Effects of Nutritional Support with a Leucine-Enriched Essential Amino Acid Supplement on Body Composition, Muscle Strength, and Physical Function in Stroke Patients Undergoing Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Participants
- (1)
- Myocardial infarction, unstable angina, or peripheral artery disease in the past 6 months
- (2)
- Cardiac insufficiency in the acute phase
- (3)
- Under treatment for a malignant tumor
- (4)
- Undergone surgery in the past 6 months
- (5)
- Allergy to milk and/or soybean
- (6)
- Judged inappropriate as a subject of the study by the investigator.
2.3. Registration Procedure
2.4. Protocol Treatment
2.5. Rehabilitation Program
2.6. Evaluation of the Results
- (1)
- General pharmacological tests (red blood cell count, white blood cell count, hemoglobin, hematocrit, platelet count, aspartate aminotransferase, alanine transaminase, gamma-glutamyl transpeptidase, alkaline phosphatase, lactate dehydrogenase, serum creatinine, estimated glomerular filtration rate [eGFR], uric acid, albumin, and C-reactive protein
- (2)
- Nutritional markers: geriatric nutritional risk index (GNRI) [18], serum prealbumin and serum retinol-binding protein
- (3)
- Urine examination (spot urine): urinary microalbumin and urine creatinine
- (4)
- Other markers (cardiac marker: NT-pro BNP, to consider potential cardiovascular comorbidities affecting the overall outcomes)
- (5)
- Electrocardiogram (12 leads)
- (6)
- Body composition (muscle and adipose mass) using InBody S10 (InBody, Tokyo, Japan) is a validated bioelectrical impedance analysis (BIA) instrument [19]
- (7)
- Motor function (unaffected grasping power, knee extension strength, 10-m walking steps and velocity, 2-min walking distance, standing up from a sitting position on a chair [30 s]).
- (8)
- Functional Independence Measure (FIM) [15]
- (9)
- Sarcopenia was diagnosed based on the Asian Working Group for Sarcopenia (AWGS) 2019 criteria of low muscle mass, low muscle strength, or low physical function [20]. Sarcopenia was defined as having a low appendicular skeletal muscle mass (ASM), <7.0 kg/m2 in men and <5.7 kg/m2 in women using BIA, with either low muscle strength (the cut-off for low muscle strength on the non-paralyzed side was <28 kg for males and <18 kg for females) or low physical performance (the cut-offs for low physical performance was a usual gait speed <1.0 m/s). Severe sarcopenia was defined as low ASM with both low muscle strength and low physical performance.
2.7. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Baseline Characteristics
3.3. Primary Outcomes
3.4. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owolabi, M.O.; Thrift, A.G.; Mahal, A.; Ishida, M.; Martins, S.; Johnson, W.D.; Pandian, J.; Abd-Allah, F.; Yaria, J.; Phan, H.T.; et al. Primary stroke prevention worldwide: Translating evidence into action. Lancet Public Health 2022, 7, e74–e85. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Chu, F.C.; Chow, T.W.; Shum, N.C. Prevalence of malnutrition and its risk factors in stroke patients residing in an infirmary. Singap. Med. J. 2008, 49, 290–296. [Google Scholar]
- Finestone, H.M.; Greene-Finestone, L.S.; Wilson, E.S.; Teasell, R.W. Malnutrition in stroke patients on the rehabilitation service and at follow-up: Prevalence and predictors. Arch. Phys. Med. Rehabil. 1995, 76, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Nakagawa, N.; Koyama, S.; Maruyama, J.I.; Hasebe, N. Malnutrition Increases the Incidence of Death, Cardiovascular Events, and Infections in Patients with Stroke after Rehabilitation. J. Stroke Cerebrovasc. Dis. 2018, 27, 716–723. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6. [Google Scholar] [CrossRef]
- Kim, H.K.; Suzuki, T.; Saito, K.; Yoshida, H.; Kobayashi, H.; Kato, H.; Katayama, M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012, 60, 16–23. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nozoe, M.; Ikeji, R.; Seike, H.; Yoshida, Y.; Shomoto, K. Anorexia assessment using the Simplified Nutritional Appetite Questionnaire and its association with activities of daily living in patients with stroke. Nutrition 2024, 117, 112238. [Google Scholar] [CrossRef]
- Akimoto, T.; Hara, M.; Morita, A.; Uehara, S.; Nakajima, H. Relationship between Nutritional Scales and Prognosis in Elderly Patients after Acute Ischemic Stroke: Comparison of Controlling Nutritional Status Score and Geriatric Nutritional Risk Index. Ann. Nutr. Metab. 2021, 77, 116–123. [Google Scholar] [CrossRef]
- Ikeji, R.; Nozoe, M.; Yamamoto, M.; Seike, H.; Kubo, H.; Shimada, S. Sarcopenia in patients following stroke: Prevalence and associated factors. Clin. Neurol. Neurosurg. 2023, 233, 107910. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; von Haehling, S.; Anker, S.D.; Dirnagl, U.; Doehner, W. Stroke induced Sarcopenia: Muscle wasting and disability after stroke. Int. J. Cardiol. 2013, 170, 89–94. [Google Scholar] [CrossRef]
- Formiga, F.; Moreno-Gonzalez, R.; Corsonello, A.; Carlsson, A.; Arnlov, J.; Mattace-Raso, F.; Kostka, T.; Weingart, C.; Roller-Wirnsberger, R.; Tap, L.; et al. Diabetes, sarcopenia and chronic kidney disease; the Screening for CKD among Older People across Europe (SCOPE) study. BMC Geriatr. 2022, 22, 254. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, A.E.; Greig, C.A. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open 2017, 7, e014619. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Arai, H.; Yoshimura, K.; Kajiwara, Y.; Sonoda, T.; Nishiguchi, S.; Aoyama, T. Nutritional Supplementation during Resistance Training Improved Skeletal Muscle Mass in Community-Dwelling Frail Older Adults. J. Frailty Aging 2012, 1, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yuki, M.; Otsuki, M. Prevalence of stroke-related sarcopenia: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2020, 29, 105092. [Google Scholar] [CrossRef]
- Miyai, I.; Sonoda, S.; Nagai, S.; Takayama, Y.; Inoue, Y.; Kakehi, A.; Kurihara, M.; Ishikawa, M. Results of new policies for inpatient rehabilitation coverage in Japan. Neurorehabil. Neural Repair 2011, 25, 540–547. [Google Scholar] [CrossRef]
- Chumney, D.; Nollinger, K.; Shesko, K.; Skop, K.; Spencer, M.; Newton, R.A. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: Systematic review. J. Rehabil. Res. Dev. 2010, 47, 17–29. [Google Scholar] [CrossRef]
- Moriwaki, M.; Wakabayashi, H.; Sakata, K.; Domen, K. The Effect of Branched Chain Amino Acids-Enriched Nutritional Supplements on Activities of Daily Living and Muscle Mass in Inpatients with Gait Impairments: A Randomized Controlled Trial. J. Nutr. Health Aging 2019, 23, 348–353. [Google Scholar] [CrossRef]
- Nakagawa, N.; Maruyama, K.; Hasebe, N. Utility of Geriatric Nutritional Risk Index in Patients with Chronic Kidney Disease: A Mini-Review. Nutrients 2021, 13, 3688. [Google Scholar] [CrossRef]
- Tanaka, H.; Kitamura, G.; Tamura, M.; Nankaku, M.; Taniguchi, M.; Kikuchi, T.; Maki, T.; Ikeguchi, R.; Miyamoto, S.; Takahashi, R.; et al. Pre-stroke physical activity is associated with post-stroke physical activity and sedentary behavior in the acute phase. Sci. Rep. 2023, 13, 21298. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Fiatarone, M.A.; O’Neill, E.F.; Ryan, N.D.; Clements, K.M.; Solares, G.R.; Nelson, M.E.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994, 330, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Lee, S.J.; Choi, E.; Lee, S.; Lee, J. The Effect of Branched Chain Amino Acid Supplementation on Stroke-Related Sarcopenia. Front. Neurol. 2022, 13, 744945. [Google Scholar] [CrossRef] [PubMed]
- Saijo, Y.; Utsugi, M.; Yoshioka, E.; Fukui, T.; Sata, F.; Nakagawa, N.; Hasebe, N.; Yoshida, T.; Kishi, R. Inflammation as a cardiovascular risk factor and pulse wave velocity as a marker of early-stage atherosclerosis in the Japanese population. Environ. Health Prev. Med. 2009, 14, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, N.; Matsuki, M.; Yao, N.; Hirayama, T.; Ishida, H.; Kikuchi, K.; Hasebe, N. Impact of Metabolic Disturbances and Malnutrition-Inflammation on 6-Year Mortality in Japanese Patients Undergoing Hemodialysis. Ther. Apher. Dial. 2015, 19, 30–39. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznaric, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef]
- Dodd, K.M.; Tee, A.R. Leucine and mTORC1: A complex relationship. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1329–E1342. [Google Scholar] [CrossRef]
- Takeuchi, I.; Yoshimura, Y.; Shimazu, S.; Jeong, S.; Yamaga, M.; Koga, H. Effects of branched-chain amino acids and vitamin D supplementation on physical function, muscle mass and strength, and nutritional status in sarcopenic older adults undergoing hospital-based rehabilitation: A multicenter randomized controlled trial. Geriatr. Gerontol. Int. 2019, 19, 12–17. [Google Scholar] [CrossRef]
Variables at Baseline | Rehabilitation Alone (n = 31) | Rehabilitation + Nutrition (n = 29) | p-Value |
---|---|---|---|
Median age, years (IQR) | 72 (66–77) | 70 (65–78) | 0.796 |
Sex, n (%) | 0.320 | ||
Male | 22 (71.0) | 17 (58.6) | |
Female | 9 (29.0) | 12 (41.4) | |
Body mass index, kg/m2 (SD) | 24.3 ± 3.1 | 23.8 ± 3.4 | 0.437 |
Systolic blood pressure (mmHg) | 126.6 ± 9.1 | 125.1 ± 9.1 | 0.543 |
Diastolic blood pressure (mmHg) | 73.2 ± 7.7 | 71.6 ± 8.9 | 0.426 |
Pulse rate (min) | 73.5 ± 10.2 | 72.5 ± 9.2 | 0.832 |
White blood cell count (/µL) | 5640.0 ± 1484.3 | 5872.1 ± 2037.2 | 0.564 |
Hemoglobin (g/dL) | 14.2 ± 1.9 | 13.9 ± 1.4 | 0.153 |
Platelet count (×104/µL) | 23.6 ± 5.5 | 22.1 ± 6.8 | 0.283 |
Serum aspartate transaminase (U/L) | 22.5 ± 5.2 | 22.6 ± 5.4 | 0.733 |
Serum alanine transaminase (U/L) | 19.4 ± 8.6 | 20.7 ± 10.5 | 0.744 |
Serum γ-glutamyl transpeptidase (U/L) | 28.8 ± 11.8 | 40.3 ± 45.3 | 0.894 |
Serum creatinine (mg/dL) | 0.8 ± 0.2 | 0.8 ± 0.2 | 0.976 |
eGFR-creatinine (mL/min/1.73 m2) | 81.9 ± 20.1 | 84.6 ± 29.3 | 0.756 |
Serum cystatin C (mg/L) | 1.1 ± 0.1 | 1.1 ± 0.2 | 0.882 |
eGFR-cystatin C (mL/min/1.73 m2) | 65.9 ± 10.8 | 67.2 ± 18.4 | 0.690 |
Serum uric acid (mg/dL) | 5.3 ± 1.4 | 5.3 ± 1.2 | 0.745 |
Serum albumin (g/dL) | 4.2 ± 0.2 | 4.2 ± 0.3 | 0.846 |
Serum prealbumin (mg/dL) | 24.4 ± 5.9 | 24.1 ± 4.8 | 0.982 |
Serum retinol-binding protein (mg/dL) | 2.9 ± 0.9 | 2.8 ± 0.7 | 0.651 |
Geriatric nutritional risk index | 103.2 ± 3.7 | 102.9 ± 4.7 | 0.931 |
Serum C-reactive protein (mg/dL) | 0.2 ± 0.3 | 0.1 ± 0.1 | 0.768 |
Urine protein creatinine ratio (g/gCr) | 0.01 ± 0.04 | 0.02 ± 0.04 | 0.292 |
Serum NT-proBNP (pg/mL) | 150.8 ± 435.8 | 127.9 ± 355.6 | 0.680 |
Skeletal muscle mass (kg) | 22.9 ± 4.7 | 21.2 ± 4.0 | 0.176 |
Bone minerals (kg) | 2.3 ± 0.4 | 2.2 ± 0.3 | 0.135 |
Body fat mass (kg) | 20.9 ± 7.0 | 19.5 ± 7.3 | 0.520 |
Basal metabolism rate (kcal) | 1292.7 ± 169.2 | 1228.0 ± 140.0 | 0.128 |
Muscle strength | |||
Hand grip (kgf) Paretic side | 13.8 ± 9.8 | 11.7 ± 10.5 | 0.342 |
Hand grip (kgf) Non-paretic side | 29.2 ± 9.4 | 27.3 ± 7.3 | 0.336 |
Leg extensor torque (N) Paretic side | 175.3 ± 111.8 | 163.7 ± 91.6 | 0.673 |
Leg extensor torque (N) Non-paretic side | 235.9 ± 158.4 | 254.5 ± 102.8 | 0.222 |
Motor function | |||
Confortable 10-m walking speed (m/s) | 0.94 ± 0.96 | 0.86 ± 0.72 | 0.791 |
Maximum 10-m walking speed (m/s) | 1.22 ± 1.18 | 1.05 ± 0.92 | 0.438 |
2-min walking distance (m) | 96.6 ± 51.8 | 85.4 ± 48.5 | 0.474 |
30-s Chair test (times) | 12.8 ± 6.7 | 11.4 ± 4.3 | 0.795 |
Functional Independence Measure | |||
Total | 114.6 ± 18.5 | 114.8 ± 11.1 | 0.509 |
Motor | 81.9 ± 13.0 | 81.7 ± 9.2 | 0.302 |
Cognitive | 32.7 ± 6.0 | 33.1 ± 3.7 | 0.362 |
Sarcopenia | 16 (51.6%) | 17 (58.6%) | 0.974 |
Severe sarcopenia | 5 (16.1%) | 6 (20.7%) | 0.643 |
Variables at Baseline | Rehabilitation Alone (n = 31) | Rehabilitation + Nutrition (n = 29) | p-Value |
---|---|---|---|
ΔBody mass index, kg/m2 (SD) | −0.06 ± 0.48 | 0.24 ± 0.65 | 0.020 |
ΔSystolic blood pressure (mmHg) | −4.2 ± 13.4 | 1.6 ± 12.2 | 0.139 |
ΔDiastolic blood pressure (mmHg) | −2.3 ± 9.1 | −1.7 ± 7.8 | 0.779 |
ΔPulse rate (min) | 0.6 ± 7.2 | −0.3 ± 5.8 | 0.732 |
ΔWhite blood cell count (/uL) | 144.8 ± 833.9 | −185.2 ± 1211.6 | 0.294 |
ΔHemoglobin (g/dL) | −0.01 ± 0.53 | 0.02 ± 0.69 | 0.959 |
ΔPlatelet count (×104/uL) | −1.0 ± 2.9 | −0.1 ± 2.8 | 0.141 |
ΔSerum aspartate transaminase (U/L) | 0.35 ± 3.86 | 0.52 ± 4.14 | 0.870 |
ΔSerum alanine transaminase (U/L) | 0.97 ± 4.76 | −0.03 ± 6.54 | 0.389 |
ΔSerum γ-glutamyl transpeptidase (U/L) | 1.23 ± 6.62 | −0.86 ± 14.18 | 0.807 |
ΔSerum creatinine (mg/dL) | −0.01 ± 0.07 | −0.02 ± 0.08 | 0.553 |
ΔeGFR-creatinine (mL/min/1.73 m2) | 1.32 ± 6.97 | 1.44 ± 10.73 | 0.668 |
ΔSerum cystatin C (mg/L) | −0.01 ± 0.11 | −0.03 ± 0.09 | 0.446 |
ΔeGFR-cystatin C (mL/min/1.73 m2) | 1.69 ± 7.18 | 2.22 ± 6.52 | 0.487 |
ΔSerum uric acid (mg/dL) | −0.04 ± 0.69 | −0.29 ± 0.75 | 0.269 |
ΔSerum albumin (g/dL) | −0.03 ± 0.20 | −0.03 ± 0.25 | 0.562 |
ΔSerum prealbumin (mg/dL) | 0.22 ± 2.48 | −0.03 ± 2.68 | 0.713 |
ΔSerum retinol-binding protein (mg/dL) | 0.08 ± 0.31 | −0.03 ± 2.68 | 0.088 |
ΔGeriatric nutritional risk index | −0.03 ± 0.54 | 0.10 ± 0.29 | 0.139 |
ΔSerum C-reactive protein (mg/dL) | 0.02 ± 0.27 | 0.01 ± 0.11 | 0.743 |
ΔUrine protein creatinine ratio (g/gCr) | 0.01 ± 0.10 | 0.02 ± 0.13 | 0.146 |
ΔSerum NT-proBNP (pg/mL) | −22.4 ± 95.7 | 7.4 ± 99.7 | 0.383 |
ΔSkeletal muscle mass (kg) | −0.06 ± 0.70 | −0.01 ± 0.54 | 0.269 |
ΔBone minerals (kg) | −0.04 ± 0.07 | −0.01 ± 0.07 | 0.006 |
ΔBody fat mass (kg) | −0.12 ± 1.38 | 0.95 ± 2.42 | 0.076 |
ΔBasal metabolism rate (kcal) | −6.6 ± 19.8 | 1.5 ± 20.5 | 0.092 |
ΔMuscle strength | |||
ΔHand grip (kgf) Paretic side | 0.94 ± 3.70 | 2.60 ± 8.12 | 0.834 |
ΔHand grip (kgf) Non-paretic side | −3.15 ± 11.68 | −1.28 ± 8.78 | 0.749 |
ΔLeg extensor torque (N) Paretic side | 28.02 ± 76.61 | 27.94 ± 58.74 | 0.587 |
ΔLeg extensor torque (N) Non-paretic side | 14.96 ± 79.20 | 34.76 ± 59.04 | 0.201 |
ΔMotor function | |||
ΔConfortable 10-m walking speed (m/s) | 0.02 ± 0.12 | 0.01 ± 0.15 | 0.403 |
ΔMaximum 10-m walking speed (m/s) | 0.02 ± 0.15 | 0.01 ± 0.13 | 0.857 |
Δ2-min walking distance (m) | 3.04 ± 11.30 | 3.38 ± 15.89 | 0.931 |
Δ30-s Chair test (times) | 0.40 ± 2.08 | 1.26 ± 2.78 | 0.603 |
ΔFunctional Independence Measure | |||
ΔTotal | −0.1 ± 1.6 | 0.1 ± 1.1 | 0.584 |
ΔMotor | 0.2 ± 0.6 | 0.1 ± 1.1 | 0.184 |
ΔCognitive | 0.0 ± 0.0 | 0.0 ± 0.0 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagawa, N.; Koyama, S.; Maruyama, K.; Maruyama, J.-I.; Hasebe, N. Effects of Nutritional Support with a Leucine-Enriched Essential Amino Acid Supplement on Body Composition, Muscle Strength, and Physical Function in Stroke Patients Undergoing Rehabilitation. Nutrients 2024, 16, 4264. https://doi.org/10.3390/nu16244264
Nakagawa N, Koyama S, Maruyama K, Maruyama J-I, Hasebe N. Effects of Nutritional Support with a Leucine-Enriched Essential Amino Acid Supplement on Body Composition, Muscle Strength, and Physical Function in Stroke Patients Undergoing Rehabilitation. Nutrients. 2024; 16(24):4264. https://doi.org/10.3390/nu16244264
Chicago/Turabian StyleNakagawa, Naoki, Satoshi Koyama, Keisuke Maruyama, Jun-Ichi Maruyama, and Naoyuki Hasebe. 2024. "Effects of Nutritional Support with a Leucine-Enriched Essential Amino Acid Supplement on Body Composition, Muscle Strength, and Physical Function in Stroke Patients Undergoing Rehabilitation" Nutrients 16, no. 24: 4264. https://doi.org/10.3390/nu16244264
APA StyleNakagawa, N., Koyama, S., Maruyama, K., Maruyama, J.-I., & Hasebe, N. (2024). Effects of Nutritional Support with a Leucine-Enriched Essential Amino Acid Supplement on Body Composition, Muscle Strength, and Physical Function in Stroke Patients Undergoing Rehabilitation. Nutrients, 16(24), 4264. https://doi.org/10.3390/nu16244264