Dietary Intake of Polyunsaturated Fatty Acids Is Associated with Blood Glucose and Diabetes in Community-Dwelling Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Participants
3.2. Polyunsaturated Fatty Acids and Cardiometabolic Risk Factors
3.3. Polyunsaturated Fatty Acids and the Prevalence of Cardiometabolic Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Organization—Cardiovascular Diseases (CVDs); World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 15 October 2024).
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Yazdanyar, A.; Newman, A.B. The burden of cardiovascular disease in the elderly: Morbidity, mortality, and costs. Clin. Geriatr. Med. 2009, 25, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Lazzeroni, D.; Villatore, A.; Souryal, G.; Pili, G.; Peretto, G. The Aging Heart: A Molecular and Clinical Challenge. Int. J. Mol. Sci. 2022, 23, 16033. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Italy—IDF Europe Site. Available online: https://idf.org/europe/our-network/our-members/italy/ (accessed on 4 November 2024).
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef]
- Grimaccia, F.; Kanavos, P. Cost, outcomes, treatment pathways and challenges for diabetes care in Italy. Glob. Health 2014, 10, 58. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2024, 149, E347–E913. [Google Scholar] [CrossRef]
- Phillips, N.; Gray, S.R.; Combet, E.; Witard, O.C. Long-chain n -3 polyunsaturated fatty acids for the management of age- and disease-related declines in skeletal muscle mass, strength and physical function. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 98–105. [Google Scholar] [CrossRef]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Elagizi, A.; Lavie, C.J.; O’keefe, E.; Marshall, K.; O’keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Fang, Z.; Zhang, T.; Chen, Y. Polyunsaturated fatty acid intake and incidence of type 2 diabetes in adults: A dose response meta-analysis of cohort studies. Diabetol. Metab. Syndr. 2022, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Giangrandi, I.; Colombini, B.; Toniolo, L.; Gensini, G.; Sofi, F. Adherence to the Mediterranean diet among Italian adults: Results from the web-based Medi-Lite questionnaire. Int. J. Food Sci. Nutr. 2021, 72, 271–279. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Picca, A.; Tosato, M.; Martone, A.M.; Ortolani, E.; Sisto, A.; D’angelo, E.; Serafini, E.; Desideri, G.; et al. Body Mass Index is Strongly Associated with Hypertension: Results from the Longevity Check-up 7+ Study. Nutrients 2018, 10, 1976. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Martone, A.M.; D’angelo, E.; Serafini, E.; Ortolani, E.; Savera, G.; Picca, A.; Tosato, M.; Salini, S.; et al. Daily meat consumption and variation with aging in community-dwellers: Results from longevity check-up 7 + project. J. Gerontol. Geriatr. 2019, 67, 62–66. [Google Scholar]
- Landi, F.; Calvani, R.; Martone, A.M.; Salini, S.; Zazzara, M.B.; Candeloro, M.; Coelho-Junior, H.J.; Tosato, M.; Picca, A.; Marzetti, E. Normative values of muscle strength across ages in a “real world” population: Results from the longevity check-up 7+ project. J. Cachexia Sarcopenia Muscle 2020, 11, 1562–1569. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- Tabella di Composizione Degli Alimenti—CREA. Available online: https://www.crea.gov.it/en/-/tabella-di-composizione-degli-alimenti (accessed on 29 October 2024).
- World Obesity Federation Global Obesity Observatory. Available online: https://data.worldobesity.org/ (accessed on 4 November 2021).
- Torlasco, C.; Faini, A.; Makil, E.; Bilo, G.; Pengo, M.; Beaney, T.; Xia, X.; Borghi, C.; Poulter, N.R.; Tocci, G.; et al. Nation-wide hypertension screening in Italy: Data from May Measurements Month 2017—Europe. Eur. Heart J. Suppl. 2019, 21 (Suppl. D), D66–D70. [Google Scholar] [CrossRef]
- World Health Organization—Global Health Observatory. Body Mass Index Among Adults. WHO: Geneva, Switzerland. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index (accessed on 4 November 2024).
- Vitale, M.; Giosuè, A.; Vaccaro, O.; Riccardi, G. Recent Trends in Dietary Habits of the Italian Population: Potential Impact on Health and the Environment. Nutrients 2021, 13, 476. [Google Scholar] [CrossRef]
- Takahashi, M.; Ando, J.; Shimada, K.; Nishizaki, Y.; Tani, S.; Ogawa, T.; Yamamoto, M.; Nagao, K.; Hirayama, A.; Yoshimura, M.; et al. The ratio of serum n-3 to n-6 polyunsaturated fatty acids is associated with diabetes mellitus in patients with prior myocardial infarction: A multicenter cross-sectional study. BMC Cardiovasc. Disord. 2017, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Marushka, L.; Batal, M.; David, W.; Schwartz, H.; Ing, A.; Fediuk, K.; Sharp, D.; Black, A.; Tikhonov, C.; Chan, H.M. Association between fish consumption, dietary omega-3 fatty acids and persistent organic pollutants intake, and type 2 diabetes in 18 First Nations in Ontario, Canada. Environ. Res. 2017, 156, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Brostow, D.P.; Odegaard, A.O.; Koh, W.P.; Duval, S.; Gross, M.D.; Yuan, J.M.; Pereira, M.A. Omega-3 fatty acids and incident type 2 diabetes: The Singapore Chinese Health Study. Am. J. Clin. Nutr. 2011, 94, 520–526. [Google Scholar] [CrossRef] [PubMed]
- van Woudenbergh, G.J.; van Ballegooijen, A.J.; Kuijsten, A.; Sijbrands, E.J.G.; van Rooij, F.J.A.; Geleijnse, J.M.; Hofman, A.; Witteman, J.C.M.; Feskens, E.J.M. Eating fish and risk of type 2 diabetes: A population-based, prospective follow-up study. Diabetes Care 2009, 32, 2021–2026. [Google Scholar] [CrossRef]
- Shou, J.; Chen, P.J.; Xiao, W.H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 2020, 12, 14. [Google Scholar] [CrossRef]
- Picca, A.; Calvani, R.; Coelho-Júnior, H.J.; Landi, F.; Marzetti, E. Anorexia of Aging: Metabolic Changes and Biomarker Discovery. Clin. Interv. Aging 2022, 17, 1761–1767. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, J.L.; Izquierdo, M.; Carnicero-Carreño, J.A.; García-García, F.J.; Rodríguez-Mañas, L. Physical activity trajectories, mortality, hospitalization, and disability in the Toledo Study of Healthy Aging. J. Cachexia Sarcopenia Muscle 2020, 11, 1007–1017. [Google Scholar] [CrossRef]
- Wallin, A.; Di Giuseppe, D.; Orsini, N.; Patel, P.S.; Forouhi, N.G.; Wolk, A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: Systematic review and meta-analysis of prospective studies. Diabetes Care 2012, 35, 918–929. [Google Scholar] [CrossRef]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef]
- Madsen, M.T.B.; Bjerregaard, A.A.; Furtado, J.D.; Halldorsson, T.I.; Ström, M.; Granström, C.; Giovannucci, E.; Olsen, S.F. Comparisons of Estimated Intakes and Plasma Concentrations of Selected Fatty Acids in Pregnancy. Nutrients 2019, 11, 568. [Google Scholar] [CrossRef]
- Sun, Q.; Ma, J.; Campos, H.; Hankinson, S.E.; Hu, F.B. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am. J. Clin. Nutr. 2007, 86, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Bayram, S.Ş.; Kızıltan, G. The Role of Omega-3 Polyunsaturated Fatty Acids in Diabetes Mellitus Management: A Narrative Review. Curr. Nutr. Rep. 2024, 13, 527–551. [Google Scholar] [CrossRef] [PubMed]
- Coelho, O.G.L.; da Silva, B.P.; Rocha, D.M.U.P.; Lopes, L.L.; Alfenas, R.d.C.G. Polyunsaturated fatty acids and type 2 diabetes: Impact on the glycemic control mechanism. Crit. Rev. Food Sci. Nutr. 2017, 57, 3614–3619. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Q.; Qiu, Y.; Mu, Y.; Zhang, X.J.; Liu, L.; Hou, X.H.; Zhang, L.; Xu, X.N.; Ji, A.L.; Cao, R.; et al. A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr. Res. 2013, 33, 849–858. [Google Scholar] [CrossRef]
- Chávez-Ortega, M.P.; Almanza-Pérez, J.C.; Sánchez-Muñoz, F.; Hong, E.; Velázquez-Reyes, E.; Romero-Nava, R.; Villafaña-Rauda, S.; Pérez-Ontiveros, A.; Blancas-Flores, G.; Huang, F. Effect of Supplementation with Omega-3 Polyunsaturated Fatty Acids on Metabolic Modulators in Skeletal Muscle of Rats with an Obesogenic High-Fat Diet. Pharmaceuticals 2024, 17, 222. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
Variable | Mean (SD) or % |
---|---|
Age, years | 72.9 ± 6.0 |
Women | 56.0 |
Weight, kg | 70.6 ± 13.0 |
Height, m | 1.63 ± 0.1 |
BMI, kg/m2 | 26.1 ± 4.0 |
Systolic blood pressure, mmHg | 129.9 ± 16.1 |
Diastolic blood pressure, mmHg | 75.9 ± 9.6 |
Blood glucose, mg/dL | 109.0 ± 16.1 |
Total blood cholesterol, mg/dL | 198.5 ± 35.0 |
Hypertension | 21.0 |
Diabetes | 15.5 |
Obesity | 15.5 |
Calorie intake, kcal | 2524.6 ± 760.0 |
Carbohydrates, g | 218.4 ± 71.1 |
Lipids, g | 153.1 ± 67.2 |
Proteins, g | 177.6 ± 58.0 |
SFA | 31.7 |
MUFAs | 26.7 |
Omega-6 | 29.8 |
ALA | 8.8 |
EPA | 16.0 |
DHA | 26.1 |
Smoking | 14.0 |
Physically active | 51.0 |
Variables | Unadjusted β | 95% CI | p-Value | Adjusted β | 95% CI | p-Value |
---|---|---|---|---|---|---|
Systolic blood pressure | ||||||
Omega-6 | 0.04 | 0.01, 0.07 | 0.011 | 0.01 | −0,02, 0.05 | 0.338 |
ALA | 0.24 | 0.09, 0.38 | 0.001 | 0.07 | −0.08, 0.23 | 0.335 |
EPA | 0.03 | −0.02, 0.08 | 0.255 | 0.03 | −0.02, 0.09 | 0.201 |
DHA | 0.01 | −0.01, 0.04 | 0.372 | 0.01 | −0.01, 0.04 | 0.219 |
EPA+DHA | 0.01 | −0.01, 0.02 | 0.326 | 0.01 | −0.07, 0.03 | 0.211 |
Diastolic blood pressure | ||||||
Omega-6 | 0.01 | −0.01, 0.02 | 0.686 | −0.01 | −0.02, 0.02 | 0.955 |
ALA | 0.02 | −0.01, 0.11 | 0.534 | −0.01 | −0.10, 0.08 | 0.856 |
EPA | 0.01 | −0.02, 0.04 | 0.600 | 0.01 | −0.02, 0.04 | 0.418 |
DHA | 0.01 | −0.01, 0.02 | 0.499 | 0.01 | −0.01, 0.02 | 0.295 |
EPA+DHA | 0.01 | −0.01, 0.01 | 0.532 | 0.01 | −0.01, 0.01 | 0.333 |
Body mass index | ||||||
Omega-6 | 0.02 | 0.01, 0.03 | 0.001 | 0.02 | 0.01, 0.03 | 0.001 |
ALA | 0.10 | 0.06, 0.13 | 0.001 | 0.07 | 0.03, 0.11 | 0.001 |
EPA | −0.01 | −0.02, 0.01 | 0.065 | −0.01 | −0.02, 0.01 | 0.111 |
DHA | −0.01 | −0.01, −0.03 | 0.007 | −0.01 | −0.01, −0.01 | 0.027 |
EPA+DHA | −0.01 | −0.01, −0.01 | 0.017 | −0.01 | −0.01, 0.01 | 0.046 |
Blood glucose | ||||||
Omega-6 | 0.07 | 0.02, 0.12 | 0.005 | 0.06 | −0.01, 0.12 | 0.057 |
ALA | 0.32 | 0.09, 0.55 | 0.005 | 0.09 | −0.161, 0.348 | 0.472 |
EPA | −0.11 | −0.20, −0.23 | 0.014 | −0.09 | −0.185, −0.002 | 0.045 |
DHA | −0.07 | −0.11, −0.21 | 0.005 | −0.05 | −0.104, −0.005 | 0.030 |
EPA+DHA | −0.04 | −0.07, −0.01 | 0.007 | −0.03 | −0.067, −0.003 | 0.034 |
Total blood cholesterol | ||||||
Omega-6 | −0.01 | −0.07, 0.06 | 0.889 | −0.02 | −0.105, 0.005 | 0.622 |
ALA | −0.54 | −0.84, −0.23 | 0.001 | −0.25 | −0.594, 0.085 | 0.141 |
EPA | 0.05 | −0.06, 0.18 | 0.362 | −0.01 | −0.126, 0.118 | 0.949 |
DHA | 0.04 | −0.02, 0.10 | 0.203 | 0.01 | −0.059, 0.072 | 0.841 |
EPA+DHA | 0.02 | −0.01, 0.06 | 0.250 | 0.01 | −0.040, 0.045 | 0.914 |
Variables | Unadjusted OR | 95% CI | p-Value | Adjusted OR | 95% CI | p-Value |
---|---|---|---|---|---|---|
Hypertension | ||||||
Omega-6 | 0.995 | 0.990, 1.000 | 0.037 | 0.998 | 0.992, 1.004 | 0.568 |
ALA | 0.978 | 0.958, 1.000 | 0.046 | 1.008 | 0.983, 1.033 | 0.534 |
EPA | 1.005 | 0.997, 1.014 | 0.210 | 1.002 | 0.993, 1.011 | 0.640 |
DHA | 1.004 | 0.999, 1.008 | 0.108 | 1.001 | 0.997, 1.006 | 0.549 |
EPA+DHA | 1.002 | 0.999, 1.005 | 0.137 | 1.001 | 0.998, 1.004 | 0.579 |
Diabetes | ||||||
Omega-6 | 0.990 | 0.985, 0.995 | 0.001 | 0.993 | 0.986, 0.999 | 0.028 |
ALA | 0.941 | 0.919, 0.964 | 0.001 | 0.963 | 0.937, 0.990 | 0.008 |
EPA | 1.006 | 0.996, 1.016 | 0.227 | 1.004 | 0.994, 1.014 | 0.422 |
DHA | 1.004 | 0.999, 1.009 | 0.122 | 1.003 | 0.997, 1.008 | 0.344 |
EPA+DHA | 1.003 | 0.999, 1.006 | 0.152 | 1.002 | 0.998, 1.005 | 0.368 |
Obesity | ||||||
Omega-6 | 1.013 | 1.008, 1.018 | 0.001 | 0.837 | 0.038, 18.308 | 0.910 |
ALA | 1.039 | 1.015, 1.064 | 0.001 | 1.305 | 0.015, 43.652 | 0.973 |
EPA | 0.996 | 0.986, 1.006 | 0.407 | 0.967 | 0.012, 78.358 | 0.988 |
DHA | 0.996 | 0.991, 1.001 | 0.149 | 0.989 | 0.065, 14.941 | 0.989 |
EPA+DHA | 0.998 | 0.995, 1.001 | 0.218 | 0.991 | 0.185, 5.320 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho-Júnior, H.J.; Álvarez-Bustos, A.; Picca, A.; Calvani, R.; Rodriguez-Mañas, L.; Landi, F.; Marzetti, E. Dietary Intake of Polyunsaturated Fatty Acids Is Associated with Blood Glucose and Diabetes in Community-Dwelling Older Adults. Nutrients 2024, 16, 4087. https://doi.org/10.3390/nu16234087
Coelho-Júnior HJ, Álvarez-Bustos A, Picca A, Calvani R, Rodriguez-Mañas L, Landi F, Marzetti E. Dietary Intake of Polyunsaturated Fatty Acids Is Associated with Blood Glucose and Diabetes in Community-Dwelling Older Adults. Nutrients. 2024; 16(23):4087. https://doi.org/10.3390/nu16234087
Chicago/Turabian StyleCoelho-Júnior, Hélio José, Alejandro Álvarez-Bustos, Anna Picca, Riccardo Calvani, Leocadio Rodriguez-Mañas, Francesco Landi, and Emanuele Marzetti. 2024. "Dietary Intake of Polyunsaturated Fatty Acids Is Associated with Blood Glucose and Diabetes in Community-Dwelling Older Adults" Nutrients 16, no. 23: 4087. https://doi.org/10.3390/nu16234087
APA StyleCoelho-Júnior, H. J., Álvarez-Bustos, A., Picca, A., Calvani, R., Rodriguez-Mañas, L., Landi, F., & Marzetti, E. (2024). Dietary Intake of Polyunsaturated Fatty Acids Is Associated with Blood Glucose and Diabetes in Community-Dwelling Older Adults. Nutrients, 16(23), 4087. https://doi.org/10.3390/nu16234087