Appendicular Skeletal Muscle Mass (ASMM) and Fat-Free Mass (FFM) DXA–BIA Estimations for the Early Identification of Sarcopenia/Low Muscle Mass in Middle-Aged Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessments
- -
- Through DXA, by dual X-ray densitometer with the use of a Lunar Prodigy DXA (GE Medical Systems, Milwaukee, WI, USA). Such a method yields bone mineral content (BMC), lean mass, and appendicular lean soft tissue (ALST);
- -
- Through BIA, using BIA 101 BIVA PRO bioelectrical impedance analyser (Akern Srl, Pontassieve, Italy) and Bodygram Dashboard® Software, that besides other body compartments, yields the targeted body composition estimates such as fat- free mass (FFM) and appendicular skeletal muscle mass (ASMM). The technique involves the volunteer lying down for a few minutes, with their limbs slightly apart. The instrument, through electrodes placed on different areas of the body, injects a mild current of low intensity and constant frequency (250 µA and 50 kHz) that cannot be felt by the subject and is completely non-harmful (BIA 101 BIVA PRO Model Manual reference). Following standard methods established by the National Institutes of Health [15], each participant was requested to remove any metal objects and was then measured while wearing only pants, being careful to ensure participants had an empty bladder and skin free of oils or body lotions. Bioelectrical tissue values were measured on the right hemisoma between the ipsilateral wrist and anklebone prominences (metatarsus–metacarpus area) while the participants were lying on their backs on a medical non-conductive surface (bed). There was 5 cm separating each pair of electrodes.
2.2. Comparison of DXA and BIA
- -
- Kyle et al. (2003) [17] (246 men and 198 women aged 22–94 years) = −4.211 + (0.267 height2/resistance) + (0.095 × weight) +(1.909 × sex) + (−0.012 × age) + (0.058 × reactance) (men = 1, women = 0);
- -
- Sergi et al. (2015) [18] (296 subjects over 60, mean age 71.4 ± 5.4) = −3.964 + (0.227 × RI) + (0.095 × weight) + (1.384 × sex) + (0.064 × Xc) (women = 0; men = 1);
- -
- Scafoglieri et al. (2017) [19] (291 patients older than 65 years of age and if they had body mass index (BMI) between 20 and 30) = 1.821 + (0.168 × height2/resistance) + (0.132 × weight) + (0.017 × reactance) − (1.931 × sex) (women = 1; men = 0).In relation to the whole body, researchers compared the fat-free mass (FFM) obtained by DXA (Bone Mineral Content (BMC) + Lean Mass (LM)) with the estimation of fat-free mass (FFM) obtained by BIA through the following equations:
- -
- Kanellakis et al. (2020) [20] (694 Greek adults, 429 women and 265 men aged 40.36 ± 15.221 years) FFM (kg) = 12.299 + (0.164 × Weight (kg)) + (7.287 × Gender) − (0.116 × Resistance (ohm)/Height (m)2) + (0.365 × Reactance (ohm)/Height (m)2) + (21.570 × Height (m)) (female = 0, male = 1);
- -
- Bodygram Dashboard® FFM equation (Akern Srl).
2.3. Statistical Analyses
3. Results
3.1. Descriptive Analysis
3.2. Correlation Between DXA and BIA
3.3. DXA–BIA Agreement: Bland–Altman Plot
3.3.1. Kyle et al. (2003) and ALST (DXA)
3.3.2. Sergi et al. (2015) and ALST (DXA)
3.3.3. Scafoglieri et al. (2017) and ALST (DXA)
3.3.4. Kanellakis et al. (2020) and FFM (DXA)
3.3.5. Bodygram Dashboard® and FFM (DXA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenberg, I.H. Sarcopenia: Origins and Clinical Relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef]
- Kirk, B.; Cawthon, P.M.; Arai, H.; Ávila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53, afae052. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of Sarcopenia in the World: A Systematic Review and Meta- Analysis of General Population Studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Ethgen, O.; Beaudart, C.; Buckinx, F.; Bruyère, O.; Reginster, J.Y. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif. Tissue Int. 2017, 100, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Alhmly, H.F.; Fielding, R.A. A Critical Review of Current Worldwide Definitions of Sarcopenia. Calcif. Tissue Int. 2024, 114, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global Prevalence of Sarcopenia and Severe Sarcopenia: A Systematic Review and Meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results from the Milan EXPO Survey. J. Am. Med. Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Martone, A.M.; Salini, S.; Zazzara, M.B.; Candeloro, M.; Coelho-Junior, H.J.; Tosato, M.; Picca, A.; Marzetti, E. Normative Values of Muscle Strength across Ages in a ‘Real World’ Population: Results from the Longevity Check-up 7+ Project. J. Cachexia Sarcopenia Muscle 2020, 11, 1562–1569. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Nair, K.S. Age-Related Changes in Muscle. Mayo Clin. Proc. 2000, 75, S14–S18. [Google Scholar] [CrossRef]
- Ilich, J.Z.; Kelly, O.J.; Inglis, J.E.; Panton, L.B.; Duque, G.; Ormsbee, M.J. Interrelationship among Muscle, Fat, and Bone: Connecting the Dots on Cellular, Hormonal, and Whole Body Levels. Ageing Res. Rev. 2014, 15, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wu, Q. Association between the Systemic Immune-Inflammation Index and Sarcopenia: A Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2024, 19, 314. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Coratella, G.; Cerullo, G.; Noriega, Z.; Francisco, R.; Charrier, D.; Irurtia, A.; Lukaski, H.; Silva, A.M.; Paoli, A. High-Standard Predictive Equations for Estimating Body Composition Using Bioelectrical Impedance Analysis: A Systematic Review. J. Transl. Med. 2024, 22, 515. [Google Scholar] [CrossRef] [PubMed]
- Paoli, A.; Campa, F. Problems and Opportunities in the Use of Bioelectrical Impedance Analysis for Assessing Body Composition During Ketogenic Diets: A Scoping Review. Curr. Obes. Rep. 2024, 13, 496–509. [Google Scholar] [CrossRef]
- Conference, N.A. Bioelectrical Impedance Analysis in Body Composition Measurement: National Institutes of Health Technology Assessment Conference Statement. Am. J. Clin. Nutr. 1996, 64, 524S–532S. [Google Scholar] [CrossRef]
- ISO 7250-1:2017; Basic Human Body Measurements for Technological Design Body Measurement Definitions and Landmarks. ISO: Geneva, Switzerland, 2017.
- Kyle, U.G.; Genton, L.; Hans, D.; Pichard, C. Validation of a Bioelectrical Impedance Analysis Equation to Predict Appendicular Skeletal Muscle Mass (ASMM). Clin. Nutr. 2003, 22, 537–543. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing Appendicular Skeletal Muscle Mass with Bioelectrical Impedance Analysis in Free-Living Caucasian Older Adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef]
- Scafoglieri, A.; Clarys, J.P.; Bauer, J.M.; Verlaan, S.; Van Malderen, L.; Vantieghem, S.; Cederholm, T.; Sieber, C.C.; Mets, T.; Bautmans, I. Predicting Appendicular Lean and Fat Mass with Bioelectrical Impedance Analysis in Older Adults with Physical Function Decline—The PROVIDE Study. Clin. Nutr. 2017, 36, 869–875. [Google Scholar] [CrossRef]
- Kanellakis, S.; Skoufas, E.; Karaglani, E.; Ziogos, G.; Koutroulaki, A.; Loukianou, F.; Michalopoulou, M.; Gkeka, A.; Marikou, F.; Manios, Y. Development and Validation of a Bioelectrical Impedance Prediction Equation Estimating Fat Free Mass in Greek—Caucasian Adult Population. Clin. Nutr. ESPEN 2020, 36, 166–170. [Google Scholar] [CrossRef]
- Campa, F.; Coratella, G.; Cerullo, G.; Stagi, S.; Paoli, S.; Marini, S.; Grigoletto, A.; Moroni, A.; Petri, C.; Andreoli, A.; et al. New Bioelectrical Impedance Vector References and Phase Angle Centile Curves in 4,367 Adults: The Need for an Urgent Update after 30 Years. Clin. Nutr. 2023, 42, 1749–1758. [Google Scholar] [CrossRef]
- Rathnayake, N.; Alwis, G.; Lenora, J.; Lekamwasam, S. Associations between Body Composition and Cardiovascular Disease Risk in Pre- and Postmenopausal Women. J. Health Popul. Nutr. 2023, 42, 110. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of Bioelectrical Impedance Analysis Prediction Equations for Body Composition with the Use of a Multicomponent Model for Use in Epidemiologic Surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Zhai, H.; Wang, L.; Wei, H.; Hou, S. The efficacy of different interventions in the treatment of sarcopenia in middle-aged and elderly people: A network meta-analysis. Medicine 2023, 102, e34254. [Google Scholar] [CrossRef] [PubMed]
Total Sample (n = 79) | 40–55 Years Old (n = 38) | 56–70 Years Old (n = 41) | p | ||||
---|---|---|---|---|---|---|---|
Mean | St. Dev. | Mean | St. Dev. | Mean | St. Dev | ||
Age (years) | 55.68 | 7.94 | 48.84 | 4.68 | 62.02 | 4.13 | <0.001 |
Stature (cm) | 158.62 | 6.25 | 159.73 | 6.77 | 157.6 | 5.61 | 0.13 |
Weight (kg) | 66.61 | 12.49 | 65.05 | 9.84 | 68.05 | 14.49 | 0.28 |
BMI (kg/m2) | 26.59 | 5.37 | 25.62 | 4.4 | 27.49 | 6.05 | 0.12 |
Rz (ohm) | 542.06 | 68.55 | 539.8 | 66.33 | 544.16 | 71.3 | 0.78 |
Xc (ohm) | 51.7 | 6.58 | 52.87 | 6.32 | 50.62 | 6.7 | 0.12 |
PA (°) | 5.48 | 0.58 | 5.63 | 0.63 | 5.34 | 0.49 | <0.05 |
FFM (DXA) (kg) | 40.41 | 5.26 | 40.87 | 5.27 | 39.99 | 5.28 | 0.46 |
ALST (kg) | 19.29 | 2.87 | 19.61 | 2.85 | 19.01 | 2.88 | 0.35 |
ASMM Lunar (Scafoglieri et al., 2017) [19] (kg) | 17.48 | 2.45 | 17.43 | 2.11 | 17.53 | 2.76 | 0.86 |
ASMM (Kyle et al., 2003) [17] (kg) | 17.04 | 2.52 | 17.25 | 2.3 | 16.84 | 2.72 | 0.47 |
ASMM (Sergi et al., 2015) [18] (kg) | 16.38 | 2.24 | 16.49 | 2.03 | 16.28 | 2.44 | 0.68 |
FFM (Kanellakis et al., 2020) [20] (kg) | 39.89 | 4.86 | 40.4 | 4.52 | 39.43 | 5.16 | 0.38 |
FFM Bodygram Dashboard (kg) | 45.73 | 4.86 | 46.04 | 4.51 | 45.45 | 5.2 | 0.60 |
Menopause (n = 56) | No Menopause (n = 23) | p | |||
---|---|---|---|---|---|
Mean | St. Dev. | Mean | St. Dev. | ||
Age (years) | 59.2 | 6 | 47.13 | 5.07 | <0.001 |
Stature (cm) | 157.94 | 5.91 | 160.29 | 6.86 | 0.13 |
Weight (kg) | 66.65 | 12.43 | 66.5 | 12.91 | 0.96 |
BMI (kg/m2) | 26.85 | 5.48 | 25.95 | 5.16 | 0.5 |
Rz (ohm) | 550.05 | 68.1 | 522.61 | 67.14 | 0.11 |
Xc (ohm) | 51.37 | 6.74 | 52.52 | 6.23 | 0.48 |
PA (°) | 5.36 | 0.55 | 5.77 | 0.54 | <0.01 |
FFM (DXA) (kg) | 39.56 | 4.57 | 42.48 | 6.28 | 0.05 |
ALST (kg) | 18.75 | 2.38 | 20.63 | 3.51 | <0.05 |
ASMM Lunar (Scafoglieri et al., 2017) [19] (kg) | 17.29 | 2.31 | 17.96 | 2.76 | 0.27 |
ASMM (Kyle et al., 2003) [17] (kg) | 16.67 | 2.3 | 17.94 | 2.85 | <0.05 |
ASMM (Sergi et al., 2015) [18] (kg) | 16.1 | 2.06 | 17.06 | 2.55 | 0.08 |
FFM (Kanellakis et al., 2020) [20] (kg) | 39.19 | 4.68 | 41.62 | 4.94 | <0.05 |
FFM Bodygram Dashboard (kg) | 45.09 | 4.44 | 47.31 | 5.53 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, A.; Gasparri, C.; Perna, S.; Rondanelli, M.; Micheletti Cremasco, M. Appendicular Skeletal Muscle Mass (ASMM) and Fat-Free Mass (FFM) DXA–BIA Estimations for the Early Identification of Sarcopenia/Low Muscle Mass in Middle-Aged Women. Nutrients 2024, 16, 3897. https://doi.org/10.3390/nu16223897
Moroni A, Gasparri C, Perna S, Rondanelli M, Micheletti Cremasco M. Appendicular Skeletal Muscle Mass (ASMM) and Fat-Free Mass (FFM) DXA–BIA Estimations for the Early Identification of Sarcopenia/Low Muscle Mass in Middle-Aged Women. Nutrients. 2024; 16(22):3897. https://doi.org/10.3390/nu16223897
Chicago/Turabian StyleMoroni, Alessia, Clara Gasparri, Simone Perna, Mariangela Rondanelli, and Margherita Micheletti Cremasco. 2024. "Appendicular Skeletal Muscle Mass (ASMM) and Fat-Free Mass (FFM) DXA–BIA Estimations for the Early Identification of Sarcopenia/Low Muscle Mass in Middle-Aged Women" Nutrients 16, no. 22: 3897. https://doi.org/10.3390/nu16223897
APA StyleMoroni, A., Gasparri, C., Perna, S., Rondanelli, M., & Micheletti Cremasco, M. (2024). Appendicular Skeletal Muscle Mass (ASMM) and Fat-Free Mass (FFM) DXA–BIA Estimations for the Early Identification of Sarcopenia/Low Muscle Mass in Middle-Aged Women. Nutrients, 16(22), 3897. https://doi.org/10.3390/nu16223897