5) b | 36 | 2.4 (1.5) a | 0.010 |
Cortisol × 105 pg/mL | 29 | 1.6 (0.73) | 8 | 1.5 (0.86) | 36 | 1.9 (0.96) | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez-Hervas, A.; Nova, E.; Izquierdo-Gómez, R.; Veiga, Ó.L.; Padilla, C.; Castro-Piñero, J.; Marcos, A.; Gómez-Martínez, S. Association Between Lifestyle Patterns and Abdominal Obesity with Biochemical and Inflammatory Biomarkers in Adolescents with Down Syndrome: The UP&DOWN Study. Nutrients 2024, 16, 3884. https://doi.org/10.3390/nu16223884
Gutierrez-Hervas A, Nova E, Izquierdo-Gómez R, Veiga ÓL, Padilla C, Castro-Piñero J, Marcos A, Gómez-Martínez S. Association Between Lifestyle Patterns and Abdominal Obesity with Biochemical and Inflammatory Biomarkers in Adolescents with Down Syndrome: The UP&DOWN Study. Nutrients. 2024; 16(22):3884. https://doi.org/10.3390/nu16223884
Chicago/Turabian StyleGutierrez-Hervas, Ana, Esther Nova, Rocío Izquierdo-Gómez, Óscar L. Veiga, Carmen Padilla, José Castro-Piñero, Ascensión Marcos, and Sonia Gómez-Martínez. 2024. "Association Between Lifestyle Patterns and Abdominal Obesity with Biochemical and Inflammatory Biomarkers in Adolescents with Down Syndrome: The UP&DOWN Study" Nutrients 16, no. 22: 3884. https://doi.org/10.3390/nu16223884
APA StyleGutierrez-Hervas, A., Nova, E., Izquierdo-Gómez, R., Veiga, Ó. L., Padilla, C., Castro-Piñero, J., Marcos, A., & Gómez-Martínez, S. (2024). Association Between Lifestyle Patterns and Abdominal Obesity with Biochemical and Inflammatory Biomarkers in Adolescents with Down Syndrome: The UP&DOWN Study. Nutrients, 16(22), 3884. https://doi.org/10.3390/nu16223884