Impact of Gestational Diabetes Mellitus on Fetal Growth and Nutritional Status in Newborns
Highlights
- Gestational diabetes mellitus (GDM) exerts an influence on fetal growth and the nutritional status of the newborn through the altered regulation of adipokines and placental hormones. By influencing the signaling of adipokines and the activity of placental hormones, GDM disrupts the regulation of fetal growth and establishes the conditions for altered metabolic and nutritional profiles in newborns, with the potential for long-term health consequences.
- The manner in which weight is gained during pregnancy (gestational weight gain, GWG) is of critical importance in determining the outcomes for both the mother and the infant in pregnancies affected by gestational diabetes mellitus (GDM). An inappropriate GWG, whether excessive or inadequate, can exacerbate the risks associated with GDM.
- The uneven provision of nutrients during gestation influences the development of long-term metabolic pathways, which subsequently impact energy homeostasis, insulin sensitivity, and appetite regulation.
- The timely identification and appropriate management of gestational diabetes mellitus can help to mitigate the adverse effects on metabolic health for both mother and newborn. By disrupting intergenerational cycles of metabolic disorders, this can contribute to improved long-term health outcomes for both mother and child.
Abstract
:1. Introduction
2. The Metabolic Alterations That Occur in the Body During Physiological Pregnancy
2.1. Carbohydrate Metabolism During Physiological Pregnancy
2.2. Lipid Metabolism During Physiological Pregnancy
2.3. Protein Metabolism During Physiological Pregnancy
3. The Metabolic Changes That Occur in the Body During Pregnancy, When Gestational Diabetes Is Present
3.1. Hyperglycemia: Consequences for the Maternal, Fetal, and Newborn Populations
3.2. Lipid Metabolism in Women with Pregnancies Complicated by Diabetes Mellitus
3.3. Maternal Dyslipidemia and Its Impact on the Course of Pregnancy
3.4. Insulin and Insulin Growth Factors (IGF) and Their Impact on Pregnancy Outcomes
4. The Role of Placenta and the Changes That Occur in Its Function
5. Non-Pharmacological and Pharmacological Control of the Severity of Metabolic Disorders in the Course of Gestational Diabetes
5.1. Non-Pharmacological Control of Gestational Diabetes
5.2. Pharmacological Control of Gestational Diabetes
6. Novel Biomarkers for the Pathogenesis of Diabetes
7. A Literature Review of the Impact of Gestational Diabetes on Fetal Growth and the Nutritional Status of the Newborn
8. The Long-Term Consequences for the Offspring of Mothers with GDM
9. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wender-Ożegowska, E.; Bomba-Opoń, D.; Brązert, J.; Celewicz, Z.; Czajkowski, K.; Gutaj, P.; Malinowska-Polubiec, A.; Zawiejska, A.; Wielgoś, M. Standards of Polish Society of Gynecologists and Obstetricians in management of women with diabetes [Standardy Polskiego Towarzystwa Ginekologów i Położników postępowania u kobiet z cukrzycą]. Ginekol. Pol. 2018, 89, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Baz, B.; Riveline, J.P.; Gautier, J.F. Endocrinology of pregnancy: Gestational diabetes mellitus: Definition, aetiological and clinical aspects. Eur. J. Endocrinol. 2016, 174, R43–R51. [Google Scholar] [CrossRef] [PubMed]
- Manerkar, K.; Harding, J.; Conlon, C.; McKinlay, C. Maternal gestational diabetes and infant feeding, nutrition and growth: A systematic review and meta-analysis. Br. J. Nutr. 2020, 123, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Mitanchez, D.; Yzydorczyk, C.; Siddeek, B.; Boubred, F.; Benahmed, M.; Simeoni, U. The offspring of the diabetic mother—Short- and long-term implications. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenberg, S.J.; Georgieff, M.K.; Committee on Nutrition. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef]
- Catalano, P. The Diabetogenic State of Maternal Metabolism in Pregnancy. NeoReviews 2002, 3, e165–e172. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clin. Lipidol. 2010, 5, 899–911. [Google Scholar] [CrossRef]
- Herrera, E.; Desoye, G. Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm. Mol. Biol. Clin. Investig. 2016, 26, 109–127. [Google Scholar] [CrossRef]
- Barrett, H.L.; Dekker Nitert, M.; McIntyre, H.D.; Callaway, L.K. Normalizing metabolism in diabetic pregnancy: Is it time to target lipids? Diabetes Care 2014, 37, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E. Metabolic changes in diabetic pregnancy. In Diabetology of Pregnancy; Djelmiš, J., Desoye, G., Ivaniševic, M., Eds.; Karger: Basel, Switzerland, 2005; Volume 17, pp. 34–45. [Google Scholar] [CrossRef]
- Butte, N.F. Carbohydrate and lipid metabolism in pregnancy: Normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 2000, 71 (Suppl. S5), 1256S–1261S. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, D.; Radziszewska, R. The maternal diabetes mellitus and consequences for newborn. Endokrynol. Ped. 2015, 14, 43–51. [Google Scholar] [CrossRef]
- Świątoniowska, N.; Rozensztrauch, A. The influence of gestational diabetes mellitus on the developing baby. J. Educ. Health Sport 2017, 7, 575–584. [Google Scholar]
- Hiden, U.; Glitzner, E.; Hartmann, M.; Desoye, G. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J. Anat. 2009, 215, 60–68. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Owens, J.A.; Pringle, K.G.; Roberts, C.T. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth. J. Physiol. 2011, 589 Pt 1, 7–20. [Google Scholar] [CrossRef]
- Kaur, H.; Muhlhausler, B.S.; Roberts, C.T.; Gatford, K.L. The growth hormone-insulin like growth factor axis in pregnancy. J. Endocrinol. 2021, 251, R23–R39. [Google Scholar] [CrossRef]
- Umana-Perez, A.; Novoa-Herran, S.; Castro, J.; Correa-Sanchez, A.; Guevara, V.; Lopez-Gonzalez, D.; Sanchez-Gomez, M. Role of the Insulin-like growth factor axis and the Transforming growth factor-β in the regulation of the placenta and the pathogenesis of Gestational Trophoblastic Diseases. Med. Res. Arch. 2020, 8. [Google Scholar] [CrossRef]
- Thornton, J.M.; Shah, N.M.; Lillycrop, K.A.; Cui, W.; Johnson, M.R.; Singh, N. Multigenerational diabetes mellitus. Front. Endocrinol. 2024, 14, 1245899. [Google Scholar] [CrossRef]
- Calvo, M.J.; Parra, H.; Santeliz, R.; Bautista, J.; Luzardo, E.; Villasmil, N.; Martínez, M.S.; Chacín, M.; Cano, C.; Checa-Ros, A.; et al. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. Eur. Endocrinol. 2024, 20, 10–18. [Google Scholar] [CrossRef]
- Castillo-Castrejon, M.; Powell, T.L. Placental Nutrient Transport in Gestational Diabetic Pregnancies. Front. Endocrinol. 2017, 8, 306, Erratum in: Front. Endocrinol. 2019, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Stern, C.; Schwarz, S.; Moser, G.; Cvitic, S.; Jantscher-Krenn, E.; Gauster, M.; Hiden, U. Placental Endocrine Activity: Adaptation and Disruption of Maternal Glucose Metabolism in Pregnancy and the Influence of Fetal Sex. Int. J. Mol. Sci. 2021, 22, 12722. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Ortiz, A.; Flores-Espinosa, P.; Díaz, L.; Velázquez, P.; Ramírez-Isarraraz, C.; Zaga-Clavellina, V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int. J. Mol. Sci. 2021, 22, 8087. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Wong, I.; Moller, A.; Giachini, F.R.; Lima, V.V.; Toledo, F.; Stojanova, J.; Sobrevia, L.; San Martín, S. Placental structure in gestational diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165535. [Google Scholar] [CrossRef]
- Huang, J.; Wu, Y.; Li, H.; Cui, H.; Zhang, Q.; Long, T.; Zhang, Y.; Li, M. Weight Management during Pregnancy and the Postpartum Period in Women with Gestational Diabetes Mellitus: A Systematic Review and Summary of Current Evidence and Recommendations. Nutrients. 2023, 15, 5022. [Google Scholar] [CrossRef]
- Wei, X.; Zou, H.; Zhang, T.; Huo, Y.; Yang, J.; Wang, Z.; Li, Y.; Zhao, J. Gestational Diabetes Mellitus: What Can Medical Nutrition Therapy Do? Nutrients 2024, 16, 1217. [Google Scholar] [CrossRef]
- Mukherjee, S.M.; Dawson, A. Diabetes: How to manage gestational diabetes mellitus. Drugs Context 2022, 11, 1–11. [Google Scholar] [CrossRef]
- Mitanchez, D.; Ciangura, C.; Jacqueminet, S. How Can Maternal Lifestyle Interventions Modify the Effects of Gestational Diabetes in the Neonate and the Offspring? A Systematic Review of Meta-Analyses. Nutrients 2020, 12, 353. [Google Scholar] [CrossRef]
- Gestational Diabetes Mellitus. ACOG Practice Bulletin No. 190. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef]
- Mottola, M.F.; Artal, R. Fetal and maternal metabolic responses to exercise during pregnancy. Early Hum. Dev. 2016, 94, 33–41. [Google Scholar] [CrossRef]
- Anjana, R.M.; Sudha, V.; Lakshmipriya, N.; Anitha, C.; Unnikrishnan, R.; Bhavadharini, B.; Mahalakshmi, M.M.; Maheswari, K.; Kayal, A.; Ram, U.; et al. Physical activity patterns and gestational diabetes outcomes—The wings project. Diabetes Res. Clin. Pract. 2016, 116, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Russo, L.M.; Nobles, C.; Ertel, K.; Chasan-Taber, L.; Whitcomb, B.W. Physical activity interventions in pregnancy and risk of gestational diabetes mellitus. Obstet. Gynecol. 2015, 125, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Radenković, M.; Jakovljević, A. Pharmacotherapy of Gestational Diabetes Mellitus: Current Recommendations. In Gestational Diabetes Mellitus—New Developments; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Skóra, A.; Hajduk-Maślak, K.; Galasińska, I.; Michalik, B.; Szypuła, A.; Sęk, M. Gestational diabetes—Management strategies including pharmacological treatment and lifestyle interventions. J. Educ. Health Sport 2024, 62, 87–106. [Google Scholar] [CrossRef]
- Mukerji, G.; Feig, D.S. Pharmacological Management of Gestational Diabetes Mellitus. Drugs 2017, 77, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Karami, M.; Mousavi, S.H.; Rafiee, M.; Heidari, R.; Shahrokhi, S.Z. Biochemical and molecular biomarkers: Unraveling their role in gestational diabetes mellitus. Diabetol. Metab. Syndr. 2023, 15, 5. [Google Scholar] [CrossRef]
- Mallardo, M.; Ferraro, S.; Daniele, A.; Nigro, E. GDM-complicated pregnancies: Focus on adipokines. Mol. Biol. Rep. 2021, 48, 8171–8180. [Google Scholar] [CrossRef]
- Kabbani, N.; Blüher, M.; Stepan, H.; Stumvoll, M.; Ebert, T.; Tönjes, A.; Schrey-Petersen, S. Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines 2023, 11, 1419. [Google Scholar] [CrossRef]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Jaganathan, R.; Ravindran, R.; Dhanasekaran, S. Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. Can. J. Diabetes 2018, 42, 446–456.e1. [Google Scholar] [CrossRef]
- Franz, M.; Polterauer, M.; Springer, S.; Kuessel, L.; Haslinger, P.; Worda, C.; Worda, K. Maternal and neonatal omentin-1 levels in gestational diabetes. Arch. Gynecol. Obstet. 2018, 297, 885–889. [Google Scholar] [CrossRef]
- Mierzyński, R.; Dłuski, D.; Nowakowski, Ł.; Poniedziałek-Czajkowska, E.; Leszczyńska-Gorzelak, B. Adiponectin and Omentin Levels as Predictive Biomarkers of Preterm Birth in Patients with Gestational Diabetes Mellitus. Biomed. Res. Int. 2018, 2018, 7154216. [Google Scholar] [CrossRef] [PubMed]
- Abell, S.K.; Shorakae, S.; Harrison, C.L.; Hiam, D.; Moreno-Asso, A.; Stepto, N.K.; De Courten, B.; Teede, H.J. The association between dysregulated adipocytokines in early pregnancy and development of gestational diabetes. Diabetes Metab. Res. Rev. 2017, 33, e2926. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Scherer, P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2010, 1212, E1–E19, Erratum in: Ann. N. Y. Acad. Sci. 2011, 1226, 50. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wu, Y.; Xu, J.; Fang, Q.; Chen, D. Correlations of serum visfatin and metabolisms of glucose and lipid in women with gestational diabetes mellitus. J. Diabetes Investig. 2016, 7, 247–252. [Google Scholar] [CrossRef]
- Adeghate, E. Visfatin: Structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem. 2008, 15, 1851–1862. [Google Scholar] [CrossRef]
- El-Taweel, H.M.A.; Salah, N.A.; Selem, A.K.; El-Refaeey, A.A.; Abdel-Aziz, A.F. Visfatin gene expression and oxidative stress in pregnancy induced hypertension. Egypt. J. Basic Appl. Sci. 2018, 5, 69–74. [Google Scholar] [CrossRef]
- Marseglia, L.; D’Angelo, G.; Manti, M.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Visfatin: New marker of oxidative stress in preterm newborns. Int. J. Immunopathol. Pharmacol. 2016, 29, 23–29. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chang, D.M.; Lin, K.C.; Shin, S.J.; Lee, Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab. Res. Rev. 2011, 27, 515–527. [Google Scholar] [CrossRef]
- Coskun, A.; Ozkaya, M.; Kiran, G.; Kilinc, M.; Arikan, D.C. Plasma visfatin levels in pregnant women with normal glucose tolerance, gestational diabetes and pre-gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2010, 23, 1014–1018. [Google Scholar] [CrossRef]
- Mashhad Taraqi, A.S.; Tehranian, N.; Roudbaneh, S.P.; Esmaeilzadeh, M.S.; Kazemnejad, A.; Aghoozi, M.F.; Yousefi, S. Visfatin as a predictor for growth of fetus and infant. Turk. J. Obstet. Gynecol. 2018, 15, 80–86. [Google Scholar] [CrossRef]
- Bienertová-Vašků, J.; Bienert, P.; Zlámal, F.; Tomandl, J.; Tomandlová, M.; Dostálová, Z.; Vašků, A. Visfatin is secreted into the breast milk and is correlated with weight changes of the infant after the birth. Diabetes Res. Clin. Pract. 2012, 96, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, M.C.; Quansah, D.Y.; Gilbert, L.; Arhab, A.; Schenk, S.; Lacroix, A.; Stuijfzand, B.; Horsch, A.; Puder, J.J. Association between maternal and fetal inflammatory biomarkers and offspring weight and BMI during the first year of life in pregnancies with GDM: MySweetheart study. Front. Endocrinol. 2024, 15, 1333755. [Google Scholar] [CrossRef] [PubMed]
- Downs, T.; da Silva Costa, F.; de Freitas Paganoti, C.; Holland, O.J.; Hryciw, D.H. Adiponectin and Leptin during Pregnancy: A Systematic Review of Their Association with Pregnancy Disorders, Fetal Growth and Placental Function. Endocrines 2024, 5, 382–394. [Google Scholar] [CrossRef]
- Immanuel, J.; Simmons, D.; Harreiter, J. Metabolic phenotypes of early gestational diabetes mellitus and their association with adverse pregnancy outcomes. Diabet. Med. 2021, 38, e14413. [Google Scholar] [CrossRef]
- Koning, S.H.; Hoogenberg, K.; Scheuneman, K.A.; Baas, M.G.; Korteweg, F.J.; Sollie, K.M.; Schering, B.J.; van Loon, A.J.; Wolffenbuttel, B.H.R.; van den Berg, P. Neonatal and obstetric outcomes in diet- and insulin-treated women with gestational diabetes mellitus: A retrospective study. BMC Endocr. Disord. 2016, 16, 52. [Google Scholar] [CrossRef]
- Riskin, A.; Itzchaki, O.; Bader, D.; Iofe, A.; Toropine, A.; Riskin-Mashiah, S. Perinatal Outcomes in Infants of Mothers with Diabetes in Pregnancy. Isr. Med. Assoc. J. 2020, 22, 569–575. [Google Scholar]
- Verd, S.; de Sotto, D.; Fernández, C.; Gutiérrez, A. The Effects of Mild Gestational Hyperglycemia on Exclusive Breastfeeding Cessation. Nutrients 2016, 8, 742. [Google Scholar] [CrossRef]
- Fazel-Sarjoui, Z.; Khodayari Namin, A.; Kamali, M.; Khodayari Namin, N.; Tajik, A. Complications in neonates of mothers with gestational diabetes mellitus receiving insulin therapy versus dietary regimen. Int. J. Reprod. Biomed. 2016, 14, 275–278. [Google Scholar] [CrossRef]
- Silva, A.L.; Amaral, A.R.; Oliveira, D.S.; Martins, L.; Silva, M.R.; Silva, J.C. Neonatal outcomes according to different therapies for gestational diabetes mellitus. J. Pediatr. 2017, 93, 87–93. [Google Scholar] [CrossRef]
- Maayan-Metzger, A.; Schushan-Eisen, I.; Strauss, T.; Globus, O.; Leibovitch, L. Gestational weight gain and body mass indexes have an impact on the outcomes of diabetic mothers and infants. Acta Paediatr. 2015, 104, 1150–1155. [Google Scholar] [CrossRef]
- Wang, N.; Ding, Y.; Wu, J. Effects of pre-pregnancy body mass index and gestational weight gain on neonatal birth weight in women with gestational diabetes mellitus. Early Hum. Dev. 2018, 124, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Abreu, L.R.S.; Shirley, M.K.; Castro, N.P.; Euclydes, V.V.; Bergamaschi, D.P.; Luzia, L.A.; Cruz, A.M.; Rondó, P.H.C. Gestational diabetes mellitus, pre-pregnancy body mass index, and gestational weight gain as risk factors for increased fat mass in Brazilian newborns. PLoS ONE 2019, 14, e0221971. [Google Scholar] [CrossRef] [PubMed]
- Andersson-Hall, U.K.; Järvinen, E.A.J.; Bosaeus, M.H.; Gustavsson, C.E.; Hårsmar, E.J.; Niklasson, C.A.; Albertsson-Wikland, K.G.; Holmäng, A.B. Maternal obesity and gestational diabetes mellitus affect body composition through infancy: The PONCH study. Pediatr. Res. 2019, 85, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Jang, H.C. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab. J. 2022, 46, 3–14. [Google Scholar] [CrossRef]
- Meek, C.L. An unwelcome inheritance: Childhood obesity after diabetes in pregnancy. Diabetologia 2023, 66, 1961–1970. [Google Scholar] [CrossRef]
- Kaul, P.; Bowker, S.L.; Savu, A.; Yeung, R.O.; Donovan, L.E.; Ryan, E.A. Association between maternal diabetes, being large for gestational age and breast-feeding on being overweight or obese in childhood. Diabetologia 2019, 62, 249–258. [Google Scholar] [CrossRef]
- Chen, A.; Tan, B.; Du, R.; Chong, Y.S.; Zhang, C.; Koh, A.S.; Li, L.J. Gestational diabetes mellitus and development of intergenerational overall and subtypes of cardiovascular diseases: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2024, 23, 320. [Google Scholar] [CrossRef]
- Rodolaki, K.; Pergialiotis, V.; Iakovidou, N.; Boutsikou, T.; Iliodromiti, Z.; Kanaka-Gantenbein, C. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: A review of the evidence. Front. Endocrinol. 2023, 14, 1125628. [Google Scholar] [CrossRef]
- Chen, K.R.; Yu, T.; Lien, Y.J.; Chou, Y.Y.; Kuo, P.L. Childhood neurodevelopmental disorders and maternal diabetes: A population-based cohort study. Dev. Med. Child. Neurol. 2023, 65, 933–941. [Google Scholar] [CrossRef]
- Titmuss, A.; D’Aprano, A.; Barzi, F.; Brown, A.D.H.; Wood, A.; Connors, C.; Boyle, J.A.; Moore, E.; O’Dea, K.; Oats, J.; et al. Hyperglycemia in pregnancy and developmental outcomes in children at 18–60 months of age: The PANDORA Wave 1 study. J. Dev. Orig. Health Dis. 2022, 13, 695–705. [Google Scholar] [CrossRef]
- Leth-Møller, M.; Hulman, A.; Kampmann, U.; Hede, S.; Ovesen, P.G.; Knorr, S. Effect of gestational diabetes on fetal growth rate and later overweight in the offspring. J. Clin. Endocrinol. Metab. 2024, dgae428. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Tocci, V.; Greco, E.; Foti, D.; Brunetti, A. Gestational diabetes: Implications for fetal growth, intervention timing, and treatment options. Curr. Opin. Pharmacol. 2021, 60, 1–10. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karcz, K.; Królak-Olejnik, B. Impact of Gestational Diabetes Mellitus on Fetal Growth and Nutritional Status in Newborns. Nutrients 2024, 16, 4093. https://doi.org/10.3390/nu16234093
Karcz K, Królak-Olejnik B. Impact of Gestational Diabetes Mellitus on Fetal Growth and Nutritional Status in Newborns. Nutrients. 2024; 16(23):4093. https://doi.org/10.3390/nu16234093
Chicago/Turabian StyleKarcz, Karolina, and Barbara Królak-Olejnik. 2024. "Impact of Gestational Diabetes Mellitus on Fetal Growth and Nutritional Status in Newborns" Nutrients 16, no. 23: 4093. https://doi.org/10.3390/nu16234093
APA StyleKarcz, K., & Królak-Olejnik, B. (2024). Impact of Gestational Diabetes Mellitus on Fetal Growth and Nutritional Status in Newborns. Nutrients, 16(23), 4093. https://doi.org/10.3390/nu16234093