The Neuroprotective Role of Quinoa (Chenopodium quinoa, Wild) Supplementation in Hippocampal Morphology and Memory of Adolescent Stressed Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Restraint Protocols
2.2. Quinoa Functional Food: Raw Material and Formulation
2.3. Behavioral Procedures
- (a)
- Open Field (OF)
- (b)
- Elevated plus maze (EPM)
- (c)
- Light Dark Box (LDB) paradigm
- (d)
- Y-maze
2.4. Morphological Data Analysis
2.5. Statistical Analysis
3. Results
3.1. QFF Intake Did Not Affect Body Weight Gain in Rats Subjected to a Restraint Stress
3.2. QFF Consumption Did Not Affect Locomotor Activity and Anxiety-like Behavior
3.3. QFF Consumption Prevented Spatial Memory Impairment Induced by Restraint Stress
3.4. QFF Consumption Reduced the Stress-Induced Dendritic Atrophy in the Hippocampus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selye, H. A Syndrome Produced by Diverse Nocuous Agents. Nature 1936, 138, 32. [Google Scholar] [CrossRef]
- McEwen, B.S.; Akil, H. Revisiting the Stress Concept: Implications for Affective Disorders. J. Neurosci. 2020, 40, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.C.; Wellman, C.L. Chronic Stress Alters Dendritic Morphology in Rat Medial Prefrontal Cortex. J. Neurobiol. 2004, 60, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.D.; Galea, L.A.M.; Kuroda, Y.; McEwen, B.S. Chronic Stress Impairs Rat Spatial Memory on the Y Maze, and This Effect Is Blocked by Tianeptine Pretreatment. Behav. Neurosci. 1996, 110, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress 2017, 1, 2470547017692328. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Bernal, S.; Chattarji, S. Effects of Chronic Stress on Dendritic Arborization in the Central and Extended Amygdala. Brain Res. 2003, 965, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Magariños, A.M.; Deslandes, A.; McEwen, B.S. Effects of Antidepressants and Benzodiazepine Treatments on the Dendritic Structure of CA3 Pyramidal Neurons after Chronic Stress. Eur. J. Pharmacol. 1999, 371, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kleen, J.K.; Sitomer, M.T.; Killeen, P.R.; Conrad, C.D. Chronic Stress Impairs Spatial Memory and Motivation for Reward without Disrupting Motor Ability and Motivation to Explore. Behav. Neurosci. 2006, 120, 842–851. [Google Scholar] [CrossRef]
- Vyas, A.; Mitra, R.; Shankaranarayana Rao, B.S.; Chattarji, S. Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons. J. Neurosci. 2002, 22, 6810–6818. [Google Scholar] [CrossRef]
- Hueston, C.M.; Cryan, J.F.; Nolan, Y.M. Stress and Adolescent Hippocampal Neurogenesis: Diet and Exercise as Cognitive Modulators. Transl. Psychiatry 2017, 7, e1081. [Google Scholar] [CrossRef]
- Foilb, A.R.; Lui, P.; Romeo, R.D. The Transformation of Hormonal Stress Responses throughout Puberty and Adolescence. J. Endocrinol. 2011, 210, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.D.; Karatsoreos, I.N.; McEwen, B.S. Pubertal Maturation and Time of Day Differentially Affect Behavioral and Neuroendocrine Responses Following an Acute Stressor. Horm. Behav. 2006, 50, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Gunnar, M.R.; Wewerka, S.; Frenn, K.; Long, J.D.; Griggs, C. Developmental Changes in Hypothalamus-Pituitary-Adrenal Activity over the Transition to Adolescence: Normative Changes and Associations with Puberty. Dev. Psychopathol. 2009, 21, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Baran, S.E.; Campbell, A.M.; Kleen, J.K.; Foltz, C.H.; Wright, R.L.; Diamond, D.M.; Conrad, C.D. Combination of High Fat Diet and Chronic Stress Retracts Hippocampal Dendrites. Neuroreport 2005, 16, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, R.P.; Layé, S. Polyunsaturated Fatty Acids and Their Metabolites in Brain Function and Disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Michelle Bosquet, K.J.B. Effects of Prenatal Social Stress and Maternal Dietary Fatty Acid Ratio on Infant Temperament: Does Race Matter? Epidemiol. Open Access 2014, 4, 1000167. [Google Scholar] [CrossRef]
- ter Horst, D.M.; Schene, A.H.; Figueroa, C.A.; Assies, J.; Lok, A.; Bockting, C.L.H.; Ruhé, H.G.; Mocking, R.J.T. Cortisol, Dehydroepiandrosterone Sulfate, Fatty Acids, and Their Relation in Recurrent Depression. Psychoneuroendocrinology 2019, 100, 203–212. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-Chain Polyunsaturated Fatty Acid Sources and Evaluation of Their Nutritional and Functional Properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and Biological Value of Quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium quinoa Willd.), an Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Farinazzi-Machado, F.M.V.; Barbalho, S.M.; Oshiiwa, M.; Goulart, R.; Pessan Junior, O. Use of Cereal Bars with Quinoa (Chenopodium quinoa W.) to Reduce Risk Factors Related to Cardiovascular Diseases. Food Sci. Technol. 2012, 32, 239–244. [Google Scholar] [CrossRef]
- Souza, S.P.; Roos, A.A.; Gindri, A.L.; Domingues, V.O.; Ascari, J.; Guerra, G.P. Neuroprotective Effect of Red Quinoa Seeds Extract on Scopolamine-Induced Declarative Memory Deficits in Mice: The Role of Acetylcholinesterase and Oxidative Stress. J. Funct. Foods 2020, 69, 103958. [Google Scholar] [CrossRef]
- McLaughlin, K.J.; Gomez, J.L.; Baran, S.E.; Conrad, C.D. The Effects of Chronic Stress on Hippocampal Morphology and Function: An Evaluation of Chronic Restraint Paradigms. Brain Res. 2007, 1161, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Vega-Gálvez, A.; Dagnino-Subiabre, A.; Terreros, G.; López, J.; Miranda, M.; Di Scala, K. Mathematical Modeling of Convective Air Drying of Quinoa-Supplemented Feed for Laboratory Rats. Brazilian Arch. Biol. Technol. 2011, 54, 161–171. [Google Scholar] [CrossRef]
- Biała, G.; Kruk, M. Amphetamine-Induced Anxiety-Related Behavior in Animal Models. Pharmacol. Rep. 2007, 59, 636–644. [Google Scholar]
- de Oliveira Lopes, C.; de Fátima Píccolo Barcelos, M.; de Goes Vieira, C.N.; de Abreu, W.C.; Ferreira, E.B.; Pereira, R.C.; de Angelis-Pereira, M.C. Effects of Sprouted and Fermented Quinoa (Chenopodium quinoa) on Glycemic Index of Diet and Biochemical Parameters of Blood of Wistar Rats Fed High Carbohydrate Diet. J. Food Sci. Technol. 2019, 56, 40–48. [Google Scholar] [CrossRef]
- Meneguetti, Q.A.; Brenzan, M.A.; Batista, M.R.; Bazotte, R.B.; Silva, D.R.; Garcia Cortez, D.A. Biological Effects of Hydrolyzed Quinoa Extract from Seeds of Chenopodium quinoa Willd. J. Med. Food 2011, 14, 653–657. [Google Scholar] [CrossRef]
- Mithila, M.V.; Khanum, F. Effectual Comparison of Quinoa and Amaranth Supplemented Diets in Controlling Appetite; a Biochemical Study in Rats. J. Food Sci. Technol. 2015, 52, 6735–6741. [Google Scholar] [CrossRef]
- Pérez, M.Á.; Terreros, G.; Dagnino-Subiabre, A. Long-Term ω-3 Fatty Acid Supplementation Induces Anti-Stress Effects and Improves Learning in Rats. Behav. Brain Funct. 2013, 9, 12–25. [Google Scholar] [CrossRef]
- Ortolani, D.; Oyama, L.M.; Ferrari, E.M.; Melo, L.L.; Spadari-Bratfisch, R.C. Effects of Comfort Food on Food Intake, Anxiety-like Behavior and the Stress Response in Rats. Physiol. Behav. 2011, 103, 487–492. [Google Scholar] [CrossRef]
- Mitra, R.; Jadhav, S.; McEwen, B.S.; Vyas, A.; Chattarji, S. Stress Duration Modulates the Spatiotemporal Patterns of Spine Formation in the Basolateral Amygdala. Proc. Natl. Acad. Sci. USA 2005, 102, 9371–9376. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Z.; Zhang, W.H.; Zheng, Z.H.; Zou, J.X.; Liu, X.X.; Huang, S.H.; You, W.J.; He, Y.; Zhang, J.Y.; Wang, X.D.; et al. Identification of a Prefrontal Cortex-to-Amygdala Pathway for Chronic Stress-Induced Anxiety. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Daviu, N.; Bruchas, M.R.; Moghaddam, B.; Sandi, C.; Beyeler, A. Neurobiological Links between Stress and Anxiety. Neurobiol. Stress 2019, 11, 100191. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, A.C.; Delattre, A.M.; Almendra, R.G.; Sonagli, M.; Borges, C.; Araujo, P.; Andersen, M.L.; Tufik, S.; Lima, M.M.S. Chronic ω-3 Fatty Acids Supplementation Promotes Beneficial Effects on Anxiety, Cognitive and Depressive-like Behaviors in Rats Subjected to a Restraint Stress Protocol. Behav. Brain Res. 2011, 219, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Su, K.P.; Tseng, P.T.; Lin, P.Y.; Okubo, R.; Chen, T.Y.; Chen, Y.W.; Matsuoka, Y.J. Association of Use of Omega-3 Polyunsaturated Fatty Acids With Changes in Severity of Anxiety Symptoms: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2018, 1, e182327. [Google Scholar] [CrossRef]
- Repo-Carrasco Valencia, R. Chapter 2.1: Quinoa. In Andean Indigenous Food Crops: Nutritional Value and Bioactive Compounds; University of Turku: Turku, Finland, 2011; ISBN 9789512946044. [Google Scholar]
- Burdge, G. α-Linolenic Acid Metabolism in Men and Women: Nutritional and Biological Implications. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 137–144. [Google Scholar] [CrossRef]
- Conrad, C.D.; McLaughlin, K.J.; Harman, J.S.; Foltz, C.; Wieczorek, L.; Lightner, E.; Wright, R.L. Chronic Glucocorticoids Increase Hippocampal Vulnerability to Neurotoxicity under Conditions That Produce CA3 Dendritic Retraction but Fail to Impair Spatial Recognition Memory. J. Neurosci. 2007, 27, 8278–8285. [Google Scholar] [CrossRef]
- Aslani, S.; Vieira, N.; Marques, F.; Costa, P.S.; Sousa, N.; Palha, J.A. The Effect of High-Fat Diet on Rat’s Mood, Feeding Behavior and Response to Stress. Transl. Psychiatry 2015, 5, e684. [Google Scholar] [CrossRef]
- Khazen, T.; Hatoum, O.A.; Ferreira, G.; Maroun, M. Acute Exposure to a High-Fat Diet in Juvenile Male Rats Disrupts Hippocampal-Dependent Memory and Plasticity through Glucocorticoids. Sci. Rep. 2019, 9, 12270. [Google Scholar] [CrossRef]
- Bruder-Nascimento, T.; Campos, D.H.S.; Alves, C.; Thomaz, S.; Cicogna, A.C.; Cordellini, S. Effects of Chronic Stress and High-Fat Diet on Metabolic and Nutritional Parameters in Wistar Rats. Arq. Bras. Endocrinol. Metabol. 2013, 57, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary DHA and Health: Cognitive Function Ageing. Nutr. Res. Rev. 2016, 29, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Bauer, I.; Hughes, M.; Rowsell, R.; Cockerell, R.; Pipingas, A.; Crewther, S.; Crewther, D. Omega-3 Supplementation Improves Cognition and Modifies Brain Activation in Young Adults. Hum. Psychopharmacol. 2014, 29, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol. Neurobiol. 2011, 44, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Ke, D.S.; Chen, J.Y. Essential Fatty Acids and Human Brain. Acta Neurol. Taiwan 2009, 18, 231–241. [Google Scholar]
- Fedorova, I.; Salem, N. Omega-3 Fatty Acids and Rodent Behavior. Prostagland. Leukot. Essent. Fat. Acids 2006, 75, 271–289. [Google Scholar] [CrossRef]
- Mathieu, G.; Oualian, C.; Denis, I.; Lavialle, M.; Gisquet-Verrier, P.; Vancassel, S. Dietary N-3 Polyunsaturated Fatty Acid Deprivation Together with Early Maternal Separation Increases Anxiety and Vulnerability to Stress in Adult Rats. Prostagland. Leukot. Essent. Fat. Acids 2011, 85, 129–136. [Google Scholar] [CrossRef]
- Takeuchi, T.; Iwanaga, M.; Harada, E. Possible Regulatory Mechanism of DHA-Induced Anti-Stress Reaction in Rats. Brain Res. 2003, 964, 136–143. [Google Scholar] [CrossRef]
- Pérez, M.Á.; Peñaloza-Sancho, V.; Ahumada, J.; Fuenzalida, M.; Dagnino-Subiabre, A. N-3 Polyunsaturated Fatty Acid Supplementation Restored Impaired Memory and GABAergic Synaptic Efficacy in the Hippocampus of Stressed Rats. Nutr. Neurosci. 2018, 21, 556–569. [Google Scholar] [CrossRef]
- Chalon, S.; Delion-Vancassel, S.; Belzung, C.; Guilloteau, D.; Leguisquet, A.M.; Besnard, J.C.; Durand, G. Dietary Fish Oil Affects Monoaminergic Neurotransmission and Behavior in Rats. J. Nutr. 1998, 128, 2512–2519. [Google Scholar] [CrossRef] [PubMed]
- Kitajka, K.; Puskás, L.G.; Zvara, Á.; Hackler, L.; Barceló-Coblijn, G.; Yeo, Y.K.; Farkas, T. The Role of N-3 Polyunsaturated Fatty Acids in Brain: Modulation of Rat Brain Gene Expression by Dietary n-3 Fatty Acids. Proc. Natl. Acad. Sci. USA 2002, 99, 2619–2624. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Yuasa, S.; Hukamizu, Y.; Okuyama, H.; Ohhara, T.; Kameyama, T.; Nabeshima, T. Effect of a High Linoleate and a High α-Linolenate Diet on General Behavior and Drug Sensitivity in Mice. J. Lipid Res. 1993, 34, 239–247. [Google Scholar] [CrossRef] [PubMed]
Description | Experimental Groups | Total | |||
---|---|---|---|---|---|
Non-Stressed | Non-Stressed + QFF | Stressed | Stressed + QFF | ||
Locomotor activity and anxiety | n = 9 | n = 9 | n = 9 | n = 9 | |
Golgi staining | n = 9 | n = 9 | n = 9 | n = 9 | |
Behavioral tasks | n = 9 | n = 9 | n = 9 | n = 9 | |
Total | n = 27 | n = 27 | n = 27 | n = 27 | n = 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terreros, G.; Pérez, M.Á.; Muñoz-LLancao, P.; D’Espessailles, A.; Martínez, E.A.; Dagnino-Subiabre, A. The Neuroprotective Role of Quinoa (Chenopodium quinoa, Wild) Supplementation in Hippocampal Morphology and Memory of Adolescent Stressed Rats. Nutrients 2024, 16, 381. https://doi.org/10.3390/nu16030381
Terreros G, Pérez MÁ, Muñoz-LLancao P, D’Espessailles A, Martínez EA, Dagnino-Subiabre A. The Neuroprotective Role of Quinoa (Chenopodium quinoa, Wild) Supplementation in Hippocampal Morphology and Memory of Adolescent Stressed Rats. Nutrients. 2024; 16(3):381. https://doi.org/10.3390/nu16030381
Chicago/Turabian StyleTerreros, Gonzalo, Miguel Ángel Pérez, Pablo Muñoz-LLancao, Amanda D’Espessailles, Enrique A. Martínez, and Alexies Dagnino-Subiabre. 2024. "The Neuroprotective Role of Quinoa (Chenopodium quinoa, Wild) Supplementation in Hippocampal Morphology and Memory of Adolescent Stressed Rats" Nutrients 16, no. 3: 381. https://doi.org/10.3390/nu16030381
APA StyleTerreros, G., Pérez, M. Á., Muñoz-LLancao, P., D’Espessailles, A., Martínez, E. A., & Dagnino-Subiabre, A. (2024). The Neuroprotective Role of Quinoa (Chenopodium quinoa, Wild) Supplementation in Hippocampal Morphology and Memory of Adolescent Stressed Rats. Nutrients, 16(3), 381. https://doi.org/10.3390/nu16030381