Trends and Motivations in Dietary Supplement Use Among People with Diabetes: A Population-Based Analysis Using National Health and Nutrition Examination Survey Data from the 2009–2020 Period
Highlights
- A total of 61.72% of people with diabetes reported using dietary supplements, with a notable increase over time.
- Common supplements included multivitamins, multimineral, vitamin D, calcium, zinc, vitamin C, and fish oil.
- Only 44.58% of individuals used dietary supplements based on medical advice, with the rest opting for self-directed usage.
- The primary specific health reasons for supplement use were to improve bone and heart health and enhance the immune system.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions of Diabetes and Its Complications
2.3. Definition of Covariates
2.4. Dietary Supplement Data
2.5. Statistical Analysis
3. Results
3.1. Utilization of Dietary Supplements
3.2. Characteristics of Supplement Users vs. Non-Users
3.3. Types and Reasons for Dietary Supplement Use
3.4. Doctor-Advised vs. Self-Directed Supplement Use
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, J.; Wang, M.; Long, Z.; Ning, H.; Li, J.; Cao, Y.; Liao, Y.; Liu, G.; Wang, F.; Pan, A. Global burden of type 2 diabetes in adolescents and young adults, 1990–2019: Systematic analysis of the Global Burden of Disease Study 2019. BMJ-Br. Med. J. 2022, 379, e072385. [Google Scholar] [CrossRef] [PubMed]
- Tinajero, M.G.; Malik, V.S. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol. Metab. Clin. North Am. 2021, 50, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Grossman, L.D.; Roscoe, R.; Shack, A.R.; Diabetes Canada Clinical Practice Guidelines Expert Committee. Complementary and Alternative Medicine for Diabetes. Can. J. Diabetes 2018, 42, S154–S161. [Google Scholar] [CrossRef] [PubMed]
- Behrouz, V.; Dastkhosh, A.; Sohrab, G. Overview of dietary supplements on patients with type 2 diabetes. Diabetes Metab. Syndr.-Clin. Res. Rev. 2020, 14, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zeng, X.; Liu, W.; Lu, Y.; Cheng, J.; Chen, Y. An Overview of Dietary Supplements on Obesity and Type 2 Diabetes: Efficacy and Mechanisms. Curr. Drug Metab. 2021, 22, 415–440. [Google Scholar] [CrossRef] [PubMed]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.-T.K.S.; de Clerck, E.; Polivka, J., Jr.; Potuznik, P.; Polivka, J.; et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. Epma J. 2023, 14, 21–42. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S17–S38. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New creatinine-and cystatin C–based equations to estimate GFR without race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Assadourian, J.N.; Peterson, E.D.; Gupta, A.; Navar, A.M. Use of Dietary Supplements Among People with Atherosclerotic Cardiovascular Disease in the United States: A Population-Based Analysis From NHANES. J. Am. Heart Assoc. 2024, 13, e033748. [Google Scholar] [CrossRef]
- Kantor, E.D.; Rehm, C.D.; Du, M.; White, E.; Giovannucci, E.L. Trends in Dietary Supplement Use Among US Adults From 1999–2012. JAMA-J. Am. Med. Assoc. 2016, 316, 1464–1474. [Google Scholar] [CrossRef]
- Hannon, B.A.; Fairfield, W.D.; Adams, B.; Kyle, T.; Crow, M.; Thomas, D.M. Use and abuse of dietary supplements in persons with diabetes. Nutr. Diabetes 2020, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Stierman, B.; Gahche, J.J.; Potischman, N. Dietary Supplement Use Among Adults: United States, 2017–2018. NCHS Data Brief 2021, 399, 1–8. [Google Scholar]
- Li, J.; Li, X.L.; Gathirua-Mwangi, W.; Song, Y.Q. Prevalence and trends in dietary supplement use among US adults with diabetes: The National Health and Nutrition Examination Surveys, 1999–2014. BMJ Open Diabetes Res. Care 2020, 8, e000925. [Google Scholar] [CrossRef] [PubMed]
- Gahche, J.J.; Bailey, R.L.; Potischman, N.; Dwyer, J.T. Dietary Supplement Use Was Very High among Older Adults in the United States in 2011–2014. J. Nutr. 2017, 147, 1968–1976. [Google Scholar] [CrossRef]
- Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; Maerz, W.; Pilz, S. Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int. J. Mol. Sci. 2021, 22, 2896. [Google Scholar] [CrossRef]
- Siddiqi, S.M.; Sun, C.; Wu, X.; Shah, I.; Mehmood, A. The Correlation between Dietary Selenium Intake and Type 2 Diabetes: A Cross-Sectional Population-Based Study on North Chinese Adults. Biomed Res. Int. 2020, 2020, 8058463. [Google Scholar] [CrossRef]
- Hua, R.; Lam, C.S.; Chu, N.; Yang, A.; Chow, E.; Cheung, Y.T. Association between dietary supplement use and mortality among US adults with diabetes: A longitudinal cohort study. Nutr. Metab. 2023, 20, 33. [Google Scholar] [CrossRef]
- Mursu, J.; Robien, K.; Harnack, L.J.; Park, K.; Jacobs, D.R., Jr. Dietary Supplements and Mortality Rate in Older Women The Iowa Women’s Health Study. Arch. Intern. Med. 2011, 171, 1625–1633. [Google Scholar] [CrossRef]
- Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Long-term Use of β-Carotene, Retinol, Lycopene, and Lutein Supplements and Lung Cancer Risk: Results From the VITamins And Lifestyle (VITAL) Study. Am. J. Epidemiol. 2009, 169, 815–828. [Google Scholar] [CrossRef]
- Fortmann, S.P.; Burda, B.U.; Senger, C.A.; Lin, J.S.; Whitlock, E.P. Vitamin and Mineral Supplements in the Primary Prevention of Cardiovascular Disease and Cancer: An Updated Systematic Evidence Review for the US Preventive Services Task Force. Ann. Intern. Med. 2013, 159, 824–834. [Google Scholar] [CrossRef]
- Gong, W.; Liu, A.; Yao, Y.; Ma, Y.; Ding, C.; Song, C.; Yuan, F.; Zhang, Y.; Feng, G.; Chen, Z.; et al. Nutrient Supplement Use among the Chinese Population: A Cross-Sectional Study of the 2010–2012 China Nutrition and Health Surveillance. Nutrients 2018, 10, 1733. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.J.; Livingstone, K.M.; Woods, J.L.; McNaughton, S.A. Dietary Supplement Use among Australian Adults: Findings from the 2011–2012 National Nutrition and Physical Activity Survey. Nutrients 2017, 9, 1248. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.V.; Schooling, C.M.; Zhao, J.X. The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Ann. Epidemiol. 2018, 28, 249–257.1. [Google Scholar] [CrossRef] [PubMed]
- Hajizadeh-Sharafabad, F.; Tarighat-Esfanjani, A.; Ghoreishi, Z.; Sarreshtedari, M. Lutein supplementation combined with a low-calorie diet in middle-aged obese individuals: Effects on anthropometric indices, body composition and metabolic parameters. Br. J. Nutr. 2021, 126, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- El-said, N.H.; Sadik, N.A.; Mohammed, N. Magnesium in type 2 diabetes mellitus and its correlation with glycemic control. Int. J. Res. Med. Sci. 2015, 3, 1958–1963. [Google Scholar] [CrossRef]
- Solini, A.; Santini, E.; Ferrannini, E. Effect of short-term folic acid supplementation on insulin sensitivity and inflammatory markers in overweight subjects. Int. J. Obes. 2006, 30, 1197–1202. [Google Scholar] [CrossRef]
- Stanhewicz, A.E.; Kenney, W.L. Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr. Rev. 2017, 75, 61–70. [Google Scholar] [CrossRef]
- Hayden, M.R.; Tyagi, S.C. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: The pleiotropic effects of folate supplementation. Nutr. J. 2004, 3, 4. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Kim, H. Lutein as a modulator of oxidative stress-mediated inflammatory diseases. Antioxidants 2021, 10, 1448. [Google Scholar] [CrossRef]
- Gopal, S.S.; Eligar, S.M.; Vallikannan, B.; Ponesakki, G. Inhibitory efficacy of lutein on adipogenesis is associated with blockage of early phase regulators of adipocyte differentiation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2021, 1866, 158812. [Google Scholar] [CrossRef]
- Kostov, K. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling. Int. J. Mol. Sci. 2019, 20, 1351. [Google Scholar] [CrossRef]
- Wallace, I.R.; Wallace, H.J.; McKinley, M.C.; Bell, P.M.; Hunter, S.J. Vitamin D and insulin resistance. Clin. Endocrinol. 2016, 84, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Yedjou, C.G.; Grigsby, J.; Mbemi, A.; Nelson, D.; Mildort, B.; Latinwo, L.; Tchounwou, P.B. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int. J. Mol. Sci. 2023, 24, 9085. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.; Kang, J.H.; Jeung, E.B. Calcium homeostasis in diabetes mellitus. J. Vet. Sci. 2017, 18, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Gembillo, G.; Visconti, L.; Giuffrida, A.E.; Labbozzetta, V.; Peritore, L.; Lipari, A.; Calabrese, V.; Piccoli, G.B.; Torreggiani, M.; Siligato, R.; et al. Role of Zinc in Diabetic Kidney Disease. Nutrients 2022, 14, 1353. [Google Scholar] [CrossRef] [PubMed]
- Egalini, F.; Guardamagna, O.; Gaggero, G.; Varaldo, E.; Giannone, B.; Beccuti, G.; Benso, A.; Broglio, F. The effects of omega 3 and omega 6 fatty acids on glucose metabolism: An updated review. Nutrients 2023, 15, 2672. [Google Scholar] [CrossRef]
- Shah, A.; Isath, A.; Aronow, W.S. Cardiovascular complications of diabetes. Expert Rev. Endocrinol. Metab. 2022, 17, 383–388. [Google Scholar] [CrossRef]
- Cockram, C.S.; Wong, B.C. Diabetes and infections. In Textbook of Diabetes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 799–818. [Google Scholar]
Characteristics | Adjusted Utilization Rate % (SE) | |||
---|---|---|---|---|
NHANES 2009–2020 (Total) | NHANES 2009–2012 (era1) | NHANES 2013–2016 (era2) | NHANES 2007–2020 (era3) | |
Overall | 61.72 (1.04) | 54.53 (1.74) | 61.28 (1.58) | 67.94 (1.99) |
Sex | ||||
Male | 64.42 (1.47) | 52.00 (2.87) | 59.13 (1.79) | 71.31 (3.14) |
Female | 59.24 (1.30) | 57.12 (1.91) | 63.68 (2.23) | 64.93 (2.25) |
Age groups (years) | ||||
20–60 | 52.42 (1.60) | 47.67 (2.71) | 50.05 (2.13) | 58.84 (3.29) |
60 and above | 69.77 (1.33) | 60.62 (2.27) | 71.54 (1.79) | 75.27 (2.33) |
Ethnicity | ||||
Non-Hispanic white | 67.36 (1.44) | 60.23 (2.44) | 67.34 (2.22) | 73.28 (2.63) |
Non-Hispanic black | 53.35 (1.46) | 51.26 (2.47) | 51.10 (3.07) | 57.58 (1.91) |
Mexican American | 45.66 (2.67) | 33.80 (3.75) | 48.82 (2.80) | 52.13 (5.84) |
Others | 58.64 (2.09) | 49.16 (3.01) | 55.45 (3.28) | 67.01 (3.65) |
Education | ||||
Less than high school | 46.61 (1.65) | 43.18 (2.24) | 46.06 (2.23) | 51.94 (4.05) |
High school or equivalent | 60.31 (1.89) | 53.86 (3.43) | 60.78 (3.33) | 63.89 (3.15) |
College or above | 68.62 (1.21) | 61.37 (2.51) | 67.21 (1.92) | 75.53 (2.03) |
Taking insulin now | ||||
Yes | 63.03 (2.14) | 56.20 (3.97) | 61.27 (2.98) | 69.47 (4.17) |
No | 61.18 (1.14) | 54.11 (1.97) | 61.26 (1.64) | 69.27 (2.25) |
Taking diabetic pills to lower blood sugar | ||||
Yes | 64.66 (1.32) | 56.39 (2.35) | 64.61 (2.32) | 70.55 (2.16) |
No | 63.76 (1.73) | 59.16 (2.64) | 63.22 (3.05) | 67.48 (3.03) |
Diabetic retinopathy | ||||
Yes | 61.75 (2.73) | 56.98 (4.29) | 55.07 (4.07) | 70.37 (4.92) |
NO | 64.48 (1.18) | 56.01 (2.36) | 66.10 (1.83) | 69.26 (1.99) |
Diabetic nephropathy | ||||
Yes | 64.65 (1.37) | 56.99 (2.46) | 61.13 (2.16) | 73.54 (2.29) |
NO | 60.25 (1.35) | 53.32 (2.07) | 61.35 (1.93) | 64.93 (2.79) |
Overall DM Population | Supplement Use | No Supplement Use | p Value * | |
---|---|---|---|---|
Participants † | 5784 | 3294 | 2490 | |
Mean (95% CI) age, years | 59.77 (59.16–60.37) | 62.16 (61.35–62.98) | 55.90 (55.07–56.73) | <0.0001 |
Women | 2783 (46.38) | 1682 (50.02) | 1101 (44.55) | 0.0059 |
Mean (95% CI) body mass index | 32.98 (32.66–33.30) | 32.70 (32.29–33.10) | 33.44 (32.94–33.94) | 0.0233 |
Ethnicity | <0.0001 | |||
Non-Hispanic white | 1868 (59.04) | 1206 (64.43) | 662 (50.34) | |
Non-Hispanic black | 1525 (14.19) | 831 (12.27) | 694 (17.30) | |
Mexican American | 979 (10.12) | 454 (7.48) | 525 (14.37) | |
Others | 1412 (16.63) | 803 (15.80) | 609 (17.97) | |
Education | <0.0001 | |||
Less than high school | 1846 (21.40) | 839 (16.16) | 1007 (29.84) | |
High school or equivalent | 1347 (26.42) | 753 (25.85) | 594 (27.42) | |
College or above | 2578 (52.14) | 1695 (57.97) | 883 (42.72) | |
Alcohol drinking | 3800 (77.13) | 2217 (78.68) | 1583 (74.55) | 0.0069 |
Smoking status | <0.0001 | |||
Never smoked | 2995 (50.04) | 1750 (50.36) | 1254 (49.51) | |
Former smoker | 1861 (34.30) | 1156 (38.26) | 705 (27.91) | |
Current smoker | 923 (15.65) | 385 (11.36) | 538 (22.57) | |
Family history of diabetes or heart attack | 3930 (68.74) | 2280 (69.05) | 1650 (68.25) | 0.6900 |
Self-reported health | <0.0001 | |||
Very good to excellent | 1005 (21.14) | 636 (23.18) | 369 (17.84) | |
Good | 2138 (41.06) | 1270 (42.56) | 868 (38.64) | |
Poor to fair | 2636 (37.78) | 1386 (34.24) | 1250 (43.50) | |
Self-reported chronic diseases | ||||
Hypertension | 3827 (65.60) | 2321 (70.13) | 1506 (58.30) | <0.0001 |
Cardiovascular diseases | 1457 (24.89) | 896 (26.52) | 561 (22.26) | 0.0090 |
Chronic obstructive pulmonary diseases | 451 (7.69) | 254 (7.76) | 197 (7.58) | 0.8609 |
Cancer ‡ | 730 (14.14) | 477 (16.21) | 253 (10.79) | 0.0003 |
Diabetic retinopathy | 866 (18.61) | 508 (17.96) | 358 (19.76) | 0.3063 |
Diabetic nephropathy | 2156 (33.44) | 1255 (35.03) | 901 (30.88) | 0.0191 |
Mean (95% CI) fasting glucose, mmol/L | 8.45 (8.28–8.61) | 8.16 (7.97–8.36) | 8.89 (8.55–9.24) | <0.0001 |
Mean (95% CI) glycohemoglobin, % | 7.19 (7.12–7.25) | 6.99 (6.92–7.07) | 7.50 (7.39–7.61) | 0.0008 |
Mean (95% CI) duration of diabetes, years | 6.56 (4.55–8.58) | 7.71 (5.53–9.90) | 4.52 (0.43–8.62) | 0.1781 |
Taking insulin now | 1237 (23.02) | 728 (23.55) | 509 (22.16) | 0.4392 |
Taking diabetic pills to lower blood sugar | 3139 (64.75) | 1909 (65.07) | 1230 (64.17) | 0.6783 |
Mean (95% CI) systolic pressure, mmHg | 128.45 (127.02–129.88) | 128.92 (127.09–130.74) | 127.45 (125.24–129.65) | 0.3367 |
Mean (95% CI) diastolic pressure, mmHg | 74.91 (73.90–75.91) | 74.49 (73.28–75.70) | 75.81 (74.72–76.90) | 0.0732 |
Taking prescription for HBP | 3661 (95.66) | 2250 (96.87) | 1411 (93.31) | 0.0037 |
Mean (95% CI) direct HDL cholesterol, mmol/L | 1.22 (1.21–1.24) | 1.24 (1.22–1.26) | 1.19 (1.16–1.21) | <0.0001 |
Mean (95% CI) total cholesterol, mmol/L | 4.72 (4.67–4.77) | 4.66 (4.59–4.72) | 4.82 (4.74–4.90) | 0.0006 |
Mean (95% CI) LDL cholesterol, mmol/L | 2.69 (2.63–2.75) | 2.62 (2.55–2.69) | 2.79 (2.71–2.87) | 0.0003 |
Mean (95% CI) triglyceride, mmol/L | 1.77 (1.67–1.87) | 1.74 (1.61–1.88) | 1.82 (1.71–1.94) | 0.3281 |
Taking prescription for cholesterol | 3285 (66.30) | 2090 (69.72) | 1195 (59.95) | <0.0001 |
Mean (95% CI) eGFR, mL/min/1.73 m2 | 86.30 (85.46–87.15) | 83.90 (82.70–85.10) | 90.18 (89.00–91.37) | <0.0001 |
Self-Directed Use | Doctor-Advised Use | p Value * | |
---|---|---|---|
Participants † | 1579 | 1249 | |
Mean (95% CI) age, years | 60.40 (59.33–61.46) | 64.60 (63.64–65.57) | <0.0001 |
Women | 743 (45.56) | 693 (55.27) | <0.0001 |
Mean (95% CI) body mass index | 32.54 (32.02–33.06) | 32.82 (32.29–33.36) | 0.4065 |
Ethnicity | 0.2273 | ||
Non-Hispanic white | 548 (62.43) | 468 (65.87) | |
Non-Hispanic black | 397 (12.46) | 318 (11.93) | |
Mexican American | 215 (7.71) | 181 (7.58) | |
Others | 419 (17.37) | 282 (14.60) | |
Education | 0.0609 | ||
Less than high school | 365 (14.80) | 328 (16.03) | |
High school or equivalent | 349 (23.97) | 295 (28.46) | |
College or above | 862 (61.22) | 624 (55.50) | |
Alcohol drinking | 1075 (78.25) | 844 (79.58) | 0.4926 |
Smoking status | 0.4230 | ||
Never smoked | 852 (52.87) | 670 (48.98) | |
Former smoker | 550 (36.39) | 438 (39.23) | |
Current smoker | 175 (10.72) | 141 (11.77) | |
Family history of diabetes or heart attack | 1071 (68.57) | 878 (68.69) | 0.9616 |
Self-reported health | 0.0005 | ||
Very good to excellent | 365 (26.14) | 201 (19.69) | |
Good | 661 (45.96) | 459 (41.30) | |
Poor to fair | 551 (27.88) | 589 (38.99) | |
Self-reported chronic diseases | |||
Hypertension | 1020 (63.05) | 942 (77.55) | <0.0001 |
Cardiovascular diseases | 334 (19.66) | 405 (32.64) | <0.0001 |
Chronic obstructive pulmonary diseases | 112 (7.65) | 93 (7.50) | 0.9261 |
Cancer ‡ | 184 (12.95) | 229 (20.78) | <0.0001 |
Diabetic retinopathy | 205 (18.02) | 225 (17.94) | 0.9772 |
Diabetic nephropathy | 522 (31.15) | 528 (38.15) | 0.0077 |
Mean (95% CI) duration of diabetes, years | 6.81 (3.92–9.70) | 9.46 (6.03–12.89) | 0.2589 |
Mean (95% CI) fasting glucose, mmol/L | 8.27 (8.01–8.53) | 8.01 (7.70–8.31) | 0.1698 |
Mean (95% CI) glycohemoglobin, % | 7.08 (6.98–7.18) | 6.89 (6.78–7.01) | 0.0082 |
Taking insulin now | 297 (23.32) | 314 (25.00) | 0.5852 |
Taking diabetic pills to lower blood sugar | 869 (62.56) | 756 (67.03) | 0.1281 |
Mean (95% CI) systolic pressure, mmHg | 128.52 (126.59–130.46) | 128.14 (125.32–130.97) | 0.8201 |
Mean (95% CI) diastolic pressure, mmHg | 75.02 (73.58–76.46) | 72.99 (71.17–74.80) | 0.0960 |
Taking prescription for HBP | 988 (96.65) | 918 (97.25) | 0.6813 |
Mean (95% CI) direct HDL cholesterol, mmol/L | 1.24 (1.21–1.28) | 1.25 (1.22–1.28) | 0.8616 |
Mean (95% CI) total cholesterol, mmol/L | 4.71 (4.63–4.79) | 4.55 (4.44–4.67) | 0.0208 |
Mean (95% CI) LDL cholesterol, mmol/L | 2.67 (2.58–2.76) | 2.54 (2.43–2.65) | 0.0604 |
Mean (95% CI) triglyceride, mmol/L | 1.78 (1.57–1.99) | 1.61 (1.51–1.70) | 0.1095 |
Taking prescription for cholesterol | 928 (64.61) | 867 (75.25) | 0.0029 |
Mean (95% CI) eGFR, mL/min/1.73 m2 | 87.75 (86.17–89.33) | 79.39 (77.55–81.22) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Chen, X.; Cai, Z.; Yao, Y.; Huang, S. Trends and Motivations in Dietary Supplement Use Among People with Diabetes: A Population-Based Analysis Using National Health and Nutrition Examination Survey Data from the 2009–2020 Period. Nutrients 2024, 16, 4021. https://doi.org/10.3390/nu16234021
Jiang Y, Chen X, Cai Z, Yao Y, Huang S. Trends and Motivations in Dietary Supplement Use Among People with Diabetes: A Population-Based Analysis Using National Health and Nutrition Examination Survey Data from the 2009–2020 Period. Nutrients. 2024; 16(23):4021. https://doi.org/10.3390/nu16234021
Chicago/Turabian StyleJiang, Yan, Xuhui Chen, Zhen Cai, Ying Yao, and Shuaiwen Huang. 2024. "Trends and Motivations in Dietary Supplement Use Among People with Diabetes: A Population-Based Analysis Using National Health and Nutrition Examination Survey Data from the 2009–2020 Period" Nutrients 16, no. 23: 4021. https://doi.org/10.3390/nu16234021
APA StyleJiang, Y., Chen, X., Cai, Z., Yao, Y., & Huang, S. (2024). Trends and Motivations in Dietary Supplement Use Among People with Diabetes: A Population-Based Analysis Using National Health and Nutrition Examination Survey Data from the 2009–2020 Period. Nutrients, 16(23), 4021. https://doi.org/10.3390/nu16234021