Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethics
2.3. Screening and Baseline Assessments
2.4. Randomisation and Blinding
2.5. Intervention and Monitoring
2.6. Outcome Measures
2.7. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Differences in Outcomes Between Treatment Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Xourafa, G.; Korbmacher, M.; Roden, M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024, 20, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef]
- Dludla, P.V.; Mabhida, S.E.; Ziqubu, K.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Hanser, S.; Basson, A.K.; Pheiffer, C.; Kengne, A.P. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J. Diabetes 2023, 14, 130. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; De Courten, M.P.; Stojanovska, L.; Blatch, G.L.; Tangalakis, K.; De Courten, B. The complex immunological and inflammatory network of adipose tissue in obesity. Mol. Nutr. Food Res. 2016, 60, 43–57. [Google Scholar] [CrossRef]
- Vozarova, B.; Weyer, C.; Lindsay, R.S.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002, 51, 455–461. [Google Scholar] [CrossRef]
- Liu, C.; Feng, X.; Li, Q.; Wang, Y.; Li, Q.; Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine 2016, 86, 100–109. [Google Scholar] [CrossRef]
- Kartika, R.; Purnamasari, D.; Pradipta, S.; Larasati, R.A.; Wibowo, H. Impact of low interferon-γ and il-10 levels on tnf-α and il-6 production by pha-induced pbmcs in type 2 diabetes mellitus. J. Inflamm. Res. 2020, 13, 187–193. [Google Scholar] [CrossRef]
- Vozarova, B.; Weyer, C.; Hanson, K.; Tataranni, P.A.; Bogardus, C.; Pratley, R.E. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes. Res. 2001, 9, 414–417. [Google Scholar] [CrossRef]
- Stefan, N.; Vozarova, B.; Del Parigi, A.; Ossowski, V.; Thompson, D.B.; Hanson, R.; Ravussin, E.; Tataranni, P. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: Influence on energy expenditure, physical activity and lipid metabolism. Int. J. Obes. 2002, 26, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, C.-M.; Kim, H. The Interplay of Adipokines and Pancreatic Beta Cells in Metabolic Regulation and Diabetes. Biomedicines 2023, 11, 2589. [Google Scholar] [CrossRef] [PubMed]
- Cesak, O.; Vostalova, J.; Vidlar, A.; Bastlova, P.; Student, V., Jr. Carnosine and Beta-Alanine Supplementation in Human Medicine: Narrative Review and Critical Assessment. Nutrients 2023, 15, 1770. [Google Scholar] [CrossRef] [PubMed]
- Rezzani, R.; Favero, G.; Ferroni, M.; Lonati, C.; Moghadasian, M.H. A carnosine analog with therapeutic potentials in the treatment of disorders related to oxidative stress. PLoS ONE 2019, 14, e0215170. [Google Scholar] [CrossRef]
- Lee, Y.-t.; Hsu, C.-c.; Lin, M.-h.; Liu, K.-s.; Yin, M.-c. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur. J. Pharmacol. 2005, 513, 145–150. [Google Scholar] [CrossRef]
- Tsai, S.-J.; Kuo, W.-W.; Liu, W.-H.; Yin, M.-C. Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J. Agric. Food Chem. 2010, 58, 11510–11516. [Google Scholar] [CrossRef]
- Al-Rasheed, N.M.; Fadda, L.; Mohamed, A.M.; Attia, H.A.; Al-Rasheed, N.M. Regulating effect of carnosine and/or l-arginine on the expression of inflammatory molecules induced nephropathy in the hypoxic rat model. Braz. Arch. Biol. Technol. 2016, 59, e16150622. [Google Scholar] [CrossRef]
- Al-Sawalha, N.A.; Alshogran, O.Y.; Awawdeh, M.S.; Almomani, B.A. The effects of l-Carnosine on development of metabolic syndrome in rats. Life Sci. 2019, 237, 116905. [Google Scholar] [CrossRef]
- Saadati, S.; Kabthymer, R.H.; Aldini, G.; Mousa, A.; Feehan, J.; de Courten, B. Effects of carnosine and histidine-containing dipeptides on biomarkers of inflammation and oxidative stress: A systematic review and meta-analysis. Nutr. Rev. 2023, 82, 1696–1709. [Google Scholar] [CrossRef]
- Baye, E.; Ukropec, J.; De Courten, M.P.; Mousa, A.; Kurdiova, T.; Johnson, J.; Wilson, K.; Plebanski, M.; Aldini, G.; Ukropcova, B. Carnosine supplementation improves serum resistin concentrations in overweight or obese otherwise healthy adults: A pilot randomized trial. Nutrients 2018, 10, 1258. [Google Scholar] [CrossRef] [PubMed]
- De Courten, B.; Jakubova, M.; De Courten, M.P.; Kukurova, I.J.; Vallova, S.; Krumpolec, P.; Valkovic, L.; Kurdiova, T.; Garzon, D.; Barbaresi, S. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity 2016, 24, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Houjeghani, S.; Kheirouri, S.; Faraji, E.; Jafarabadi, M.A. L-Carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products, and tumor necrosis factor–α levels in patients with type 2 diabetes: A double-blind placebo-controlled randomized clinical trial. Nutr. Res. 2018, 49, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Cantín, M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Reviewing the latest version. Int. J. Med. Surg. Sci. 2014, 1, 339–346. [Google Scholar] [CrossRef]
- Baye, E.; Menon, K.; De Courten, M.P.; Earnest, A.; Cameron, J.; De Courten, B. Does supplementation with carnosine improve cardiometabolic health and cognitive function in patients with pre-diabetes and type 2 diabetes? study protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open 2017, 7, e017691. [Google Scholar] [CrossRef]
- Chan, A.-W.; Tetzlaff, J.M.; Gøtzsche, P.C.; Altman, D.G.; Mann, H.; Berlin, J.A.; Dickersin, K.; Hróbjartsson, A.; Schulz, K.F.; Parulekar, W.R. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trials. Bmj 2013, 346, e7586. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. J. Pharmacol. Pharmacother. 2010, 1, 100–107. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Hariharan, R.; Cameron, J.; Menon, K.; Mesinovic, J.; Jansons, P.; Scott, D.; Lu, Z.X.; de Courten, M.; Feehan, J.; de Courten, B. Carnosine supplementation improves glucose control in adults with pre-diabetes and type 2 diabetes: A randomised controlled trial. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 485–496. [Google Scholar] [CrossRef]
- Saadati, S.; Cameron, J.; Menon, K.; Hodge, A.; Lu, Z.X.; de Courten, M.; Feehan, J.; de Courten, B. Carnosine Did Not Affect Vascular and Metabolic Outcomes in Patients with Prediabetes and Type 2 Diabetes: A 14-Week Randomized Controlled Trial. Nutrients 2023, 15, 4835. [Google Scholar] [CrossRef]
- Panickar, K.S.; DeBey, M.C.; Jewell, D.E. Dietary carnitine and carnosine increase body lean in healthy cats in a preliminary study. Biology 2021, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- Iacobini, C.; Menini, S.; Blasetti Fantauzzi, C.; Pesce, C.M.; Giaccari, A.; Salomone, E.; Lapolla, A.; Orioli, M.; Aldini, G.; Pugliese, G. FL-926-16, a novel bioavailable carnosinase-resistant carnosine derivative, prevents onset and stops progression of diabetic nephropathy in db/db mice. Br. J. Pharmacol. 2018, 175, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Trushina, E.; Riger, N.; Timonin, A.; Devyatov, A.; Aksenov, I.; Tutelyan, V. Evaluation of the regulatory effect of carnosine and alpha-lipoic acid on the cytokine profile of the cerebral cortex of Wistar rats under induced obesity. Obes. Metab. 2023, 20, 22–33. [Google Scholar] [CrossRef]
- Zhu, N.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Hoogeveen, R.C.; Pereira, M.; Duncan, B.B.; Schmidt, M.I.s. High-molecular-weight adiponectin and the risk of type 2 diabetes in the ARIC study. J. Clin. Endocrinol. Metab. 2010, 95, 5097–5104. [Google Scholar] [CrossRef]
Characteristic | Placebo Group (n = 22) | Carnosine Group (n = 19) |
---|---|---|
Age, years | 50.2 (42.1, 59.3) a | 54.5 (45.4, 59.5) |
Female, n [%] | 6 (27.3) | 6 (31.6) |
Caucasian | 11 (50) | 8 (42.1) |
South and Central Asian | 4 (18.2) | 5 (26.3) |
Southeast and Northeast Asian | 6 (27.3) | 4 (21) |
Other b | 1 (4.5) | 2 (10.5) |
Prediabetic, n [%] | 11 (50) | 11 (57.9) |
Diabetic, n [%] | 11 (50) | 8 (42.1) |
Obese (BMI > 30 [kg/m2]), n [%] | 5 (22.7) | 9 (47.4) |
Family history of diabetes c, n [%] | 4 (18.2) | 5 (26.3) |
Treated with metformin, n [%] | 9 (40.9) | 7 (36.8) |
Total energy d [KJ] | 8095.5 ± 1315.5 | 8439.5 ± 1974.5 |
Physical activity, IPAQ-METS score e | 1359 (426, 3508.3) | 1816 (817.5, 4878) |
Weight, [kg] | 83.5 ± 12.2 | 86.7 ± 23.9 |
Height, [cm] | 169.8 ± 9.8 | 170.1 ± 10.5 |
BMI, [kg/m2] | 28.9 ± 3.1 | 29.9 ± 4.9 |
WC, [cm] | 99 ± 8.8 | 102.2 ± 14.8 |
Percentage of body fat [%] | 36.6 ± 7.2 | 35.8 ± 7.7 |
Visceral adipose tissue [kg] | 154.6 ± 44.9 | 140.8 ± 34.8 |
HbA1c, [%] | 6.7 ± 0.8 | 6.5 ± 0.6 |
Outcome Variable | Placebo Group (n = 22) | Carnosine Group (n = 19) | p1 | p2 | ||||
---|---|---|---|---|---|---|---|---|
Baseline | Follow-Up | Change | Baseline | Follow-Up | Change | |||
Adiponectin, [μg/mL] | 9.1 ± 3.3 | 8.2 ± 4.2 | −0.9 ± 2.9 | 9.5 ± 4.9 | 8.1 ± 5.2 | −1.4 ± 3.6 | 0.95 | 0.68 |
MCP-1, [pg/mL] | 279.4 ± 85.4 | 255.6 ± 90.2 | −23.8 ± 61.1 | 296.9 ± 101.1 | 269.5 ± 95 | −27.5 ± 92.5 | 0.63 | 0.88 |
CRP, [ng/mL] | 8.5 (3.3, 26.2) a | 5.6 (3.7, 19.2) | −0.4 (−6.9, 10.5) | 12.6 (4.2, 19.5) | 10.2 (3.7, 17.3) | 0.5 (−9.1, 7.7) | 0.54 | 0.55 |
Complement Factor D/Adipsin, [μg/mL] | 4 ± 1.5 | 3.9 ± 1.8 | −0.04 ± 1.3 | 4.1 ± 1.6 | 4 ± 1.8 | −0.01 ± 1.4 | 0.91 | 0.94 |
Leptin, [ng/mL] | 21.9 (10.7, 33.8) | 18.5 (8.6, 32.7) | −0.5 (−3.9, 2.6) | 13 (9.6, 41) | 15.4 (7.7, 28.7) | −2.4 (−8.9, 0.8) | 0.97 | 0.12 |
Resistin, [ng/mL] | 6.2 ± 3.3 | 5.4 ± 2.5 | −0.8 ± 2 | 4.8 ± 1.7 | 4.4 ± 2 | −0.5 ± 1.8 | 0.14 | 0.59 |
Serpin E1/PAI-1, [ng/mL] | 111.6 ± 41.4 | 90.9 ± 35.3 | −20.6 ± 37.1 | 104 ± 45.9 | 89.4 ± 39.1 | −14.6 ± 42.8 | 0.89 | 0.63 |
IL-6, [pg/mL] | 2.5 ± 0.7 | 2.5 ± 0.6 | 0.02 ± 0.6 | 2.8 ± 0.9 | 2.7 ± 0.8 | −0.1 ± 1.2 | 0.46 | 0.66 |
IL-10, [pg/mL] | 1.1 ± 0.2 | 1 ± 0.3 | −0.1 ± 0.3 | 1.1 ± 0.2 | 1 ± 0.3 | −0.04 ± 0.3 | 0.86 | 0.78 |
TNF-α, [pg/mL] | 5.1 ± 2.3 | 4.9 ± 1.7 | −0.2 ± 1.1 | 6.1 ± 2.4 | 6.1 ± 2.2 | 0.04 ± 1.5 | 0.06 | 0.61 |
Dependent Variable 2 | Models | β | 95% CI | SE | R2 | p |
---|---|---|---|---|---|---|
Change in adiponectin, [μg/mL] | Model 1 | −0.5 | −2.6, 1.6 | 1.04 | 0.04 | 0.65 |
Model 2 | −0.3 | −2.5, 1.8 | 1.05 | 0.07 | 0.74 | |
Model 3 | −0.3 | −2.6, 2 | 1.1 | 0.02 | 0.78 | |
Change in MCP-1, [pg/mL] | Model 1 | −3.9 | −45, 37.2 | 20.3 | 0.1 | 0.84 |
Model 2 | −4.8 | −46.7, 37.1 | 20.7 | 0.1 | 0.82 | |
Model 3 | −17.9 | −71.7, 35.7 | 26.4 | 0.1 | 0.50 | |
Change in CRP, [ng/mL] | Model 1 | −1.1 | −15.1, 12.9 | 6.9 | 0.005 | 0.88 |
Model 2 | −2.5 | −16.2, 11.2 | 6.8 | 0.1 | 0.71 | |
Model 3 | 6.5 | −12.4, 25.5 | 9.3 | 0.1 | 0.48 | |
Change in complement factor D/adipsin, [μg/mL] | Model 1 | −0.2 | −0.9, 0.5 | 0.4 | 0.1 | 0.52 |
Model 2 | −0.2 | −0.9, 0.5 | 0.4 | 0.1 | 0.54 | |
Model 3 | −0.04 | −1.01, 0.9 | 0.5 | 0.1 | 0.93 | |
Change in leptin, [ng/mL] | Model 1 | −7.6 | −16.8, 1.6 | 4.5 | 0.1 | 0.10 |
Model 2 | −8.4 | −17.5, 0.7 | 4.5 | 0.2 | 0.07 | |
Model 3 | −11.3 | −24.1, 1.6 | 6.3 | 0.2 | 0.08 | |
Change in resistin, [ng/mL] | Model 1 | 0.4 | −0.7, 1.5 | 0.5 | 0.04 | 0.49 |
Model 2 | 0.3 | −0.8, 1.5 | 0.5 | 0.05 | 0.54 | |
Model 3 | 0.2 | −1.2, 1.6 | 0.7 | 0.03 | 0.77 | |
Change in serpin E1/PAI-1, [ng/mL] | Model 1 | 3.04 | −21.5, 27.6 | 12.1 | 0.1 | 0.80 |
Model 2 | 4.6 | −20.1, 29.2 | 12.2 | 0.1 | 0.70 | |
Model 3 | 3.6 | −23.5, 30.6 | 13.3 | 0.1 | 0.79 | |
Change in IL-6, [pg/mL] | Model 1 | −0.1 | −0.7, 0.4 | 0.3 | 0.02 | 0.60 |
Model 2 | −0.1 | −0.8, 0.4 | 0.3 | 0.02 | 0.56 | |
Model 3 | −0.3 | −0.9, 0.3 | 0.3 | 0.1 | 0.35 | |
Change in IL-10, [pg/mL] | Model 1 | 0.01 | −0.1, 0.2 | 0.1 | 0.02 | 0.87 |
Model 2 | 0.02 | −0.1, 0.2 | 0.1 | 0.04 | 0.79 | |
Model 3 | 0.1 | −0.1, 0.3 | 0.1 | 0.1 | 0.38 | |
Change in TNF-α, [pg/mL] | Model 1 | 0.2 | −0.6, 1.1 | 0.4 | 0.01 | 0.59 |
Model 2 | 0.2 | −0.6, 1.1 | 0.4 | 0.02 | 0.55 | |
Model 3 | 0.04 | −0.8, 0.9 | 0.4 | 0.07 | 0.92 |
Outcome Variable | Metformin (+) (n = 16) | Metformin (−) (n = 25) | Prediabetes (n = 22) | Diabetes (n = 19) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Placebo Group (n = 9) | Carnosine Group (n = 7) | p | Placebo Group (n = 13) | Carnosine Group (n = 12) | p | Placebo Group (n = 11) | Carnosine Group (n = 11) | p | Placebo Group (n = 11) | Carnosine Group (n = 8) | p | |
Change in adiponectin, [μg/mL] | −0.6 ± 3.7 a | −2.2 ± 3.6 | 0.41 | −1.2 ± 2.4 | −0.8 ± 3.7 | 0.81 | −0.6 ± 3.6 | −2.2 ± 3.3 | 0.31 | −1.2 ± 2.2 | −0.2 ± 3.9 | 0.48 |
Change in MCP-1, [pg/mL] | −9.3 ± 49.5 | −88 ± 97.8 | 0.08 | −33.8 ± 68.02 | 7.8 ± 71.5 | 0.14 | −0.3 ± 50.2 | −20.3 ± 86.4 | 0.51 | −47.4 ± 63.9 | −37.3 ± 105.7 | 0.79 |
Change in CRP, [ng/mL] | −2.2 (−8.7, 8.7) b | 1.1 (−9.3, 3.7) | 0.86 | −0.03 (−7.1, 11.4) | 0.5 (−4.4, 17.9) | 0.54 | −2.2 (−11.5, −0.03) | 0.4 (−5, 31.7) | 0.25 | 1.3 (−2.8, 13.7) | 1.3 (−19.7, 6.7) | 0.35 |
Change in complement Factor D/adipsin, [μg/mL] | 0.3 ± 1.2 | 0.2 ± 2.2 | 0.92 | −0.3 ± 1.3 | −0.1 ± 0.8 | 0.77 | 0.1 ± 1.3 | −0.5 ± 0.8 | 0.16 | −0.2 ± 1.3 | 0.7 ± 1.8 | 0.21 |
Change in leptin, [ng/mL] | 0.05 (−3.6, 2.03) | −6.1 (−12.4, −2.2) | 0.10 | −1.4 (−6.9, 2.9) | 0.5 (−3.9, 3.1) | 0.67 | −1.1 (−4.2, 7.1) | −2.2 (−3.9, 0.8) | 0.31 | 0.05 (−3.7, 1.3) | −4.8 (−11.5, 3) | 0.19 |
Change in resistin, [ng/mL] | −1.3 ± 3.03 | −0.4 ± 2.5 | 0.53 | −0.4 ± 0.8 | −0.5 ± 1.3 | 0.87 | −0.6 ± 2.4 | −0.1 ± 1.7 | 0.55 | −0.9 ± 1.6 | −0.9 ± 1.9 | 0.98 |
Change in serpin E1/PAI-1, [ng/mL] | −16.6 ± 44.7 | −22.2 ± 50.3 | 0.81 | −23.4 ± 32.4 | −10.2 ± 39.4 | 0.37 | −25.5 ± 34.2 | −0.1 ± 1.7 | 0.88 | −15.7 ± 40.7 | −2.7 ± 47.7 | 0.53 |
Change in IL-6, [pg/mL] | −0.1 ± 0.6 | −0.2 ± 1.9 | 0.88 | 0.1 ± 0.5 | −0.1 ± 0.6 | 0.48 | −0.08 ± 0.5 | −0.5 ± 0.8 | 0.17 | 0.1 ± 0.6 | 0.5 ± 1.4 | 0.50 |
Change in IL-10, [pg/mL] | −0.1 ± 0.4 | 0.02 ± 0.2 | 0.45 | −0.05 ± 0.3 | −0.1 ± 0.3 | 0.82 | −0.1 ± 0.3 | −0.1 ± 0.3 | 0.84 | 0.03 ± 0.3 | 0.1 ± 0.1 | 0.59 |
Change in TNF-α, [pg/mL] | −0.1 ± 1.1 | 0.1 ± 1.3 | 0.70 | −0.2 ± 1.1 | 0.0 ± 1.7 | 0.72 | 0.2 ± 0.8 | −0.3 ± 1.1 | 0.25 | −0.5 ± 1.2 | 0.5 ± 1.9 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadati, S.; de Courten, M.; Deceneux, C.; Plebanski, M.; Scott, D.; Mesinovic, J.; Jansons, P.; Aldini, G.; Cameron, J.; Feehan, J.; et al. Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial. Nutrients 2024, 16, 3900. https://doi.org/10.3390/nu16223900
Saadati S, de Courten M, Deceneux C, Plebanski M, Scott D, Mesinovic J, Jansons P, Aldini G, Cameron J, Feehan J, et al. Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial. Nutrients. 2024; 16(22):3900. https://doi.org/10.3390/nu16223900
Chicago/Turabian StyleSaadati, Saeede, Maximilian de Courten, Cyril Deceneux, Magdalena Plebanski, David Scott, Jakub Mesinovic, Paul Jansons, Giancarlo Aldini, James Cameron, Jack Feehan, and et al. 2024. "Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial" Nutrients 16, no. 22: 3900. https://doi.org/10.3390/nu16223900
APA StyleSaadati, S., de Courten, M., Deceneux, C., Plebanski, M., Scott, D., Mesinovic, J., Jansons, P., Aldini, G., Cameron, J., Feehan, J., Mousa, A., & de Courten, B. (2024). Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial. Nutrients, 16(22), 3900. https://doi.org/10.3390/nu16223900