The Impact and Efficacy of Vitamin D Fortification
Abstract
:1. Introduction
2. Magnitude of Vitamin D Deficiency
3. Public Health Intervention Measures
3.1. Global Initiatives
3.2. Regional Initiatives
3.3. Local Initiatives
4. Materials and Methods
4.1. Literature Search Strategy
4.2. Study Selection
4.3. Data Extraction
5. Results
5.1. Summary of Included Studies
5.1.1. Articles General Characteristics
5.1.2. Fortified Foods
5.1.3. Fortification Doses
5.1.4. Fortification Processes
5.2. Summary of the Findings
5.2.1. Impact of Fortification on 25-Hydroxyvitamin D Serum Levels
5.2.2. Impact of Fortification on Vitamin D Intake
5.2.3. Impact of Fortification on Health
5.2.4. Stability, Bio-Accessibility, Bioavailability, and Cost-Effectiveness of Vitamin D Fortification
Author/Year | Country | Study Design | Study Sample | Fortified Food | Fortification Dose | Fortification Process | Key Findings |
---|---|---|---|---|---|---|---|
Pourmohamadkhan, M., et al., 2023 [57] | Iran | Simulation study | 9704 Iranian aged 35–65 years | Butter, white bread, whole bread, milk, yogurt, cheese, and doogh | NA | NA |
|
Sengupta, S., et al., 2023 [58] | Denmark | Simulation study | 3952 participants aged 4–75 years |
| NA | NA |
|
Vičič, V., et al., 2022 [60] | Slovenia | Simulation study | 176 participants aged 44–65 years | Egg, milk, and yogurt | NA | NA |
|
Ghasemifard, N., et al., 2022 [68] | Iran | RCT | 93 participants aged 18–30 years | Canola oil | 1000 IU (25 µg)/25 g | Direct addition of vitamin D3 |
|
Christensen, T., et al., 2022 [61] | Denmark | Simulation study | 3946 participants aged 4–75 years |
| 800. 1000, or 1200 IU (20, 25, or 30 µg)/10 MJ (239 kcal) | NA |
|
Foulkes, S., et al., 2021 [69] | Australia | RCT | 180 participants aged 50–79 years | Milk | 800 IU (20 µg)/day | NA |
|
Martucci, M., 2020 [75] | Italy | RCT | 48 participants aged 63–80 years | Milk | NA | NA |
|
Grønborg, I. M., et al., 2020 [76] | Denmark | RCT | 143 Danish and Pakistani females aged 18–50 years | Yogurt, cheese, eggs, and crisp bread | 800 IU (20 µg)/day | NA |
|
Calame, W., et al., 2020 [62] | UK | Simulation study | 3770 participants aged 4 years and older | Ready-to-eat breakfast cereals | 168 IU (4.2 μg)/100 g | NA |
|
Durrant, L. R., et al., 2020 [77] | UK | RCT | 335 White European and South Asian females aged 18–50 years | Orange juice and biscuits | 600 IU (15 µg)/day | NA |
|
Ghasemifard, N., et al., 2020 [78] | Iran | RCT | 93 participants aged 18–30 years | Canola oil | 1000 IU (25 µg)/25 g | NA |
|
Nikooyeh, B., et al., 2020 [79] | Iran | RCT | 65 participants, mean age 32.5 ± 4 years | Sunflower oil | 500 IU (12.5 µg)/25 g | NA |
|
Grønborg, I. M., et al., 2019 [63] | Denmark | Simulation study | 855 participants aged 18–50 years | Yogurt, cheese, eggs, and crisp-bread | 800 IU (20 µg)/day | NA |
|
Grønborg, I. M., et al., 2019 [80] | Denmark | RCT | 143 Danish and Pakistani females aged 18–50 years | Yogurt, cheese, eggs, and crisp-bread. | 1200 IU (30 μg)/day | NA |
|
Moyersoen, I., et al., 2019 [64] | Belgium | Simulation study | 3200 participants aged 3–64 years | Bread, breakfast cereals, fats and oils, fruit juices, milk, and yogurt and cream cheese | 276 IU (6.9 μg)/100 kcal | NA |
|
Lovegrove, J. A. 2017 [81] | UK | RCT | 17 men with suboptimal vitamin D status, aged 30–65 years | Milk | 800 IU (20 μg)/day | NA |
|
Jääskeläinen, T., et al., 2017 [83] | Finland | Cohort Study | 17,251 Finnish participants, aged 30 years and older |
|
| NA |
|
Harika, R. K., et al., 2017 [65] | Netherlands, the UK, and Sweden. | Simulation study | 3411 participants aged 18–50 years |
|
| NA |
|
Tripkovic, L., et al., 2017 [82] | United Kingdom | RCT | 335 participants aged 18–61 years | Juice and biscuits | 600 IU (15 μg)/day | NA |
|
Levinson, Y., et al., 2016 [70] | Israel | RCT | 87 participants aged 18–61 years | Yogurt | 50,000 IU (1250 μg)/day | Encapsulation techniques (rCMs and polysorbate-80) |
|
Itkonen, S. T., et al., 2016 [71] | Finland | RCT | 33 female aged 20–37 years | Bread | 1000 IU (25 µg)/day | UV-treated yeast |
|
Nikooyeh, B., et al., 2016 [72] | Iran | RCT | 90 participants aged 20–60 years | Bread | 1000 IU (25 µg)/50 g | NA |
|
Ejtahed, H. S., et al., 2016 [66] | Iran | Simulation study | 5224 Iranian participants aged 18–50 years |
|
| NA |
|
Al-Khalidi, B., et al., 2015 [73] | Canada | RCT | 96 participants aged 18–70 years | Mozzarella cheese baked on pizza | 200 IU (5 µg) or 28,000 (700 µg) IU/28 g | Direct addition of vitamin D3 |
|
Allen, R. E., et al., 2015 [67] | UK | Simulation study | 2127 participants aged 8 months and older |
|
| NA |
|
Tripkovic, L., et al., 2015 [74] | Australia | RCT | 335 women aged 20–64 | Orange juice and biscuit | 600 IU (15 μg)/d | NA |
|
Black, L. J., et al., 2015 [59] | Ireland | Simulation study | 2653 participants aged 18–64 years |
|
| NA |
|
Nzekoue, F. K., et al., 2021 [87] | Italy | Experimental Study | NA | Ricotta cheese | 2000 IU (50 µg)/100 g | Direct addition of vitamin D3 |
|
Khan, W. A., et al., 2020 [84] | Pakistan, US, and China | Vitro and Vivo study | 32 Sprague Dawley rats | Mayonnaise | NA | Encapsulation techniques (whey and soy protein) |
|
Schoener, A. L., et al., 2019 [85] | Germany and US | Vitro study | NA | Corn oil, flaxseed oil, and fish oil | 1.0 million IU (25,000 µg)/g | Encapsulation techniques |
|
Lipkie, T. E., et al., 2016 [86] | US | Vitro study | NA | Bread | 100 IU (2.5 µg)/50 g | UV-treated yeast or crystalline vitamin D2 in dough |
|
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.B.J.; Barros, W.M.A.; da Silva, M.L.; Silva, J.M.L.; da Silva Souza, A.P.; da Silva, K.G.; de Sousa Fernandes, M.S.; da Fonseca Carneiro, A.C.B.; de Oliveira Nogueira Souza, V.; Lagranha, C.J. Impact of vitamin D on cognitive functions in healthy individuals: A systematic review in randomized controlled clinical trials. Front. Psychol. 2022, 13, 987203. [Google Scholar] [CrossRef] [PubMed]
- Sohouli, M.H.; Wang, S.; Almuqayyid, F.; Gabiatti, M.P.; Mozaffari, F.; Mohamadian, Z.; Koushki, N.; Alras, K.A.; AlHossan, A.M.; Albatati, S.K.; et al. Impact of vitamin D supplementation on markers of bone turnover: Systematic review and meta-analysis of randomised controlled trials. Eur. J. Clin. Investig. 2023, 14, 1150187. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.M.; Botelho, P.B.; Ribeiro, H. Vitamin D and musculoskeletal health: Outstanding aspects to be considered in the light of current evidence. Endocr. Connect. 2022, 11, e210596. [Google Scholar] [PubMed]
- Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An update on the effects of vitamin D on the immune system and autoimmune diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef]
- Nikooyeh, B.; Neyestani, T.R. The effects of vitamin D-fortified foods on circulating 25(OH)D concentrations in adults: A systematic review and meta-analysis. Br. J. Nutr. 2022, 127, 1821–1838. [Google Scholar] [CrossRef]
- Migliaccio, S.; Di Nisio, A.; Magno, S.; Romano, F.; Barrea, L.; Colao, A.M.; Muscogiuri, G.; Savastano, S. Vitamin D deficiency: A potential risk factor for cancer in obesity? Int. J. Obes. 2022, 46, 707–717. [Google Scholar] [CrossRef]
- Muñoz, A.; Grant, W.B. Vitamin D and cancer: An historical overview of the epidemiology and mechanisms. Nutrients 2022, 14, 1448. [Google Scholar] [CrossRef]
- Cosentino, N.; Campodonico, J.; Milazzo, V.; De Metrio, M.; Brambilla, M.; Camera, M.; Marenzi, G. Vitamin D and Cardiovascular Disease: Current Evidence and Future Perspectives. Nutrients 2021, 13, 3603. [Google Scholar] [CrossRef]
- Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; März, W.; Pilz, S. Vitamin D and Cardiovascular Disease: An Updated Narrative Review. Int. J. Mol. Sci. 2021, 22, 2896. [Google Scholar] [CrossRef]
- Barbarawi, M.; Zayed, Y.; Barbarawi, O.; Bala, A.; Alabdouh, A.; Gakhal, I.; Rizk, F.; Alkasasbeh, M.; Bachuwa, G.; Manson, J.E. Effect of Vitamin D Supplementation on the Incidence of Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2020, 105, 2857–2868. [Google Scholar] [CrossRef] [PubMed]
- Salimova, D.E.; Daminnov, A.T. A Clinical case based on the experience of treating hypertension in a patient with type 2 diabetes mellitus, obesity, and vitamin d deficiency. Educ. Res. Univers. Sci. 2023, 2, 150–154. [Google Scholar]
- Ismailova, A.; White, J.H. Vitamin D infections and immunity. Rev. Endocr. Metab. Disord. 2022, 23, 265–277. [Google Scholar]
- Ao, T.; Kikuta, J.; Ishii, M. The Effects of Vitamin D on Immune System and Inflammatory Diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef]
- Mitchell, F. Vitamin-D and COVID-19: Do deficient risk a poorer outcome? Lancet Diabetes Endocrinol. 2020, 8, 570. [Google Scholar] [CrossRef]
- Sutherland, J.P.; Zhou, A.; Hyppönen, E. Vitamin D Deficiency Increases Mortality Risk in the UK Biobank. Ann. Intern. Med. 2022, 175, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar]
- Angelidi, A.M.; Belanger, M.J.; Lorinsky, M.K.; Karamanis, D.; Chamorro-Pareja, N.; Ognibene, J.; Palaiodimos, L.; Mantzoros, C.S. Vitamin D Status Is Associated with In-Hospital Mortality and Mechanical Ventilation: A Cohort of COVID-19 Hospitalized Patients. Mayo Clinc Proc. 2021, 96, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Fikri, B.; Juliaty, A.; Engels, S.; Putera, A.M.; Hikmah, Z.; Febriani, A.D.; Putri, S.H.; Ridha, N.R.; Alasiry, E.; Endaryanto, A.; et al. Primary source of Vitamin D: Sunlight or nutrition? Bali Med. J. 2024, 13, 458–462. [Google Scholar]
- Azeim, N.A.H.A.; Ragab, H.M.; Shaheen, H.M.E.M.; Awad, S.M.B. An overview about vitamin D role in human health. J. Pharm. Negat. Results 2023, 14, 373–377. [Google Scholar]
- Holick, M.F. Vitamin D: Extraskeletal health. Rheum. Dis. Clin. 2012, 38, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. 100 YEARS OF VITAMIN D: Global differences in vitamin D status and dietary intake: A review of the data. Endocr. Connect. 2022, 11, e210282. [Google Scholar] [CrossRef]
- BinSaeed, A.A.; Torchyan, A.A.; AlOmair, B.N.; AlQadhib, N.S.; AlSuwayeh, F.M.; Monshi, F.M.; AlRumaih, F.I.; AlQahtani, S.A.; AlYousefi, N.; Al-Drees, A. Determinants of vitamin D deficiency among undergraduate medical students in Saudi Arabia. Eur. J. Clin. Nutr. 2015, 69, 1151–1155. [Google Scholar] [CrossRef]
- Hasanato, R.; Al-Mahboob, A.; Al-Mutairi, A.; Al-Faraydi, J.; Al-Amari, K.; Al-Jurayyad, R.; Mohamed, S. High prevalence of vitamin d deficiency in healthy female medical students in central Saudi Arabia: Impact of nutritional and environmental factors. Acta Endocrinol. 2015, 11, 257–261. [Google Scholar] [CrossRef]
- Moulas, A.N.; Vaiou, M. Vitamin D fortification of foods and prospective health outcomes. J. Biotechnol. 2018, 285, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, F.A.; Itkonen, S.T.; Öhman, T.; Kiely, M.; Cashman, K.D.; Lamberg-Allardt, C.; On Behalf Of The Odin Consortium. Safety of Vitamin D Food Fortification and Supplementation: Evidence from Randomized Controlled Trials and Observational Studies. Foods 2021, 10, 3065. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; März, W.; Cashman, K.D.; Kiely, M.E.; Whiting, S.J.; Holick, M.F.; Grant, W.B.; Pludowski, P.; Hiligsmann, M.; Trummer, C.; et al. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front. Endocrinol. 2018, 9, 374. [Google Scholar] [CrossRef]
- Natri, A.M.; Salo, P.; Vikstedt, T.; Palssa, A.; Huttunen, M.; Kärkkäinen, M.U.; Salovaara, H.; Piironen, V.; Jakobsen, J.; Lamberg-Allardt, C.J. Bread Fortified with Cholecalciferol Increases the Serum 25-HydroxyvitaminD Concentration in Women as Effectively as a Cholecalciferol Supplement1. J. Nutr. 2006, 136, 123–127. [Google Scholar] [CrossRef]
- Lips, P.; de Jongh, R.T.; van Schoor, N.M. Trends in vitamin D status around the world. JBMR Plus 2021, 5, e10585. [Google Scholar] [CrossRef]
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj Fuleihan, G.; Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [PubMed]
- Bassil, D.; Rahme, M.; Hoteit, M.; Fuleihan, G.E.-H. Hypovitaminosis D in the Middle East and North Africa: Prevalence, risk factors and impact on outcomes. Dermatoendocrinol 2013, 5, 274–298. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Svobodová, J.; Imran, S.; Stanford, C.; Razzaque, M.S. Vitamin D deficiency: A single centre analysis of patients from 136 countries. J. Steroid Biochem. Mol. Biol. 2016, 164, 209–213. [Google Scholar] [CrossRef]
- Golbahar, J.; Al-Saffar, N.; Diab, D.A.; Al-Othman, S.; Darwish, A.; Al-Kafaji, G. Predictors of vitamin D deficiency and insufficiency in adult Bahrainis: A cross-sectional study. Public Health Nutr. 2014, 17, 732–738. [Google Scholar] [CrossRef]
- Al-Dabhani, K.; Tsilidis, K.K.; Murphy, N.; Ward, H.A.; Elliott, P.; Riboli, E.; Gunter, M.; Tzoulaki, I. Prevalence of vitamin D deficiency and association with metabolic syndrome in a Qatari population. Nutr. Diabetes 2017, 7, e263. [Google Scholar] [CrossRef]
- Al-Kindi, M.K. Vitamin D status in healthy Omani women of childbearing age: Study of female staff at the Royal Hospital, Muscat, Oman. Sultan Qaboos Univ. Med. J. 2011, 11, 56. [Google Scholar] [PubMed]
- Zhang, F.F.; Al Hooti, S.; Al Zenki, S.; Alomirah, H.; Jamil, K.M.; Rao, A.; Al Jahmah, N.; Saltzman, E.; Ausman, L.M. Vitamin D deficiency is associated with high prevalence of diabetes in Kuwaiti adults: Results from a national survey. BMC Public Health 2016, 16, 100. [Google Scholar] [CrossRef]
- Hoseinzadeh, E.; Taha, P.; Wei, C.; Godini, H.; Ashraf, G.M.; Taghavi, M.; Miri, M. The impact of air pollutants, UV exposure and geographic location on vitamin D deficiency. Food Chem. Toxicol. 2018, 113, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Mallah, E.M.; Hamad, M.F.; ElManaseer, M.A.; Qinna, N.A.; Idkaidek, N.M.; Arafat, T.A.; Matalka, K.Z. Plasma concentrations of 25-hydroxyvitamin D among Jordanians: Effect of biological and habitual factors on vitamin D status. BMC Clin. Pathol. 2011, 11, 8. [Google Scholar] [CrossRef]
- Kaddam, I.M.; Al-Shaikh, A.M.; Abaalkhail, B.A.; Asseri, K.S.; Al-Saleh, Y.M.; Al-Qarni, A.A.; Al-Shuaibi, A.M.; Tamimi, W.G.; Mukhtar, A.M. Prevalence of vitamin D deficiency and its associated factors in three regions of Saudi Arabia: A cross-sectional study. Saudi Med. J. 2017, 38, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.-A.; Abdulmohsen, A.; Haifa, A.-T.; Fatma, A.-M.; Amein, A.-A. Vitamin D levels in healthy men in eastern Saudi Arabia. Ann. Saudi Med. 2009, 29, 378–382. [Google Scholar]
- Al-Daghri, N.M.; Hussain, S.D.; Ansari, M.G.; Khattak, M.N.; Aljohani, N.; Al-Saleh, Y.; Al-Harbi, M.Y.; Sabico, S.; Alokail, M.S. Decreasing prevalence of vitamin D deficiency in the central region of Saudi Arabia (2008–2017). J. Steroid Biochem. Mol. Biol. 2021, 212, 105920. [Google Scholar] [CrossRef]
- Albalawi, O.; Almubark, R.; Almarshad, A.; Alqahtani, A.S. The Prevalence of Vitamin and Mineral Deficiencies and High Levels of Non-Essential Heavy Metals in Saudi Arabian Adults. Healthcare 2022, 10, 2415. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Fortification: Technology and Quality Control. (FAO Food And Nutrition Paper-60). 1996. Available online: https://www.fao.org/4/w2840e/w2840e00.htm (accessed on 1 May 2024).
- Initiative, F.F. Global Progress—Food Fortification. UnscnOrg. 2006, p. 341. Available online: http://www.unscn.org/layout/modules/resources/files/fortification_eng.pdf (accessed on 1 May 2024).
- US FDA. Vitamin D for Milk and Milk Alternatives. 2018. Available online: https://www.fda.gov/food/food-additives-petitions/vitamin-d-milk-and-milk-alternatives (accessed on 1 May 2024).
- Finnish Food Authority. Guidelines for the Control of Fortified Foods; Finnish Food Authority: Helsinki, Finland, 2021; pp. 1–25. Available online: https://www.ruokavirasto.fi/globalassets/yritykset/elintarvikeala/valmistus/yhteiset-koostumusvaatimukset/elintarvikkeiden-taydentaminen-ravintoaineilla/ohje_6538_2021_taydennettyjen_valvontaohje_en.pdf (accessed on 1 May 2024).
- Goverment of Canada. Fortified Foods: Canada’s Approach to Fortification. 2023. Available online: https://www.canada.ca/en/health-canada/services/fortified-food/canadas-approach.html (accessed on 1 May 2024).
- EFSAPanel on Nutrition Novel Foods FoodAllergens, (N.D.A.); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific opinion on the tolerable upper intake level for vitamin D, including the derivation of a conversion factor for calcidiol monohydrate. EFSA J. 2023, 21, e08145. [Google Scholar] [PubMed]
- FSANZ. Vitamins and Minerals Added to Food. 2023. Available online: https://www.foodstandards.gov.au/consumer/food-fortification/vitamin-added (accessed on 1 May 2024).
- WHO. Wheat Flour Fortification. 2019. Available online: https://applications.emro.who.int/docs/EMROPUB_2019_EN_22339.pdf (accessed on 1 May 2024).
- SFDA. Mandatory Addition of Vitamins and Minerals in Food Stuff. 2022. Available online: https://mwasfah.sfda.gov.sa/ (accessed on 1 May 2024).
- Nicholson, C.C.; Emery, B.F.; Niles, M.T. Global relationships between crop diversity and nutritional stability. Nat. Commun. 2021, 12, 5310. [Google Scholar] [CrossRef]
- Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–54. [Google Scholar]
- Zilberberg, M.D.; Shorr, A.F. Understanding cost-effectiveness. Clin. Microbiol. Infect. 2010, 16, 1707–1712. [Google Scholar] [CrossRef]
- Pourmohamadkhan, M.; Khorasanchi, Z.; Ghazizadeh, H.; Sedighnia, A.; Kiani, B.; Ferns, G.; Kalhori, S.R.; Ghayour-Mobarhan, M. A Mixed Model Approach for Estimating the Optimal Food Fortification of Vitamin D: Experiment Based on Mashhad Cohort Study in Iran. Arch. Iran. Med. 2023, 26, 561. [Google Scholar] [CrossRef]
- Sengupta, S.; Christensen, T.; Ravn-Haren, G.; Andersen, R. Vitamin D Food Fortification Strategies on Population-Based Dietary Intake Data Using Mixed-Integer Programming. Foods 2023, 12, 698. [Google Scholar] [CrossRef]
- Black, L.J.; Walton, J.; Flynn, A.; Cashman, K.D.; Kiely, M. Small increments in vitamin D intake by Irish adults over a decade show that strategic initiatives to fortify the food supply are needed. J. Nutr. 2015, 145, 969–976. [Google Scholar] [CrossRef]
- Vičič, V.; Mikuš, R.P.; Kugler, S.; Geršak, K.; Osredkar, J.; Kukec, A. Vitamin D fortification of eggs alone and in combination with milk in women aged 44–65 years: Fortification model and economic evaluation. Slov. J. Public Health 2023, 62, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Christensen, T.; Ravn-Haren, G.; Andersen, R. A Data Driven Approach to Identify Safe and Adequate Schemes for Vitamin D Fortification. Foods 2022, 11, 3981. [Google Scholar] [CrossRef] [PubMed]
- Calame, W.; Street, L.; Hulshof, T. Vitamin D serum levels in the UK population, including a mathematical approach to evaluate the impact of vitamin D fortified ready-to-eat breakfast cereals: Application of the NDNS database. Nutrients 2020, 12, 1868. [Google Scholar] [CrossRef] [PubMed]
- Grønborg, I.M.; Tetens, I.; Ege, M.; Christensen, T.; Andersen, E.W.; Andersen, R. Modelling of adequate and safe vitamin D intake in Danish women using different fortification and supplementation scenarios to inform fortification policies. Eur. J. Nutr. 2019, 58, 227–232. [Google Scholar] [CrossRef]
- Moyersoen, I.; Devleesschauwer, B.; Dekkers, A.; Verkaik-Kloosterman, J.; De Ridder, K.; Vandevijvere, S.; Tafforeau, J.; Van Oyen, H.; Lachat, C.; Van Camp, J. A novel approach to optimize vitamin D intake in Belgium through fortification based on representative food consumption data. J. Nutr. 2019, 149, 1852–1862. [Google Scholar] [CrossRef]
- Harika, R.K.; Dötsch-Klerk, M.; Zock, P.L.; Eilander, A. Compliance with dietary guidelines and increased fortification can double vitamin D intake: A simulation study. Ann. Nutr. Metab. 2017, 69, 246–255. [Google Scholar] [CrossRef]
- Ejtahed, H.-S.; Shab-Bidar, S.; Hosseinpanah, F.; Mirmiran, P.; Azizi, F. Estimation of vitamin D intake based on a scenario for fortification of dairy products with vitamin D in a Tehranian population. Iran. J. Am. Coll. Nutr. 2016, 35, 383–391. [Google Scholar] [CrossRef]
- Allen, R.E.; Dangour, A.D.; Tedstone, A.E.; Chalabi, Z. Does fortification of staple foods improve vitamin D intakes and status of groups at risk of deficiency? A United Kingdom modeling study. Am. J. Clin. Nutr. 2015, 102, 338–344. [Google Scholar] [CrossRef]
- Ghasemifard, N.; Hassanzadeh-Rostami, Z.; Abbasi, A.; Naghavi, A.M.; Faghih, S. Effects of vitamin D-fortified oil intake versus vitamin D supplementation on vitamin D status and bone turnover factors: A double blind randomized clinical trial. Clin. Nutr. ESPEN 2022, 47, 28–35. [Google Scholar] [CrossRef]
- Foulkes, S.; Kukuljan, S.; Nowson, C.A.; Sanders, K.M.; Daly, R.M. Effects of a multi-modal resistance exercise program and calcium-vitamin D 3 fortified milk on blood pressure and blood lipids in middle-aged and older men: Secondary analysis of an 18-month factorial design randomised controlled trial. Eur. J. Nutr. 2021, 60, 1289–1299. [Google Scholar] [CrossRef]
- Levinson, Y.; Ish-Shalom, S.; Segal, E.; Livney, Y.D. Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD 3 encapsulated in re-assembled casein micelles. Food Funct. 2016, 7, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Itkonen, S.T.; Skaffari, E.; Saaristo, P.; Saarnio, E.M.; Erkkola, M.; Jakobsen, J.; Cashman, K.D.; Lamberg-Allardt, C. Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D3 on serum 25-hydroxyvitamin D metabolites: An 8-week randomised-controlled trial in young adult Finnish women. Br. J. Nutr. 2016, 115, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Nikooyeh, B.; Neyestani, T.R.; Zahedirad, M.; Mohammadi, M.; Hosseini, S.H.; Abdollahi, Z.; Salehi, F.; Mirzay Razaz, J.; Shariatzadeh, N.; Kalayi, A.; et al. Vitamin D-fortified bread is as effective as supplement in improving vitamin D status: A randomized clinical trial. J. Clin. Endocrinol. Metab. 2016, 101, 2511–2519. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalidi, B.; Chiu, W.; Rousseau, D.; Vieth, R. Bioavailability and safety of vitamin D3 from pizza baked with fortified mozzarella cheese: A randomized controlled trial. Can. J. Diet. Pract. Res. 2015, 76, 109–116. [Google Scholar] [CrossRef]
- Tripkovic, L.; Wilson, L.; Hart, K.; Elliott, R.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hypponen, E.; Berry, J.; et al. The D2-D3 Study: A randomised, double-blind, placebo-controlled food-fortification trial in women, comparing the efficacy of 15 ug/d vitamin D2 vs. vitamin D3 in raising serum 25OHD levels. Proc. Nutr. Soc. 2015, 74, E16. [Google Scholar] [CrossRef]
- Martucci, M.; Conte, M.; Bucci, L.; Giampieri, E.; Fabbri, C.; Palmas, M.G.; Izzi, M.; Salvioli, S.; Zambrini, A.V.; Orsi, C.; et al. Twelve-week daily consumption of ad hoc fortified milk with ω-3, D, and group B vitamins has a positive impact on inflammaging parameters: A randomized cross-over trial. Nutrients 2020, 12, 3580. [Google Scholar] [CrossRef]
- Grønborg, I.M.; Tetens, I.; Christensen, T.; Andersen, E.W.; Jakobsen, J.; Kiely, M.; Cashman, K.D.; Andersen, R. Vitamin D-fortified foods improve wintertime vitamin D status in women of Danish and Pakistani origin living in Denmark: A randomized controlled trial. Eur. J. Nutr. 2020, 59, 741–753. [Google Scholar] [CrossRef]
- Durrant, L.R.; Bucca, G.; Hesketh, A.; Möller-Levet, C.; Tripkovic, L.; Wu, H.; Hart, K.H.; Mathers, J.C.; Elliott, R.M.; Lanham-New, S.A.; et al. Vitamins D2 and D3 have overlapping but different effects on the human immune system revealed through analysis of the blood transcriptome. Front. Immunol. 2022, 13, 790444. [Google Scholar] [CrossRef]
- Ghasemifard, N.; Nasimi, N.; Hassanzadeh-Rostami, Z.; Abbasi, A.; Faghih, S. Effects of vitamin D fortified canola oil on vitamin D and lipid profiles in healthy adults: A double-blind randomized trial. Iran. J. Nutr. Sci. Food Technol. 2020, 15, fa1–fa9. [Google Scholar]
- Nikooyeh, B.; Zargaraan, A.; Kalayi, A.; Shariatzadeh, N.; Zahedirad, M.; Jamali, A.; Khazraie, M.; Hollis, B.; Neyestani, T.R. Vitamin D-fortified cooking oil is an effective way to improve vitamin D status: An institutional efficacy trial. Eur. J. Nutr. 2020, 59, 2547–2555. [Google Scholar] [CrossRef]
- Grønborg, I.M.; Tetens, I.; Andersen, E.W.; Kristensen, M.; Larsen, R.E.; Tran, T.L.; Andersen, R. Effect of vitamin D fortified foods on bone markers and muscle strength in women of Pakistani and Danish origin living in Denmark: A randomised controlled trial. Nutr. J. 2019, 18, 82. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Jackson, K.G.; Li, Y.; Givens, D.I.; Lovegrove, J.A. A 25-hydroxycholecalciferol–fortified dairy drink is more effective at raising a marker of postprandial vitamin D status than cholecalciferol in men with suboptimal vitamin D status. J. Nutr. 2017, 147, 2076–2082. [Google Scholar] [CrossRef]
- Tripkovic, L.; Wilson, L.R.; Hart, K.; Johnsen, S.; De Lusignan, S.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Elliott, R.; et al. Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: A 12-wk randomized, placebo-controlled food-fortification trial. Am. J. Clin. Nutr. 2017, 106, 481–490. [Google Scholar] [CrossRef]
- Jääskeläinen, T.; Itkonen, S.T.; Lundqvist, A.; Erkkola, M.; Koskela, T.; Lakkala, K.; Dowling, K.G.; Hull, G.L.; Kröger, H.; Karppinen, J.; et al. The positive impact of general vitamin D food fortification policy on vitamin D status in a representative adult Finnish population: Evidence from an 11-y follow-up based on standardized 25-hydroxyvitamin D data1, 2, 3. Am. J. Clin. Nutr. 2017, 105, 1512–1520. [Google Scholar] [CrossRef]
- Khan, W.A.; Butt, M.S.; Pasha, I.; Saeed, M.; Yasmin, I.; Ali, M.; Azam, M.; Khan, M.S. Bioavailability, rheology, and sensory evaluation of mayonnaise fortified with vitamin D encapsulated in protein-based carriers. J. Texture Stud. 2020, 51, 955–967. [Google Scholar] [CrossRef] [PubMed]
- Schoener, A.L.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D.J. Fabrication of plant-based vitamin D 3-fortified nanoemulsions: Influence of carrier oil type on vitamin bioaccessibility. Food Funct. 2019, 10, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Lipkie, T.E.; Ferruzzi, M.G.; Weaver, C.M. Low bioaccessibility of vitamin D 2 from yeast-fortified bread compared to crystalline D 2 bread and D 3 from fluid milks. Food Funct. 2016, 7, 4589–4596. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Alesi, A.; Vittori, S.; Sagratini, G.; Caprioli, G. Development of functional whey cheese enriched in vitamin D3: Nutritional composition, fortification, analysis, and stability study during cheese processing and storage. Int. J. Food Sci. Nutr. 2021, 72, 746–756. [Google Scholar] [CrossRef]
- Dunlop, E.; Kiely, M.E.; James, A.P.; Singh, T.; Pham, N.M.; Black, L.J. Vitamin D Food Fortification and Biofortification Increases Serum 25-Hydroxyvitamin D Concentrations in Adults and Children: An Updated and Extended Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2021, 151, 2622–2635. [Google Scholar] [CrossRef]
- Itkonen, S.T.; Erkkola, M.; Lamberg-Allardt, C.J.E. Vitamin D Fortification of Fluid Milk Products and Their Contribution to Vitamin D Intake and Vitamin D Status in Observational Studies—A Review. Nutrients 2018, 10, 1054. [Google Scholar] [CrossRef]
- Zahedirad, M.; Asadzadeh, S.; Nikooyeh, B.; Neyestani, T.R.; Khorshidian, N.; Yousefi, M.; Mortazavian, A.M. Fortification aspects of vitamin D in dairy products: A review study. Int. Dairy J. 2019, 94, 53–64. [Google Scholar] [CrossRef]
- Yeh, E.B.; Barbano, D.M.; Drake, M. Vitamin fortification of fluid milk. J. Food Sci. 2017, 82, 856–864. [Google Scholar] [CrossRef]
- Lalani, B.; Bechoff, A.; Bennett, B. Which choice of delivery model(s) works best to deliver fortified foods? Nutrients 2019, 11, 1594. [Google Scholar] [CrossRef] [PubMed]
- Rousta, L.K.; Bodbodak, S.; Nejatian, M.; Yazdi, A.P.; Rafiee, Z.; Xiao, J.; Jafari, S.M. Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends Food Sci. Technol. 2021, 118, 688–710. [Google Scholar] [CrossRef]
- Calvo, M.S.; Whiting, S.J. Survey of current vitamin D food fortification practices in the United States and Canada. J. Steroid Biochem. Mol. Biol. 2013, 136, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Whiting, S.J.; Barton, C.N. Vitamin D fortification in the United States and Canada: Current status and data needs. Am. J. Clin. Nutr. 2004, 80, 1710S–1716S. [Google Scholar] [CrossRef]
- Cashman, K.D.; Kiely, M. Tackling inadequate vitamin D intakes within the population: Fortification of dairy products with vitamin D may not be enough. Endocrine 2016, 51, 38–46. [Google Scholar] [CrossRef]
- Maurya, V.K.; Bashir, K.; Aggarwal, M. Vitamin D microencapsulation and fortification: Trends and technologies. J. Steroid Biochem. Mol. Biol. 2020, 196, 105489. [Google Scholar] [CrossRef]
- Abbasi, A.; Emam-Djomeh, Z.; Mousavi, M.A.E.; Davoodi, D. Stability of vitamin D3 encapsulated in nanoparticles of whey protein isolate. Food Chem. 2014, 143, 379–383. [Google Scholar] [CrossRef]
- Ziani, K.; Fang, Y.; McClements, D.J. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food Chem. 2012, 134, 1106–1112. [Google Scholar] [CrossRef]
- Gupta, R.; Behera, C.; Paudwal, G.; Rawat, N.; Baldi, A.; Gupta, P.N. Recent advances in formulation strategies for efficient delivery of vitamin D. AAPS PharmSciTech 2019, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Haham, M.; Ish-Shalom, S.; Nodelman, M.; Duek, I.; Segal, E.; Kustanovich, M.; Livney, Y.D. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct. 2012, 3, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Kessi-Pérez, E.I.; González, A.; Palacios, J.L.; Martínez, C. Yeast as a biological platform for vitamin D production: A promising alternative to help reduce vitamin D deficiency in humans. Yeast 2022, 39, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Hohman, E.E.; Martin, B.R.; Lachcik, P.J.; Gordon, D.T.; Fleet, J.C.; Weaver, C.M. Bioavailability and efficacy of vitamin D2 from UV-irradiated yeast in growing, vitamin D-deficient rats. J. Agric. Food Chem. 2011, 59, 2341–2346. [Google Scholar] [CrossRef]
- Wilson, L.R.; Tripkovic, L.; Hart, K.H.; Lanham-New, S.A. Vitamin D deficiency as a public health issue: Using vitamin D2 or vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017, 76, 392–399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnafisah, R.Y.; Alragea, A.S.; Alzamil, M.K.; Alqahtani, A.S. The Impact and Efficacy of Vitamin D Fortification. Nutrients 2024, 16, 4322. https://doi.org/10.3390/nu16244322
Alnafisah RY, Alragea AS, Alzamil MK, Alqahtani AS. The Impact and Efficacy of Vitamin D Fortification. Nutrients. 2024; 16(24):4322. https://doi.org/10.3390/nu16244322
Chicago/Turabian StyleAlnafisah, Ruyuf Y., Atheer S. Alragea, Mona K. Alzamil, and Amani S. Alqahtani. 2024. "The Impact and Efficacy of Vitamin D Fortification" Nutrients 16, no. 24: 4322. https://doi.org/10.3390/nu16244322
APA StyleAlnafisah, R. Y., Alragea, A. S., Alzamil, M. K., & Alqahtani, A. S. (2024). The Impact and Efficacy of Vitamin D Fortification. Nutrients, 16(24), 4322. https://doi.org/10.3390/nu16244322