Social and Nutritional Profiles of Pregnant Women: A Cluster Analysis on the “MAMI-MED” Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Dietary Assessment
2.4. Cluster Analysis
2.5. Statistical Analysis
3. Results
3.1. Study Sample
3.2. Maternal and Neonatal Characteristics According to Socio-Economic Status
3.3. Characteristics of Clusters
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spencer, N. The social determinants of child health. Paediatr. Child Health 2018, 28, 138–143. [Google Scholar] [CrossRef]
- Crear-Perry, J.; Correa-de-Araujo, R.; Lewis Johnson, T.; McLemore, M.R.; Neilson, E.; Wallace, M. Social and Structural Determinants of Health Inequities in Maternal Health. J. Women’s Health 2021, 30, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Girardi, G.; Longo, M.; Bremer, A.A. Social determinants of health in pregnant individuals from underrepresented, understudied, and underreported populations in the United States. Int. J. Equity Health 2023, 22, 186. [Google Scholar] [CrossRef] [PubMed]
- Maas, V.Y.F.; Poels, M.; Lamain-de Ruiter, M.; Kwee, A.; Bekker, M.N.; Franx, A.; Koster, M.P.H. Associations between periconceptional lifestyle behaviours and adverse pregnancy outcomes. BMC Pregnancy Childbirth 2021, 21, 492. [Google Scholar] [CrossRef]
- Souza, J.P.; Day, L.T.; Rezende-Gomes, A.C.; Zhang, J.; Mori, R.; Baguiya, A.; Jayaratne, K.; Osoti, A.; Vogel, J.P.; Campbell, O.; et al. A global analysis of the determinants of maternal health and transitions in maternal mortality. Lancet Glob. Health 2024, 12, e306–e316. [Google Scholar] [CrossRef]
- Barchitta, M.; Magnano San Lio, R.; La Rosa, M.C.; La Mastra, C.; Favara, G.; Ferrante, G.; Galvani, F.; Pappalardo, E.; Ettore, C.; Ettore, G.; et al. The Effect of Maternal Dietary Patterns on Birth Weight for Gestational Age: Findings from the MAMI-MED Cohort. Nutrients 2023, 15, 1922. [Google Scholar] [CrossRef]
- Papežová, K.; Kapounová, Z.; Zelenková, V.; Riad, A. Nutritional Health Knowledge and Literacy among Pregnant Women in the Czech Republic: Analytical Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 3931. [Google Scholar] [CrossRef]
- Langley-Evans, S.C. Nutrition in early life and the programming of adult disease: A review. J. Hum. Nutr. Diet. 2015, 28 (Suppl. S1), 1–14. [Google Scholar] [CrossRef]
- Agosti, M.; Tandoi, F.; Morlacchi, L.; Bossi, A. Nutritional and metabolic programming during the first thousand days of life. Pediatr. Med. Chir. 2017, 39, 157. [Google Scholar] [CrossRef]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Barua, S.; Junaid, M.A. Lifestyle, pregnancy and epigenetic effects. Epigenomics 2015, 7, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Aktaç, S.; Sabuncular, G.; Kargin, D.; Gunes, F.E. Evaluation of Nutrition Knowledge of Pregnant Women before and after Nutrition Education according to Sociodemographic Characteristics. Ecol. Food Nutr. 2018, 57, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Oechsle, A.; Wensing, M.; Ullrich, C.; Bombana, M. Health Knowledge of Lifestyle-Related Risks during Pregnancy: A Cross-Sectional Study of Pregnant Women in Germany. Int. J. Environ. Res. Public Health 2020, 17, 8626. [Google Scholar] [CrossRef]
- Lee, A.; Belski, R.; Radcliffe, J.; Newton, M. What do Pregnant Women Know About the Healthy Eating Guidelines for Pregnancy? A Web-Based Questionnaire. Matern. Child Health J. 2016, 20, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Nawabi, F.; Krebs, F.; Lorenz, L.; Shukri, A.; Alayli, A.; Stock, S. Understanding Determinants of Pregnant Women’s Knowledge of Lifestyle-Related Risk Factors: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 658. [Google Scholar] [CrossRef]
- Maugeri, A.; Barchitta, M.; Fiore, V.; Rosta, G.; Favara, G.; La Mastra, C.; La Rosa, M.C.; Magnano San Lio, R.; Agodi, A. Determinants of Adherence to the Mediterranean Diet: Findings from a Cross-Sectional Study in Women from Southern Italy. Int. J. Environ. Res. Public Health 2019, 16, 2963. [Google Scholar] [CrossRef]
- Ardebili, A.T.; Rickertsen, K. A sustainable and healthy diet: Personality, motives, and sociodemographics. Heliyon 2024, 10, e31326. [Google Scholar] [CrossRef]
- Carrasco-Marín, F.; Parra-Soto, S.; Bonpoor, J.; Phillips, N.; Talebi, A.; Petermann-Rocha, F.; Pell, J.; Ho, F.; Martínez-Maturana, N.; Celis-Morales, C.; et al. Adherence to dietary recommendations by socioeconomic status in the United Kingdom biobank cohort study. Front. Nutr. 2024, 11, 1349538. [Google Scholar] [CrossRef]
- Luo, T.; Tseng, T.S. Diet quality as assessed by the healthy eating index-2020 among different smoking status: An analysis of national health and nutrition examination survey (NHANES) data from 2005 to 2018. BMC Public Health 2024, 24, 1212. [Google Scholar] [CrossRef]
- Srivastava, P.; Trinh, T.A.; Hallam, K.T.; Karimi, L.; Hollingsworth, B. The links between parental smoking and childhood obesity: Data of the longitudinal study of Australian children. BMC Public Health 2024, 24, 68. [Google Scholar] [CrossRef]
- Nicholls-Dempsey, L.; Badeghiesh, A.; Baghlaf, H.; Dahan, M.H. How does high socioeconomic status affect maternal and neonatal pregnancy outcomes? A population-based study among American women. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2023, 20, 100248. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Magnano San Lio, R.; Favara, G.; La Mastra, C.; La Rosa, M.C.; Agodi, A. Dietary Folate Intake and Folic Acid Supplements among Pregnant Women from Southern Italy: Evidence from the “Mamma & Bambino” Cohort. Int. J. Environ. Res. Public Health 2020, 17, 638. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; La Rosa, M.C.; Magnano San Lio, R.; Favara, G.; Panella, M.; Cianci, A.; Agodi, A. Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Affect Birth Weight and the Risk of Preterm Birth: Results From the “Mamma & Bambino” Cohort and A Meta-Analysis. Nutrients 2018, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Barchitta, M.; Favara, G.; La Rosa, M.C.; La Mastra, C.; Magnano San Lio, R.; Agodi, A. Maternal Dietary Patterns Are Associated with Pre-Pregnancy Body Mass Index and Gestational Weight Gain: Results from the “Mamma & Bambino” Cohort. Nutrients 2019, 11, 1308. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Magnano San Lio, R.; La Rosa, M.C.; Giunta, G.; Panella, M.; Cianci, A.; Caruso, M.A.T.; Agodi, A.; Barchitta, M. The Relationship between Telomere Length and Gestational Weight Gain: Findings from the Mamma & Bambino Cohort. Biomedicines 2021, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Magnano San Lio, R.; Maugeri, A.; La Rosa, M.C.; Cianci, A.; Panella, M.; Giunta, G.; Agodi, A.; Barchitta, M. The Impact of Socio-Demographic Factors on Breastfeeding: Findings from the “Mamma & Bambino” Cohort. Medicina 2021, 57, 103. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Magnano San Lio, R.; La Rosa, M.C.; La Mastra, C.; Favara, G.; Giunta, G.; Cianci, A.; Agodi, A. Vaccination Status of Mothers and Children from the ‘Mamma & Bambino’ Cohort. Vaccines 2021, 9, 168. [Google Scholar] [CrossRef]
- Maugeri, A.; Barchitta, M.; Agrifoglio, O.; Favara, G.; La Mastra, C.; La Rosa, M.C.; Magnano San Lio, R.; Panella, M.; Cianci, A.; Agodi, A. The impact of social determinants and lifestyles on dietary patterns during pregnancy: Evidence from the “Mamma & Bambino” study. Ann. Ig 2019, 31, 81–89. [Google Scholar]
- Bertino, E.; Spada, E.; Occhi, L.; Coscia, A.; Giuliani, F.; Gagliardi, L.; Gilli, G.; Bona, G.; Fabris, C.; De Curtis, M.; et al. Neonatal anthropometric charts: The Italian neonatal study compared with other European studies. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 353–361. [Google Scholar] [CrossRef]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Couto, E.; Boffetta, P.; Lagiou, P.; Ferrari, P.; Buckland, G.; Overvad, K.; Dahm, C.C.; Tjønneland, A.; Olsen, A.; Clavel-Chapelon, F.; et al. Mediterranean dietary pattern and cancer risk in the EPIC cohort. Br. J. Cancer 2011, 104, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ 1995, 311, 1457–1460. [Google Scholar] [CrossRef] [PubMed]
- Devlin, U.M.; McNulty, B.A.; Nugent, A.P.; Gibney, M.J. The use of cluster analysis to derive dietary patterns: Methodological considerations, reproducibility, validity and the effect of energy mis-reporting. Proc. Nutr. Soc. 2012, 71, 599–609. [Google Scholar] [CrossRef]
- Tucker, K.L. Dietary patterns, approaches, and multicultural perspective. Appl. Physiol. Nutr. Metab. 2010, 35, 211–218. [Google Scholar] [CrossRef]
- Oostingh, E.C.; Hall, J.; Koster, M.P.H.; Grace, B.; Jauniaux, E.; Steegers-Theunissen, R.P.M. The impact of maternal lifestyle factors on periconception outcomes: A systematic review of observational studies. Reprod. Biomed. Online 2019, 38, 77–94. [Google Scholar] [CrossRef]
- van Zundert, S.K.M.; van Rossem, L.; Willemsen, S.P.; van der Meer, L.; Ernst-Smelt, H.E.; Steegers-Theunissen, R.P.M. Periconceptional maternal social, lifestyle and medical risk factors impair embryonic growth: The Rotterdam Periconceptional Cohort. Reprod. Biomed. Online 2022, 44, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef]
- Banjari, I.; Kenjerić, D.; Šolić, K.; Mandić, M.L. Cluster analysis as a prediction tool for pregnancy outcomes. Coll. Antropol. 2015, 39, 247–252. [Google Scholar] [PubMed]
- Gárate-Escamilla, A.K.; Garza-Padilla, E.; Carvajal Rivera, A.; Salas-Castro, C.; Andrès, E.; Hajjam El Hassani, A. Cluster Analysis: A New Approach for Identification of Underlying Risk Factors and Demographic Features of First Trimester Pregnancy Women. J. Clin. Med. 2020, 9, 2247. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C.; Cui, Y.; Xie, Z.; Zhou, Y.; Shi, X.; Song, Y.; Tian, X.; Li, M.; Liu, J.; et al. Cluster analysis of antiphospholipid antibodies-associated adverse pregnancy outcome patients: Based on a 13-years cohort study. Clin. Exp. Med. 2023, 23, 5377–5388. [Google Scholar] [CrossRef]
- Mensch, B.S.; Chuang, E.K.; Melnikas, A.J.; Psaki, S.R. Evidence for causal links between education and maternal and child health: Systematic review. Trop. Med. Int. Health 2019, 24, 504–522. [Google Scholar] [CrossRef] [PubMed]
- Rezaeizadeh, G.; Mansournia, M.A.; Keshtkar, A.; Farahani, Z.; Zarepour, F.; Sharafkhah, M.; Kelishadi, R.; Poustchi, H. Maternal education and its influence on child growth and nutritional status during the first two years of life: A systematic review and meta-analysis. eClinicalMedicine 2024, 71, 102574. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; de Pee, S.; Sun, K.; Sari, M.; Akhter, N.; Bloem, M.W. Effect of parental formal education on risk of child stunting in Indonesia and Bangladesh: A cross-sectional study. Lancet 2008, 371, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Vikram, K.; Vanneman, R. Maternal education and the multidimensionality of child health outcomes in India. J. Biosoc. Sci. 2020, 52, 57–77. [Google Scholar] [CrossRef]
Characteristics | Employed (n = 780) | Not Employed (n = 732) | p-Value a |
---|---|---|---|
Age (years) b | 32.0 (5.0) | 30.0 (7.0) | <0.001 |
Primiparous | 64.3% | 44.4% | <0.001 |
Non-smoker | 93.4% | 86.9% | <0.001 |
Gestational week at delivery (weeks) b | 39.0 (1.0) | 39.0 (2.0) | <0.001 |
Adherence to MD | |||
Low | 33.7% | 42.5% | <0.001 |
Medium–high | 66.3% | 57.6% | |
MDS b | 4.0 (2.0) | 4.0 (2.0) | <0.001 |
Dietary restrictions (% yes) | 15.8% | 14.6% | 0.533 |
Total energy intake (kcal/day) b | 1716 (545) | 1716 (583) | 0.607 |
Educational level | |||
Low | 8.8% | 41.8% | <0.001 |
Medium–high | 91.2% | 58.2% | |
Pre-pregnancy BMI (kg/m2) b | 22.7 (5.3) | 24.1 (7.0) | <0.001 |
Pre-pregnancy BMI classification | |||
Underweight | 5.8% | 5.6% | <0.001 |
Normal weight | 64.1% | 52.0% | |
Overweight | 19.9% | 25.1% | |
Obese | 10.3% | 17.2% | |
GWG (kg) b | 12.0 (7.0) | 11.0 (8.2) | <0.001 |
GWG classification | |||
Reduced | 37.7% | 41.4% | 0.345 |
Adequate | 33.1% | 31.5% | |
Excessive | 29.2% | 27.1% | |
Preterm birth | 4.9% | 7.8% | 0.021 |
Low birth weight (% yes) | 4.6% | 8.6% | 0.003 |
Macrosomia (% yes) | 4.5% | 4.2% | 0.802 |
Birth weight (kg) b | 3.32 (0.55) | 3.24 (0.55) | <0.001 |
Birth length (cm) b | 50.0 (2.0) | 50.0 (2.0) | 0.003 |
Characteristics | Low Educational Level (n = 375) | Medium–High Educational Level (n = 1137) | p-Value a |
---|---|---|---|
Age (years) b | 28.0 (8.0) | 31.0 (6.0) | <0.001 |
Primiparous | 40.6% | 59.3% | <0.001 |
Non-smoker | 80.8% | 93.4% | <0.001 |
Gestational week at delivery (weeks) b | 39.0 (2.0) | 39.0 (2.0) | 0.013 |
Adherence to MD | |||
Low | 44.0% | 36.0% | 0.014 |
Medium–high | 56.0% | 64.0% | |
MDS b | 4.0 (2.0) | 4.0 (2.0) | 0.003 |
Dietary restrictions (% yes) | 10.9% | 16.6% | 0.008 |
Total energy intake (kcal/day) b | 1730 (608) | 1709 (543) | 0.380 |
Employment status | |||
Employed | 18.4% | 62.5% | <0.001 |
Not employed | 81.6% | 37.5% | |
Pre-pregnancy BMI (kg/m2) b | 24.1 (7.5) | 23.1 (5.9) | <0.001 |
Pre-pregnancy BMI classification | |||
Underweight | 4.3% | 6.2% | <0.001 |
Normal weight | 51.7% | 60.4% | |
Overweight | 22.9% | 22.3% | |
Obese | 21.1% | 11.2% | |
GWG (kg) b | 11.0 (9.0) | 12.0 (7.0) | 0.014 |
GWG classification | |||
Reduced | 43.6% | 38.2% | 0.010 |
Adequate | 25.8% | 34.4% | |
Excessive | 30.6% | 27.4% | |
Preterm birth | 8.8% | 5.5% | 0.022 |
Low birth weight (% yes) | 9.1% | 5.7% | 0.055 |
Macrosomia (% yes) | 5.1% | 4.1% | 0.447 |
Birth weight (kg) b | 3.3 (0.54) | 3.3 (0.58) | 0.209 |
Birth length (cm) b | 50.0 (3.0) | 50.0 (2.0) | 0.017 |
Characteristics | Cluster 1 (n = 739) | Cluster 2 (n = 773) | p-Value a |
---|---|---|---|
Age (years) b | 29.0 (7.0) | 32.0 (5.0) | <0.001 |
Primiparous | 44.1% | 64.8% | <0.001 |
Non-smoker | 85.9% | 94.4% | <0.001 |
Gestational week at delivery (weeks) b | 39.0 (2.0) | 39.0 (2.0) | <0.001 |
Adherence to MD | |||
Low | 43.4% | 32.7% | <0.001 |
Medium–high | 56.6% | 67.3% | |
MDS b | 4.0 (2.0) | 4.0 (2.0) | <0.001 |
Dietary restrictions (% yes) | 13.9% | 16.4% | 0.177 |
Total energy intake (kcal/day) b | 1715 (579) | 1715 (540) | 0.909 |
Employment status | |||
Employed | 9.3% | 92.0% | <0.001 |
Not employed | 90.7% | 8.0% | |
Pre-pregnancy BMI (kg/m2) b | 23.9 (7.1) | 22.8 (5.4) | <0.001 |
Pre-pregnancy BMI classification | |||
Underweight | 5.5% | 5.8% | <0.001 |
Normal weight | 53.2% | 63.1% | |
Overweight | 24.4% | 20.6% | |
Obese | 16.9% | 10.5% | |
GWG (kg)b | 11.0 (8.0) | 12.0 (6.0) | 0.017 |
GWG classification | |||
Reduced | 40.6% | 38.4% | 0.619 |
Adequate | 31.2% | 33.3% | |
Excessive | 28.1% | 28.2% | |
Preterm birth | 8.1% | 4.6% | 0.004 |
Low birth weight (% yes) | 8.7% | 4.5% | 0.002 |
Macrosomia (% yes) | 4.9% | 3.9% | 0.352 |
Birth weight (kg) b | 3.2 (0.56) | 3.3 (0.58) | <0.001 |
Birth length (cm) b | 50.0 (3.0) | 50.0 (2.0) | 0.004 |
Birth weight for gestational age | |||
SGA | 11.6% | 8.6% | 0.074 |
AGA | 76.9% | 81.5% | |
LGA | 11.5% | 9.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favara, G.; Maugeri, A.; Barchitta, M.; Magnano San Lio, R.; La Rosa, M.C.; La Mastra, C.; Galvani, F.; Pappalardo, E.; Ettore, C.; Ettore, G.; et al. Social and Nutritional Profiles of Pregnant Women: A Cluster Analysis on the “MAMI-MED” Cohort. Nutrients 2024, 16, 3975. https://doi.org/10.3390/nu16233975
Favara G, Maugeri A, Barchitta M, Magnano San Lio R, La Rosa MC, La Mastra C, Galvani F, Pappalardo E, Ettore C, Ettore G, et al. Social and Nutritional Profiles of Pregnant Women: A Cluster Analysis on the “MAMI-MED” Cohort. Nutrients. 2024; 16(23):3975. https://doi.org/10.3390/nu16233975
Chicago/Turabian StyleFavara, Giuliana, Andrea Maugeri, Martina Barchitta, Roberta Magnano San Lio, Maria Clara La Rosa, Claudia La Mastra, Fabiola Galvani, Elisa Pappalardo, Carla Ettore, Giuseppe Ettore, and et al. 2024. "Social and Nutritional Profiles of Pregnant Women: A Cluster Analysis on the “MAMI-MED” Cohort" Nutrients 16, no. 23: 3975. https://doi.org/10.3390/nu16233975
APA StyleFavara, G., Maugeri, A., Barchitta, M., Magnano San Lio, R., La Rosa, M. C., La Mastra, C., Galvani, F., Pappalardo, E., Ettore, C., Ettore, G., & Agodi, A. (2024). Social and Nutritional Profiles of Pregnant Women: A Cluster Analysis on the “MAMI-MED” Cohort. Nutrients, 16(23), 3975. https://doi.org/10.3390/nu16233975