Development and Validation of a Self-Administered Semiquantitative Food Frequency Questionnaire Focused on Gut Microbiota: The Stance4Health-FFQ
Highlights
- A semiquantitative food frequency questionnaire (S4H-FFQ) was developed to record food items that could potentially affect gut microbiota composition and functionality.
- The S4H-FFQ was validated against two instruments: the I.Family-FFQ and the i-Diet S4H nutrition app.
- The S4H-FFQ is a reliable and adaptable tool that can be used to assess dietary patterns across populations.
- The S4H-FFQ could be adapted and validated in various populations, providing a reliable and standardized tool for comparative nutritional research.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Nutritional Assessment Tools
2.4. Statistical Analyses
3. Results
3.1. Comparison of Different Food Groups’ Frequency Consumption Derived from the Two FFQs
3.2. Comparison of the Food Frequency Consumption Derived from the S4H-FFQ Against the i-Diet S4H App
3.3. Comparison of the S4H-GM Score Calculated Based on the S4H-FFQ and the i-Diet S4H App
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomaa, E.Z. Human gut microbiota/microbiome in health and diseases: A review. Antonie Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Leeming, E.R.; Johnson, A.J.; Spector, T.D.; Roy, C.I.L. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 2020, 11, 2862. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Song, E.J.; Shin, J.H. Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: From Current Evidence to Future Possibilities. J. Microbiol. Biotechnol. 2022, 32, 1497–1505. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Livingstone, K.M.; Ramos-Lopez, O.; Pérusse, L.; Kato, H.; Ordovas, J.M.; Martínez, J.A. Precision nutrition: A review of current approaches and future endeavors. Trends Food Sci. Technol. 2022, 128, 253–264. [Google Scholar] [CrossRef]
- Malcomson, F.C.; Mathers, J.C. Translation of nutrigenomic research for personalised and precision nutrition for cancer prevention and for cancer survivors. Redox Biol. 2023, 62, 122710. [Google Scholar] [CrossRef]
- Rinninella, E.; Cintoni, M.; Raoul, P.; Lopetuso, L.R.; Scaldaferri, F.; Pulcini, G.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients 2019, 11, 2393. [Google Scholar] [CrossRef]
- Sierra-Ruelas, É.; Bernal-Orozco, M.F.; Macedo-Ojeda, G.; Márquez-Sandoval, Y.F.; Altamirano-Martínez, M.B.; Vizmanos, B. Validation of Semiquantitative FFQ Administered to Adults: A Systematic Review. Public Health Nutr. 2021, 24, 3399–3418. [Google Scholar] [CrossRef]
- Bailey, R.L. Overview of Dietary Assessment Methods for Measuring Intakes of Foods, Beverages, and Dietary Supplements in Research Studies. Curr. Opin. Biotechnol. 2021, 70, 91–96. [Google Scholar] [CrossRef]
- Steinemann, N.; Grize, L.; Ziesemer, K.; Kauf, P.; Probst-Hensch, N.; Brombach, C. Relative validation of a food frequency questionnaire to estimate food intake in an adult population. Food Nutr. Res. 2017, 61, 1305193. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef]
- Cade, J.E.; Burley, V.J.; Warm, D.L.; Thompson, R.L.; Margetts, B.M. Food-frequency questionnaires: A review of their design, validation and utilisation. Nutr. Res. Rev. 2004, 17, 5–22. [Google Scholar] [CrossRef]
- Dello Russo, M.; Russo, P.; Rufián-Henares, J.Á.; Hinojosa-Nogueira, D.; Pérez-Burillo, S.; de la Cueva, S.P.; Rohn, S.; Fatouros, A.; Douros, K.; González-Vigil, V.; et al. The Stance4Health Project: Evaluating a Smart Personalised Nutrition Service for Gut Microbiota Modulation in Normal-and Overweight Adults and Children with Obesity, Gluten-Related Disorders or Allergy/Intolerance to Cow’s Milk. Foods 2022, 11, 1480. [Google Scholar] [CrossRef]
- Hinojosa-Nogueira, D.; Ortiz-Viso, B.; Navajas-Porras, B.; Pérez-Burillo, S.; González-Vigil, V.; de la Cueva, S.P.; Rufián-Henares, J.Á. Stance4Health Nutritional APP: A Path to Personalized Smart Nutrition. Nutrients 2023, 15, 276. [Google Scholar] [CrossRef]
- Blasco, T.; Pérez-Burillo, S.; Balzerani, F.; Hinojosa-Nogueira, D.; Lerma-Aguilera, A.; Pastoriza, S.; Cendoya, X.; Rufio, A.; Gosalbes, M.J.; Jiménez-Hernández, N.; et al. An extended reconstruction of human gut microbiota metabolism of dietary compounds. Nat. Commun. 2021, 12, 4728. [Google Scholar] [CrossRef]
- Balzerani, F.; Hinojosa-Nogueira, D.; Cendoya, X.; Blasco, T.; Pérez-Burillo, S.; Apaolaza, I.; Francino, M.P.; Rufián-Henares, J.A.; Planes, F.J. Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods. NPJ Syst. Biol. Appl. 2022, 8, 24. [Google Scholar] [CrossRef]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef]
- Stiemsma, L.T.; Nakamura, R.E.; Nguyen, J.G.; Michels, K.B. Does Consumption of Fermented Foods Modify the Human Gut Microbiota? J. Nutr. 2020, 150, 1680–1692. [Google Scholar] [CrossRef]
- Jefferson, A.; Adolphus, K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: A systematic review. Front. Nutr. 2019, 6, 33. [Google Scholar] [CrossRef]
- Bel-Serrat, S.; Mouratidou, T.; Pala, V.; Huybrechts, I.; Börnhorst, C.; Fernández-Alvira, J.M.; Hadjigeorgiou, C.; Eiben, G.; Hebestreit, A.; Lissner, L.; et al. Relative validity of the Children’s Eating Habits Questionnaire-food frequency section among young European children: The IDEFICS Study. Public Health Nutr. 2014, 17, 266–276. [Google Scholar] [CrossRef]
- Voortman, T.; Steegers-Theunissen, R.P.M.; Bergen, N.E.; Jaddoe, V.W.; Looman, K.W.; Kiefte-de Jong, J.C.; Schalekamp-Timmermans, S. Validation of a semi-quantitative food-frequency questionnaire for dutch pregnant women from the general population using the method or triads. Nutrients 2020, 12, 1341. [Google Scholar] [CrossRef] [PubMed]
- Vioque, J.; Navarrete-Muñoz, E.M.; Gimenez-Monzó, D.; García-de-la-Hera, M.; Granado, F.; Young, Y.S.; Ramón, R.; Ballester, F.; Murcia, M.; Rebagliato, M.; et al. Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr. J. 2013, 12, 26. [Google Scholar] [CrossRef]
- Pala, V.; Reisch, L.A.; Lissner, L. Dietary Behaviour in Children, Adolescents and Families: The Eating Habits Questionnaire (EHQ). In Instruments for Health Surveys in Children and Adolescents; Bammann, K., Lissner, L., Pigeot, I., Ahrens, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–133. [Google Scholar]
- Lyons, J.; Walton, J.; Flynn, A. Development of an online database of typical food portion sizes in irish population groups. J. Nutr. Sci. 2013, 2, e25. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.A.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Martin-moreno, J.M.; Boyle, P.; Gorgojo, L.; Maisonneuve, P.; Fernandez-Rodriguez, J.C.; Salvini, S.; Willett, W.C. Development and validation of a food frequency questionnaire in Spain. Int. J. Epidemiol. 1993, 22, 512–519. [Google Scholar] [CrossRef]
- Lanfer, A.; Hebestreit, A.; Ahrens, W.; Krogh, V.; Sieri, S.; Lissner, L.; Eiben, G.; Siani, A.; Huybrechts, I.; Loit, H.M.; et al. Reproducibility of food consumption frequencies derived from the children’s eating habits questionnaire used in the IDEFICS study. Int. J. Obes. 2011, 35, S61–S68. [Google Scholar] [CrossRef]
- Kogias, C.; Kogias, D.; Kasmiridou, A.; Biagki, T.; Zouganeli, S.; Moriki, D.; Sardeli, O.; Chaloutsi, D.; Rufián-Henares, J.A.; Hinojosa-Nogueira, D.; et al. Repeatability and validity regarding food groups, energy, and macro-nutrients intake of a semi-quantitative Food Frequency Questionnaire for children: The Stance4Health-FFQ. J. Clin. Case Rep. Med. Imag. Health Sci. 2024, 7, 1306. [Google Scholar]
- Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Navajas-Porras, B.; Ortiz-Viso, B.; de la Cueva, S.P.; Lauria, F.; Fatouros, A.; Priftis, K.N.; González-Vigil, V.; Rufián-Henares, J.A. Development of an unified food composition database for the european project “Stance4Health”. Nutrients 2021, 13, 4206. [Google Scholar] [CrossRef]
- Heinken, A.; Thiele, I. Microbiome Modelling Toolbox 2.0: Efficient, tractable modelling of microbiome communities. Bioinformatics 2022, 38, 2367–2368. [Google Scholar] [CrossRef]
- Bland, M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Khalili, H.; Chan, S.M.; Lochhead, P.; Ananthakrishnan, A.N.; Hart, A.R.; Chan, A.T. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 525–535. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Dominika, Ś.; Arjan, N.; Karyn, R.P.; Henryk, K. The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol. 2011, 145, 267–272. [Google Scholar] [CrossRef]
- Cronin, P.; Joyce, S.A.; O’toole, P.W.; O’connor, E.M. Dietary fibre modulates the gut microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Healey, G.; Murphy, R.; Butts, C.; Brough, L.; Whelan, K.; Coad, J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: A randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br. J. Nutr. 2018, 119, 176–189. [Google Scholar] [CrossRef]
- Laursen, M.F.; Andersen, L.B.; Michaelsen, K.F.; Mølgaard, C.; Trolle, E.; Bahl, M.I.; Licht, T.R. Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. mSphere 2016, 1, e00069. [Google Scholar] [CrossRef]
- Abeltino, A.; Hatem, D.; Serantoni, C.; Riente, A.; De Giulio, M.M.; De Spirito, M.; De Maio, F.; Maulucci, G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024, 16, 3806. [Google Scholar] [CrossRef]
- Zhang, L.; Misir, A.; Boshuizen, H.; Ocké, M.A. Systematic Review and Meta-Analysis of Validation Studies Performed on Dietary Record Apps. Adv. Nutr. 2021, 12, 2321–2332. [Google Scholar] [CrossRef]
- Maurer, J.; Taren, D.L.; Teixeira, P.J.; Thomson, C.A.; Lohman, T.G.; Going, S.B.; Houtkooper, L.B. The Psychosocial and Behavioral Characteristics Related to Energy Misreporting. Nutr. Rev. 2006, 64, 53–66. [Google Scholar] [CrossRef]
- Hebert, J.R.; Clemow, L.; Pbert, L.; Ockene, I.S.; Ockene, J.K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 1995, 24, 389–398. [Google Scholar] [CrossRef]
- Derossi, A.; Husain, A.; Caporizzi, R.; Severini, C. Manufacturing personalized food for people uniqueness. An overview from traditional to emerging technologies. Crit. Rev. Food Sci. Nutr. 2020, 60, 1141–1159. [Google Scholar] [CrossRef]
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Pastoriza, S.; Jiménez-Hernández, N.; D’Auria, G.; Francino, M.P.; Rufián-Henares, J.A. Effect of food thermal processing on the composition of the gut microbiota. J. Agric. Food Chem. 2018, 66, 11500–11509. [Google Scholar] [CrossRef]
- Lerma-Aguilera, A.M.; Pérez-Burillo, S.; Navajas-Porras, B.; León, E.D.; Ruíz-Pérez, S.; Pastoriza, S.; Jiménez-Hernández, N.; Cämmerer, B.M.; Rufián-Henares, J.A.; Gosalbes, M.J.; et al. Effects of different foods and cooking methods on the gut microbiota: An in vitro approach. Front. Microbiol. 2024, 14, 1334623. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916.e12. [Google Scholar] [CrossRef]
- Maruvada, P.; Lampe, J.W.; Wishart, D.S.; Barupal, D.; Chester, D.N.; Dodd, D.; Djoumbou-Feunang, Y.; Dorrestein, P.C.; Dragsted, L.O.; Draper, J.; et al. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. Adv. Nutr. 2020, 11, 200–215. [Google Scholar] [CrossRef]
Characteristic | Values |
---|---|
Participants (n.) | 136 |
Age (years) | 44.4 (10.1) |
Sex (female) | 87 (65) |
BMI (kg/m2) | 24.8 (3.0) |
n. S4H-FFQ (T0 + T2) | 279 |
n. I.Family-FFQ (T0 + T2) | 278 |
n. i-Diet S4H (T2) | 108 |
Food Group | RHO | p-Value |
---|---|---|
Vegetable | 0.384 | 1.98 × 10−9 |
Fruit | 0.425 | 2.02 × 10−11 |
Cereal | 0.435 | 5.84 × 10−12 |
Soy | 0.554 | 9.67 × 10−20 |
Breakfast | 0.702 | 3.73 × 10−35 |
Milk | 0.680 | 2.69 × 10−32 |
Yogurt | 0.464 | 1.47 × 10−13 |
Cheese | 0.459 | 2.97 × 10−13 |
Oil | 0.482 | 1.11 × 10−14 |
Spread | 0.714 | 8.82 × 10−37 |
Eggs | 0.484 | 8.16 × 10−15 |
Meat | 0.419 | 4.38 × 10−11 |
Fish | 0.439 | 3.71 × 10−12 |
Snack | 0.565 | 1.24 × 10−20 |
Drinks | 0.303 | 3.28 × 10−6 |
Food Group | Same Quintiles (n.) | Adjacent Quintiles (n.) | Opposite Quintiles (n.) | Same Quintiles (%) | Adjacent Quintiles (%) | Opposite Quintiles (%) |
---|---|---|---|---|---|---|
Vegetable | 66 | 95 | 4 | 29 | 42 | 2 |
Fruit | 80 | 75 | 6 | 35 | 33 | 3 |
Cereal | 78 | 75 | 13 | 34 | 33 | 6 |
Soy | 57 | 171 | 0 | 25 | 75 | 0 |
Breakfast | 179 | 40 | 0 | 79 | 18 | 0 |
Milk | 87 | 96 | 0 | 38 | 42 | 0 |
Yogurt | 63 | 117 | 2 | 28 | 51 | 1 |
Cheese | 72 | 102 | 4 | 32 | 45 | 2 |
Oil | 103 | 61 | 6 | 45 | 27 | 3 |
Spread | 80 | 114 | 0 | 35 | 50 | 0 |
Eggs | 91 | 72 | 6 | 40 | 32 | 3 |
Meat | 82 | 90 | 6 | 36 | 39 | 3 |
Fish | 71 | 86 | 2 | 31 | 38 | 1 |
Snack | 78 | 92 | 3 | 34 | 40 | 1 |
Vegetable | 87 | 90 | 11 | 38 | 39 | 5 |
Nutrient | RHO | p-Value |
---|---|---|
Energy | 0.2422 | 0.0200 |
Proteins | 0.2601 | 0.0123 |
Carbohydrates | 0.2293 | 0.0279 |
Fat | 0.2404 | 0.0210 |
Fiber | 0.2175 | 0.0373 |
Iron | 0.1164 | 0.2690 |
Calcium | 0.1194 | 0.2568 |
Potassium | 0.2272 | 0.0294 |
Sodium | 0.0672 | 0.5246 |
Nutrient | Same Quintiles (n.) | Adjacent Quintiles (n.) | Opposite Quintiles (n.) | Same Quintiles (%) | Adjacent Quintiles (%) | Opposite Quintiles (%) |
---|---|---|---|---|---|---|
Energy | 24 | 30 | 6 | 26 | 33 | 7 |
Proteins | 22 | 24 | 2 | 24 | 26 | 2 |
Carbohydrates | 18 | 35 | 5 | 20 | 38 | 5 |
Fat | 23 | 34 | 4 | 25 | 37 | 4 |
Fiber | 25 | 32 | 6 | 27 | 35 | 7 |
Iron | 22 | 24 | 5 | 24 | 26 | 5 |
Calcium | 27 | 25 | 4 | 29 | 27 | 4 |
Potassium | 23 | 33 | 6 | 25 | 36 | 7 |
Sodium | 21 | 36 | 7 | 23 | 39 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, A.; Russo, M.D.; Russo, P.; Siani, A.; Hinojosa-Nogueira, D.; Navajas-Porras, B.; Toledano-Marín, Á.; Pastoriza, S.; Blasco, T.; Lerma-Aguilera, A.; et al. Development and Validation of a Self-Administered Semiquantitative Food Frequency Questionnaire Focused on Gut Microbiota: The Stance4Health-FFQ. Nutrients 2024, 16, 4064. https://doi.org/10.3390/nu16234064
Formisano A, Russo MD, Russo P, Siani A, Hinojosa-Nogueira D, Navajas-Porras B, Toledano-Marín Á, Pastoriza S, Blasco T, Lerma-Aguilera A, et al. Development and Validation of a Self-Administered Semiquantitative Food Frequency Questionnaire Focused on Gut Microbiota: The Stance4Health-FFQ. Nutrients. 2024; 16(23):4064. https://doi.org/10.3390/nu16234064
Chicago/Turabian StyleFormisano, Annarita, Marika Dello Russo, Paola Russo, Alfonso Siani, Daniel Hinojosa-Nogueira, Beatriz Navajas-Porras, Ángela Toledano-Marín, Silvia Pastoriza, Telmo Blasco, Alberto Lerma-Aguilera, and et al. 2024. "Development and Validation of a Self-Administered Semiquantitative Food Frequency Questionnaire Focused on Gut Microbiota: The Stance4Health-FFQ" Nutrients 16, no. 23: 4064. https://doi.org/10.3390/nu16234064
APA StyleFormisano, A., Russo, M. D., Russo, P., Siani, A., Hinojosa-Nogueira, D., Navajas-Porras, B., Toledano-Marín, Á., Pastoriza, S., Blasco, T., Lerma-Aguilera, A., Francino, M. P., Planes, F. J., González-Vigil, V., Rufián-Henares, J. Á., & Lauria, F. (2024). Development and Validation of a Self-Administered Semiquantitative Food Frequency Questionnaire Focused on Gut Microbiota: The Stance4Health-FFQ. Nutrients, 16(23), 4064. https://doi.org/10.3390/nu16234064