Trends in Consumption of Ultra-Processed Foods Among Adults in Southern China: Analysis of Serial Cross-Sectional Health Survey Data 2002–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Definition of NOVA Food Groups
2.4. Population Subgroups
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Trends in Consumption of NOVA Food Groups and Subgroups
3.3. Trends in Population Subgroups
3.4. Nutrient Profiles of UPFs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L.; King, J.C.; Leveille, G.A.; MacDonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed Foods: Contributions to Nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, M.; Leclerc, B.-S.; Louzada, M.-L.; Monteiro, C.A.; Batal, M.; Moubarac, J.-C. Consumption of Ultra-Processed Foods and Obesity in Canada. Can. J. Public Health 2019, 110, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Moubarac, J.-C.; Martins, A.P.B.; Claro, R.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. Consumption of Ultra-Processed Foods and Likely Impact on Human Health. Evidence from Canada. Public Health Nutr. 2013, 16, 2240–2248. [Google Scholar] [CrossRef]
- de Deus Mendonça, R.; Pimenta, A.M.; Gea, A.; De La Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef]
- Rauber, F.; Chang, K.; Vamos, E.P.; da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Levy, R.B. Ultra-Processed Food Consumption and Risk of Obesity: A Prospective Cohort Study of UK Biobank. Eur. J. Nutr. 2021, 60, 2169–2180. [Google Scholar] [CrossRef]
- Silva, F.M.; Giatti, L.; de Figueiredo, R.C.; Molina, M.D.C.B.; de Oliveira Cardoso, L.; Duncan, B.B.; Barreto, S.M. Consumption of Ultra-Processed Food and Obesity: Cross Sectional Results from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) Cohort (2008–2010). Public Health Nutr. 2018, 21, 2271. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-Processed Food Intake and Risk of Cardiovascular Disease: Prospective Cohort Study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef]
- Gómez-Donoso, C.; Sánchez-Villegas, A.; Martínez-González, M.A.; Gea, A.; Mendonça, R.D.D.; Lahortiga-Ramos, F.; Bes-Rastrollo, M. Ultra-Processed Food Consumption and the Incidence of Depression in a Mediterranean Cohort: The SUN Project. Eur. J. Nutr. 2020, 59, 1093–1103. [Google Scholar] [CrossRef]
- Lane, M.M.; Lotfaliany, M.; Hodge, A.M.; O’Neil, A.; Travica, N.; Jacka, F.N.; Rocks, T.; Machado, P.; Forbes, M.; Ashtree, D.N.; et al. High Ultra-Processed Food Consumption Is Associated with Elevated Psychological Distress as an Indicator of Depression in Adults from the Melbourne Collaborative Cohort Study. J. Affect. Disord. 2023, 335, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chu, J.; Hu, W.; Sun, N.; He, Q.; Liu, S.; Feng, Z.; Li, T.; Han, Q.; Shen, Y. Associations of Ultra-Processed Food Consumption with Cardiovascular Disease and All-Cause Mortality: UK Biobank. Eur. J. Public Health 2022, 32, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; Mendonça, R.dD.; de la Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between Consumption of Ultra-Processed Foods and All Cause Mortality: SUN Prospective Cohort Study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.D.C.; Ricardo, C.Z.; Steele, E.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. The Share of Ultra-Processed Foods Determines the Overall Nutritional Quality of Diets in Brazil. Public Health Nutr. 2017, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The Share of Ultra-Processed Foods and the Overall Nutritional Quality of Diets in the US: Evidence from a Nationally Representative Cross-Sectional Study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef]
- Zhou, J.; Leepromrath, S.; Tian, X.; Zhou, D. Dynamics of Chinese Diet Divergence from Chinese Food Pagoda and Its Association with Adiposity and Influential Factors: 2004-2011. Int. J. Environ. Res. Public Health 2020, 17, 507. [Google Scholar] [CrossRef]
- Bu, T.; Tang, D.; Liu, Y.; Chen, D. Trends in Dietary Patterns and Diet-Related Behaviors in China. Am. J. Health Behav. 2021, 45, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Z.; Fei, Y.; Zhou, B.; Zheng, S.; Wang, L.; Huang, L.; Jiang, S.; Liu, Z.; Jiang, J.; et al. The Difference in Nutrient Intakes between Chinese and Mediterranean, Japanese and American Diets. Nutrients 2015, 7, 4661–4688. [Google Scholar] [CrossRef]
- He, Y.; Zhao, W.; Zhang, J.; Zhao, L.; Yang, Z.; Huo, J.; Yang, L.; Wang, J.; He, L.; Sun, J.; et al. Data Resource Profile: China National Nutrition Surveys. Int. J. Epidemiol. 2019, 48, 368–368f. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Pan, X. China Food Composition 2009; Peking University Medical Press: Beijing, China, 2010. [Google Scholar]
- Alkire, S.; Santos, M.E. Measuring Acute Poverty in the Developing World: Robustness and Scope of the Multidimensional Poverty Index. World Dev. 2014, 59, 251–274. [Google Scholar] [CrossRef]
- Manning, S.E.; Ku, H.-C.; Dluzen, D.F.; Xing, C.; Zhou, Z. A Nonparametric Alternative to the Cochran-Armitage Trend Test in Genetic Case-Control Association Studies: The Jonckheere-Terpstra Trend Test. PLoS ONE 2023, 18, e0280809. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-Processed Food Consumption among US Adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, Z. Ultra-Processed Food Consumption Associated with Incident Hypertension among Chinese Adults—Results from China Health and Nutrition Survey 1997–2015. Nutrients 2022, 14, 4783. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.d.C.; Cruz, G.L.d.; Silva, K.A.A.N.; Grassi, A.G.F.; Andrade, G.C.; Rauber, F.; Levy, R.B.; Monteiro, C.A. Consumption of Ultra-Processed Foods in Brazil: Distribution and Temporal Evolution 2008–2018. Rev. Saúde Pública 2023, 57, 12. [Google Scholar] [CrossRef]
- Simões, B.D.S.; Barreto, S.M.; Molina, M.D.C.B.; Luft, V.C.; Duncan, B.B.; Schmidt, M.I.; Benseñor, I.J.M.; Cardoso, L.d.O.; Levy, R.B.; Giatti, L. Consumption of Ultra-Processed Foods and Socioeconomic Position: A Cross-Sectional Analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cad. Saude Publica 2018, 34, e00019717. [Google Scholar] [CrossRef]
- Baker, P.; Friel, S. Food Systems Transformations, Ultra-Processed Food Markets and the Nutrition Transition in Asia. Glob. Health 2016, 12, 80. [Google Scholar] [CrossRef]
- Dicken, S.J.; Qamar, S.; Batterham, R.L. Who Consumes Ultra-Processed Food? A Systematic Review of Sociodemographic Determinants of Ultra-Processed Food Consumption from Nationally Representative Samples. Nutr. Res. Rev. 2023, 37, 416–456. [Google Scholar] [CrossRef]
- Mercer, J.G.; Johnstone, A.M.; Halford, J.C.G. Approaches to Influencing Food Choice across the Age Groups: From Children to the Elderly. Proc. Nutr. Soc. 2015, 74, 149–157. [Google Scholar] [CrossRef]
- Brunner, T.A.; van der Horst, K.; Siegrist, M. Convenience Food Products. Drivers for Consumption. Appetite 2010, 55, 498–506. [Google Scholar] [CrossRef]
- Pedro-Botet, L.; Muns, M.D.; Solà, R.; Fontané, L.; Climent, E.; Benaiges, D.; Flores-Le Roux, J.A.; Pedro-Botet, J. Level of Understanding and Consumption of Ultra-Processed Food in a Mediterranean Population: A Cross-Sectional Study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.-C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-Processed Products Are Becoming Dominant in the Global Food System. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.B.; Scagliusi, F.B.; Duran, A.C.; Jaime, P.C. Barriers to and Facilitators of Ultra-Processed Food Consumption: Perceptions of Brazilian Adults. Public Health Nutr. 2018, 21, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Mendez, M.A.; Ng, S.W.; Popkin, B.M. Is the Degree of Food Processing and Convenience Linked with the Nutritional Quality of Foods Purchased by US Households? Am. J. Clin. Nutr. 2015, 101, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- da Costa Louzada, M.L.; Martins, A.P.B.; Canella, D.S.; Baraldi, L.G.; Levy, R.B.; Claro, R.M.; Moubarac, J.-C.; Cannon, G.; Monteiro, C.A. Ultra-Processed Foods and the Nutritional Dietary Profile in Brazil. Rev. Saude Publica 2015, 49, 38. [Google Scholar]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Fang, K.; He, Y.; Fang, Y.; Lian, Y. Dietary Sodium Intake and Food Sources Among Chinese Adults: Data from the CNNHS 2010–2012. Nutrients 2020, 12, 453. [Google Scholar] [CrossRef]
- Hao, Z.; Liang, L.; Pu, D.; Zhang, Y. Analysis of Sodium Content in 4082 Kinds of Commercial Foods in China. Nutrients 2022, 14, 2908. [Google Scholar] [CrossRef]
- Lv, W.; Ding, X.; Liu, Y.; Ma, A.; Yang, Y.; Wang, Z.; Gao, C. Evaluating the Energy and Core Nutrients of Condiments in China. Nutrients 2023, 15, 4346. [Google Scholar] [CrossRef]
- Pérez-Escamilla, R.; Obbagy, J.E.; Altman, J.M.; Essery, E.V.; McGrane, M.M.; Wong, Y.P.; Spahn, J.M.; Williams, C.L. Dietary Energy Density and Body Weight in Adults and Children: A Systematic Review. J. Acad. Nutr. Diet. 2012, 112, 671–684. [Google Scholar] [CrossRef]
- Rouhani, M.H.; Haghighatdoost, F.; Surkan, P.J.; Azadbakht, L. Associations between Dietary Energy Density and Obesity: A Systematic Review and Meta-Analysis of Observational Studies. Nutrition 2016, 32, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. Minimally Processed Foods Are More Satiating and Less Hyperglycemic than Ultra-Processed Foods: A Preliminary Study with 98 Ready-to-Eat Foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; DiFeliceantonio, A.G. Processed Foods and Food Reward. Science 2019, 363, 6425. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of Ultra-Processed Foods and Cancer Risk: Results from NutriNet-Santé Prospective Cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2019, 180, 283. [Google Scholar] [CrossRef]
- Chang, K.; Gunter, M.J.; Rauber, F.; Levy, R.B.; Huybrechts, I.; Kliemann, N.; Millett, C.; Vamos, E.P. Ultra-Processed Food Consumption, Cancer Risk and Cancer Mortality: A Large-Scale Prospective Analysis within the UK Biobank. eClinicalMedicine 2023, 56, 101840. [Google Scholar] [CrossRef]
- Costa, C.S.; Rauber, F.; Leffa, P.S.; Sangalli, C.N.; Campagnolo, P.D.B.; Vitolo, M.R. Ultra-Processed Food Consumption and Its Effects on Anthropometric and Glucose Profile: A Longitudinal Study during Childhood. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 177–184. [Google Scholar] [CrossRef]
- Louzada, M.L.d.C.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.B.; Canella, D.S.; Moubarac, J.-C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of Ultra-Processed Foods and Obesity in Brazilian Adolescents and Adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef]
- Whelan, K.; Bancil, A.S.; Lindsay, J.O.; Chassaing, B. Ultra-Processed Foods and Food Additives in Gut Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 406–427. [Google Scholar] [CrossRef]
- Hess, J.M.; Comeau, M.E.; Casperson, S.; Slavin, J.L.; Johnson, G.H.; Messina, M.; Raatz, S.; Scheett, A.J.; Bodensteiner, A.; Palmer, D.G. Dietary Guidelines Meet NOVA: Developing a Menu for A Healthy Dietary Pattern Using Ultra-Processed Foods. J. Nutr. 2023, 153, 2472–2481. [Google Scholar] [CrossRef]
- Forde, C.G. Beyond Ultra-Processed: Considering the Future Role of Food Processing in Human Health. Proc. Nutr. Soc. 2023, 82, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Marangoni, F.; Fogliano, V.; Del Rio, D.; Martinez, J.A.; Kuhnle, G.; Buttriss, J.; Da Costa Ribeiro, H.; Bier, D.; Poli, A. The Ultra-Processed Foods Hypothesis: A Product Processed Well beyond the Basic Ingredients in the Package. Nutr. Res. Rev. 2023, 36, 340–350. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number of Participants (Weighted %) in CNNS Surveys 1 | ||
---|---|---|---|
2002 | 2012 | 2022 | |
Gender | |||
Male | 2517 (55.2) | 1759 (55.0) | 1401 (56.4) |
Female | 2775 (44.8) | 2169 (45.0) | 1598 (43.6) |
Place of residence | |||
urban city | 2538 (75.9) | 2726 (76.5) | 2185 (72.3) |
rural areas | 2754 (24.1) | 1202 (23.5) | 814 (27.7) |
Age group | |||
18–44 y | 2576 (54.1) | 1922 (56.3) | 1110 (46.9) |
45–59 y | 1542 (26.4) | 1157 (26.1) | 930 (31.2) |
60+ y | 1174 (19.5) | 849 (17.7) | 959 (22.0) |
Education level | |||
Primary school degree or below | 1944 (35.2) | 1058 (19.8) | 860 (20.0) |
Secondary school degree | 2782 (54.4) | 2096 (53.4) | 1412 (46.8) |
College degree or above | 566 (10.4) | 774 (26.8) | 727 (33.2) |
Occupation | |||
Student | 74 (2.0) | 50 (1.8) | 17 (1.2) |
Retired or unemployed | 1911 (39.3) | 1404 (31.7) | 1174 (29.8) |
Office worker | 912 (20.2) | 822 (27.7) | 443 (19.9) |
Business service | 477 (12.1) | 585 (17.5) | 274 (9.7) |
Manual labor | 1742 (19.7) | 662 (12.1) | 353 (9.9) |
Others | 176 (6.7) | 405 (9.3) | 738 (29.4) |
Income level 2 | |||
Poverty | 2954 (42.0) | 862 (15.4) | 1251 (37.4) |
Non-poverty | 2148 (52.8) | 1616 (39.0) | 1697 (61.1) |
No response | 190 (5.2) | 1450 (45.7) | 51 (1.6) |
NOVA Food Groups | Median (IQR) Percentage of Energy from Food Consumption by CNNS Survey | |||
---|---|---|---|---|
2002 | 2012 | 2022 | p | |
Minimally processed foods | 82.95 (12.36) | 72.89 (16.45) | 68.69 (23.43) | <0.001 |
Processed culinary ingredients | 13.93 (10.88) | 13.17 (10.07) | 13.62 (15.93) | <0.001 |
Processed foods | 2.64 (3.5) | 7.72 (9.43) | 8.87 (11.37) | <0.001 |
Ultra-processed foods | 0.88 (2.54) | 6.22 (13.32) | 8.52 (18.03) | <0.001 |
Population Groups and Subgroups | Median (IQR) Percentage of Energy from UPFs Consumption by CNNS Survey | |||
---|---|---|---|---|
2002 | 2012 | 2022 | p | |
Sex | ||||
Males | 0.9 (2.84) | 5.76 (12.51) | 8.07 (16.89) | <0.001 |
Females | 0.88 (2.21) | 6.6 (13.94) | 9.34 (20.42) | <0.001 |
Place of residence | ||||
urban city | 1.05 (3.37) | 7.8 (14.49) | 10.17 (20.06) | <0.001 |
rural areas | 0.46 (0.88) | 1.84 (6.94) | 3.16 (11.17) | <0.001 |
Age group | ||||
18–44 y | 0.93 (2.89) | 6.82 (14.19) | 9.45 (19.95) | <0.001 |
45–59 y | 0.79 (2.1) | 5.76 (12.76) | 7.69 (16.68) | <0.001 |
60+ y | 0.85 (2.26) | 4.62 (11.81) | 7.87 (17.03) | <0.001 |
Education level | ||||
Primary school degree or below | 0.95 (2.07) | 3.97 (10.45) | 5.45 (14.26) | <0.001 |
Secondary school degree | 0.85 (2.77) | 5.15 (12.01) | 8.3 (17.35) | <0.001 |
College degree or above | 0.81 (2.87) | 10.13 (15.08) | 11.37 (21.27) | <0.001 |
Occupation | ||||
Student | 0.42 (2.46) | 6.93 (22.06) | 17.26 (29.9) | <0.001 |
Retired or unemployed | 0.95 (2.29) | 6.07 (12.19) | 7.87 (17.69) | <0.001 |
Office worker | 1.04 (3.72) | 8.31 (14.41) | 10.22 (20.51) | <0.001 |
Business service | 0.83 (3.3) | 5.28 (13.79) | 8.34 (15.3) | <0.001 |
Manual labor | 0.66 (1.63) | 2.51 (8.31) | 5.15 (16.06) | <0.001 |
Others | 0.94 (2.68) | 7.41 (14.73) | 8.56 (17.59) | <0.001 |
Income level | ||||
Poverty | 0.69 (1.59) | 4.16 (11.42) | 5.55 (13.81) | <0.001 |
Non-poverty | 1.05 (3.5) | 6.07 (13.56) | 10.22 (20.86) | <0.001 |
No response | 1.02 (2.37) | 6.98 (13.57) | 5.39 (21.54) | <0.001 |
Nutrients | MPFs | UPFs | p |
---|---|---|---|
Carbohydrates, % of energy | 43.83 (27.95) | 56.56 (24.13) | <0.001 |
Protein, % of energy | 22.23 (10.37) | 18.36 (13.47) | <0.001 |
Total fats, % of energy | 33.67 (22.97) | 25.08 (32.58) | <0.001 |
Insoluble fiber, g/100 kcal | 0.3 (0.38) | 0.1 (0.31) | <0.001 |
Cholesterol, mg/100 kcal | 35.25 (29.85) | 0.27 (5.53) | <0.001 |
Vitamin A, μgRAE/100 kcal | 37.04 (41.14) | 0 (7.93) | <0.001 |
VitaminC, mg/100 kcal | 6.7 (7.81) | 0 (0) | <0.001 |
VitaminE, mg/100 kcal | 0.43 (0.37) | 0.28 (0.59) | <0.001 |
Carotene, μg/100 kcal | 130.45 (214.7) | 0 (0) | <0.001 |
Calcium, mg/100 kcal | 27.74 (22.21) | 21.36 (43.17) | <0.001 |
Potassium, mg/100 kcal | 161.58 (124.37) | 106.92 (370.04) | <0.001 |
Sodium, mg/100 kcal | 29.31 (20.58) | 749.33 (4324.66) | <0.001 |
Iron, mg/100 kcal | 1.09 (0.56) | 1.52 (3.46) | <0.001 |
Selenium, μg/100 kcal | 3.53 (2.13) | 2.16 (1.85) | <0.001 |
Phosphorus, mg/100 kcal | 65.78 (27.29) | 52.16 (70.59) | <0.001 |
Magnesium, mg/100 kcal | 16.04 (7.67) | 19.01 (68.29) | <0.001 |
Zinc, mg/100 kcal | 0.76 (0.3) | 0.61 (1.02) | <0.001 |
Nutrients | Q1 | Q2 | Q3 | Q4 | p |
---|---|---|---|---|---|
Carbohydrates, % of energy | 59.7 (32.46) | 58.25 (35.8) | 52.43 (34.45) | 47.98 (29.5) | 0.008 |
Protein, % of energy | 36.29 (18.12) | 19.1 (11.59) | 13.62 (6.33) | 14.11 (6.12) | <0.001 |
Total fats, % of energy | 3.48 (3.31) | 22.58 (33.1) | 33.93 (30.2) | 37.91 (24) | <0.001 |
Insoluble fiber, g/100 kcal | 0.07 (0.32) | 0.09 (0.27) | 0.11 (0.21) | 0.11 (0.35) | 0.008 |
Cholesterol, mg/100 kcal | 0 (0) | 0.09 (9.73) | 2.28 (8.22) | 3.1 (8.76) | <0.001 |
Vitamin A, μgRAE /100 kcal | 0 (0) | 0 (7.36) | 1.73 (11.18) | 5.27 (13.77) | <0.001 |
Vitamin C, mg/100 kcal | 0 (0) | 0 (0) | 0 (0) | 0 (0.05) | <0.001 |
Vitamin E, mg/100 kcal | 0 (0) | 0.3 (0.71) | 0.44 (0.41) | 0.46 (0.5) | <0.001 |
Carotene, μg/100 kcal | 0 (0) | 0 (0) | 0 (2.89) | 0 (5.69) | <0.001 |
Calcium, mg/100 kcal | 80 (62.51) | 20.34 (31.02) | 15.05 (17.22) | 13.3 (14.3) | <0.001 |
Potassium, mg/100 kcal | 566.95 (694.62) | 128.55 (141.86) | 79.28 (61.44) | 67.48 (41.93) | <0.001 |
Sodium, mg/100 kcal | 9138.1 (7019.84) | 1237.04 (1917.36) | 437.01 (489.43) | 264.75 (244.7) | <0.001 |
Iron, mg/100 kcal | 12.07 (8.2) | 1.78 (2.11) | 1.03 (0.88) | 0.82 (0.69) | <0.001 |
Selenium, μg/100 kcal | 2.93 (4.29) | 1.96 (1.9) | 1.93 (1.42) | 1.76 (1.33) | <0.001 |
Phosphorus, mg/100 kcal | 262.12 (198.04) | 52.67 (51.44) | 40.4 (26.63) | 37.92 (20.44) | <0.001 |
Magnesium, mg/100 kcal | 147.11 (128.57) | 23.22 (39.54) | 12.83 (12.01) | 9.62 (9.38) | <0.001 |
Zinc, mg/100 kcal | 1.86 (0.76) | 0.59 (0.53) | 0.42 (0.41) | 0.43 (0.36) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Ma, J.; Wen, J.; Peng, J.; Huang, P.; Zeng, L.; Chen, S.; Ji, G.; Yang, X.; Wu, W. Trends in Consumption of Ultra-Processed Foods Among Adults in Southern China: Analysis of Serial Cross-Sectional Health Survey Data 2002–2022. Nutrients 2024, 16, 4008. https://doi.org/10.3390/nu16234008
Li S, Ma J, Wen J, Peng J, Huang P, Zeng L, Chen S, Ji G, Yang X, Wu W. Trends in Consumption of Ultra-Processed Foods Among Adults in Southern China: Analysis of Serial Cross-Sectional Health Survey Data 2002–2022. Nutrients. 2024; 16(23):4008. https://doi.org/10.3390/nu16234008
Chicago/Turabian StyleLi, Shiqi, Jingtai Ma, Jian Wen, Jiewen Peng, Panpan Huang, Lilian Zeng, Siyi Chen, Guiyuan Ji, Xingfen Yang, and Wei Wu. 2024. "Trends in Consumption of Ultra-Processed Foods Among Adults in Southern China: Analysis of Serial Cross-Sectional Health Survey Data 2002–2022" Nutrients 16, no. 23: 4008. https://doi.org/10.3390/nu16234008
APA StyleLi, S., Ma, J., Wen, J., Peng, J., Huang, P., Zeng, L., Chen, S., Ji, G., Yang, X., & Wu, W. (2024). Trends in Consumption of Ultra-Processed Foods Among Adults in Southern China: Analysis of Serial Cross-Sectional Health Survey Data 2002–2022. Nutrients, 16(23), 4008. https://doi.org/10.3390/nu16234008