Non Breast-Milk-Fed Very Preterm Infants Are at Increased Risk of Iron Deficiency at 4–6-Months Corrected Age: A Retrospective Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozoff, B. Iron deficiency and child development. Food Nutr. Bull. 2007, 28, S560–S571. [Google Scholar] [CrossRef]
- Domellöf, M.; Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. Iron requirements of infants and toddlers. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Georgieff, M.K. Long-term brain and behavioral consequences of early iron deficiency. Nutr. Rev. 2011, 69, S43–S48. [Google Scholar] [CrossRef] [PubMed]
- German, K.R.; Juul, S.E. Iron and Neurodevelopment in Preterm Infants: A Narrative Review. Nutrients 2021, 13, 3737. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhan, S.; Gong, T.; Lee, L. Iron therapy for improving psychomotor development and cognitive function in children under the age of three with iron deficiency anaemia (Review). Cochrane Database Syst. Rev. 2013, 2013, CD001444. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M.; Georgieff, M.K. Postdischarge iron requirements of the preterm infant. J. Pediatr. 2015, 167, S31–S35. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M. Meeting the Iron Needs of Low and Very Low Birth Weight Infants. Ann. Nutr. Metab. 2017, 71, 16–23. [Google Scholar] [CrossRef]
- Ilardi, L.; Proto, A.; Ceroni, F.; Morniroli, D.; Martinelli, S.; Mosca, F.; Giannì, M.L. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life 2021, 11, 331. [Google Scholar] [CrossRef]
- McCarthy, E.K.; Dempsey, E.M.; Kiely, M.E. Iron supplementation in preterm and low-birth-weight infants: A systematic review of intervention studies. Nutr. Rev. 2019, 77, 865–877. [Google Scholar] [CrossRef]
- Moreno-Fernandez, J.; Ochoa, J.J.; Latunde-Dada, G.O.; Diaz-Castro, J. Iron deficiency and iron homeostasis in low birth weight preterm infants: A systematic review. Nutrients 2019, 11, 1090. [Google Scholar] [CrossRef]
- Ferri, C.; Procianoy, R.S.; Silveira, R.C. Prevalence and risk factors for iron-deficiency anemia in very-low-birth-weight preterm infants at 1 year of corrected age. J. Trop. Pediatr. 2014, 60, 53–60. [Google Scholar] [CrossRef]
- Landry, C.; Dorling, J.; Kulkarni, K.; Campbell-Yeo, M.; Morrison, L.; Ledwidge, J.; Vincer, M.; Ghotra, S. Postdischarge Iron Status in Very Preterm Infants Receiving Prophylactic Iron Supplementation after Birth. J. Pediatr. 2022, 247, 74–80.e2. [Google Scholar] [CrossRef] [PubMed]
- Tudehope, D.I. Human milk and the nutritional needs of preterm infants. J. Pediatr. 2013, 162 (Suppl. S3), S17–S25. [Google Scholar] [CrossRef]
- Unger, S.L.; Fenton, T.R.; Jetty, R.; Critch, J.N.; O’connor, D.L. Iron requirements in the first 2 years of life. Paediatr. Child Health 2019, 24, 555. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.D.; Greer, F.R.; Committee on Nutrition. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0–3 years of age). Pediatrics 2010, 126, 1040–1050. [Google Scholar] [CrossRef]
- Embleton, N.D.M.; Moltu, S.J.; Lapillonne, A.; Akker, C.H.v.D.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.M.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2022, 76, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Canadian Medical Association. Nutrient needs and feeding of premature infants. Nutrition Committee, Canadian Paediatric Society. CMAJ 1995, 152, 1765–1785. [Google Scholar]
- MacQueen, B.C.; Baer, V.L.; Scott, D.M.; Ling, C.Y.; O’brien, E.A.; Boyer, C.; Henry, E.; Fleming, R.E.; Christensen, R.D. Iron Supplements for Infants at Risk for Iron Deficiency. Glob. Pediatr. Health 2017, 4, 2333794X17703836. [Google Scholar] [CrossRef]
- Saarinen, U.M.; Siimes, M.A. Iron absorption from infant milk formula and the optimal level of iron supplementation. Acta Paediatr. Scand. 1977, 66, 719–722. [Google Scholar] [CrossRef]
- van de Lagemaat, M.; Amesz, E.M.; Schaafsma, A.; Lafeber, H.N. Iron deficiency and anemia in iron-fortified formula and human milk-fed preterm infants until 6 months post-term. Eur. J. Nutr. 2014, 53, 1263–1271. [Google Scholar] [CrossRef]
- Saarinen, U.M.; Siimes, M.A.; Dallman, P.R. Iron absorption in infants: High bioavailability of breast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. J. Pediatr. 1977, 91, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, M.L.; Remy, R.R.d.l.F.S.; Iglesias, H.G.; López-Sastre, J.B.; Fernández-Colomer, B.; Pérez-Solís, D.; Sanz-Medel, A. Iron content and its speciation in human milk from mothers of preterm and full-term infants at early stages of lactation: A comparison with commercial infant milk formulas. Microchem. J. 2012, 105, 108–114. [Google Scholar] [CrossRef]
- Levay, P.F.; Viljoen, M. Lactoferrin: A general review. Haematologica 1995, 80, 252–267. [Google Scholar] [PubMed]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A natural glycoprotein involved in iron and inflammatory homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef]
- Verhaeghe, R.; George, K.; Westerman, M.; Olbina, G.; McCann, D.; Parrow, N.; Pincus, E.; Havranek, T.; Fleming, R.E. Hepcidin Status at 2 Months in Infants Fed Breast Milk Compared with Formula. Neonatology 2020, 117, 474–479. [Google Scholar] [CrossRef]
- Rivera, S.; Liu, L.; Nemeth, E.; Gabayan, V.; Sorensen, O.E.; Ganz, T. Hepcidin excess induces the sequestration of iron and exacerbates tumor-associated anemia. Blood 2005, 105, 1797–1802. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 2006, 26, 323–342. [Google Scholar] [CrossRef] [PubMed]
- van Santen, S.; Kroot, J.J.; Zijderveld, G.; Wiegerinck, E.T.; Spaanderman, M.E.; Swinkels, D.W. The iron regulatory hormone hepcidin is decreased in pregnancy: A prospective longitudinal study. Clin. Chem. Lab. Med. 2013, 51, 1395–1401. [Google Scholar] [CrossRef]
- Koenig, M.D.; Tussing-Humphreys, L.; Day, J.; Cadwell, B.; Nemeth, E. Hepcidin and iron homeostasis during pregnancy. Nutrients 2014, 6, 3062–3083. [Google Scholar] [CrossRef] [PubMed]
- Brickley, E.B.; Duffy, P.E.; Morrison, R.; Kabyemela, E.; Fried, M.; Spottiswoode, N.; Drakesmith, H.; Wood, A.M.; Kurtis, J.D. Cord blood hepcidin: Cross-sectional correlates and associations with anemia, malaria, and mortality in a Tanzanian birth cohort study. Am. J. Trop. Med. Hyg. 2016, 95, 817–826. [Google Scholar] [CrossRef]
- German, K.R.; Comstock, B.A.; Parikh, P.; Whittington, D.; Mayock, D.E.; Heagerty, P.J.; Bahr, T.M.; Juul, S.E. Do Extremely Low Gestational Age Neonates Regulate Iron Absorption via Hepcidin? J. Pediatr. 2022, 241, 62–67.e1. [Google Scholar] [CrossRef] [PubMed]
- Power, G.; Stratas, A.; Landry, C.; Morrison, L.; Kulkarni, K.; Campbell-Yeo, M.; Singh, B.; Higgins, M.; Ghotra, S. Formula Feeding Significantly Increases Risk of Iron Deficiency in Very Preterm Infants during the First 4-6 Months of Life. Blood 2022, 140 (Suppl. S1), 8196–8197. [Google Scholar] [CrossRef]
Variables | Non-Breast-Milk-Fed Infants N = 285 n(%) | Breast-Milk-Fed Infants N = 107 n(%) | Odds Ratio or Mean Difference (95% CI) |
---|---|---|---|
Antenatal Variables | |||
Maternal age, years, mean ± SD * | 29.2 ± 5.9 | 31.9 ± 4.8 | 2.7 (1.6 to 3.9) |
Maternal anemia | 20 (7.1) | 2 (1.9) | 4.0 (0.91, 17.3) |
Gestational hypertension | 51 (17.9) | 16 (14.9) | 1.2 (0.67, 2.3) |
Smoking * | 88 (30.9) | 7 (6.5) | 6.6 (2.9, 14.7) |
Maternal diabetes | 17 (6.0) | 5 (4.7) | 1.3 (0.47, 3.6) |
Antepartum hemorrhage | 47 (16.5) | 20 (18.7) | 0.87 (0.49, 1.55) |
Multiple gestation * | 82 (28.8) | 42 (39.3) | 0.63 (0.39, 0.99) |
Mode of delivery | |||
Vaginal | 116 (40.7) | 49 (45.8) | Ref |
Cesarean section | 169 (59.3) | 58 (54.2) | 1.2 (0.79, 1.93) |
Neonatal Variables | |||
Gestational age, weeks, mean ± SD | 27.8 ± 1.9 | 28 ± 1.7 | 0.18 (−0.22 to 0.58) |
Gestational age, weeks | |||
23–27 | 108 (37.9) | 36 (33.6) | 1.20 (0.75, 1.92) |
28–30 | 177 (62.1) | 71 (66.4) | Ref |
Birth weight, grams, mean ± SD | 1133 ± 317 | 1172 ± 318 | 38.52 (−32 to 109) |
Birth weight, grams <1100 ≥1100 | |||
133 (46.7) | 46 (43.0) | 1.2 (0.74, 1.82) | |
152 (53.3) | 61 (57.0) | Ref | |
Length of hospital stay, days, mean ± SD | 78 ± 49 | 76 ± 34 | −2.14 (−10.87 to 6.59) |
Need of any blood transfusions | 150 (52.6) | 61 (57.0) | 0.86 (0.55, 1.34) |
Hemoglobin at discharge, g/L, mean ± SD | 111 ± 25 | 109 ± 20 | −2.67 (−7.62 to 2.29) |
Ferritin at discharge, µg/L, mean ± SD | 93 ± 92 | 102 ± 93 | 8.55 (−17.37 to 34.46) |
Feeding at NICU discharge Mixed (Breast and formula) Exclusive Breast-feeding Exclusive Formula-feeding | |||
134 (47.0) | 95 (88.9) | 0.04 (0.01–0.1) | |
10 (3.5) | 8 (7.5) | 0.04 (0.01–01) | |
141 (49.5) | 4 (3.7) | Ref | |
Dose of iron at discharge, mg/kg/d, mean ± SD * | 3.0 ± 1.1 | 3.3 ± 1.2 | 0.28 (0.02 to 0.53) |
Male sex | 155 (54.4) | 63 (58.9) | 0.84 (0.54, 1.3) |
BPD requiring oxygen at 36 weeks | 64 (22.5) | 17 (15.9) | 1.5 (0.85, 2.8) |
HS-PDA | 73 (25.6) | 24 (22.4) | 1.2 (0.70, 2.0) |
Necrotizing enterocolitis | 9 (3.2) | 2 (1.9) | 1.7 (0.37, 8.1) |
Culture positive sepsis | 56 (19.6) | 22 (20.6) | 0.95 (0.54, 1.64) |
Intraventricular hemorrhage, any grade | 93 (32.6) | 33 (30.8) | 1.1 (0.67, 1.75) |
Cystic brain injury | 14 (4.9) | 7 (6.5) | 0.74 (0.29, 1.9) |
Sociodemographic Variables | |||
Single parent * | 36 (12.6) | 4 (3.7) | 3.8 (1.3, 11.1) |
Urban dweller (vs. rural) | 225 (78.9) | 89 (83.2) | 0.77 (0.43, 1.4) |
Variable | Non-Breast-Milk-Fed Infants N = 285 n(%) | Breast-Milk-Fed Infants N = 107 n(%) | Odds Ratios/Mean Differences (95% CI) | p-Values |
---|---|---|---|---|
Corrected age at time of assessment, months (mean ± SD) | 4.9 ± 1.2 | 4.9 ± 1.1 | 0.07 (−0.18 to 0.33) | 0.58 |
Formula intake (mL/kg/day) (mean ± SD) * | 132± 40 | 37 ± 44 | −95.25 (−104.89 to −85.60) | <0.001 |
Iron obtained from formula, mg/kg/day, mean ± SD * | 1.66 ± 0.54 | 0.43 ± 0.54 | −1.22 (−1.35 to −1.10) | <0.001 |
Iron supplements * | 165 (57.9) | 85 (79.4) | 0.36 (0.21, 0.60) | <0.001 |
Iron intake from supplement, mg/kg/day, mean ± SD * | 0.93 ± 1.00 | 1.59 ± 1.09 | 0.66 (0.42 to 0.89) | <0.001 |
Total iron intake, mg/kg/day, mean ± SD * | 2.59 ± 1.22 | 2.02 ± 1.23 | −0.57 (−0.85 to −0.30) | <0.001 |
Anti-reflux medication | 105 (36.8) | 41 (38.3) | 0.94 (0.60, 1.49) | 0.79 |
Iron deficiency * | 105 (36.8) | 22 (20.6) | 2.25 (1.33, 3.82) | 0.002 |
Marker | Non-Breast-Milk-Fed Infants N = 285 mean ± SD | Breast-Milk-Fed Infants N = 107 mean ± SD | Mean Differences (95% CI) | p-Values |
---|---|---|---|---|
Ferritin, µg/L * | 26.8 ± 18.4 | 44.8 ± 38.1 | 17.9 (12.3–23.6) | <0.001 |
Ferritin, µg/L * median (IQR) | 20.4 (17.3) | 31.3 (39.4) | <0.001 | |
MCV, fL * | 78.8 ± 3.1 | 77.7 ± 3.8 | −1.1 (−1.8 to −0.4) | 0.004 |
MCH, pg * | 27.4 ± 1.2 | 26.9 ± 1.6 | −0.6 (−0.8 to −0.3) | <0.001 |
MCHC, g/L * | 348.4 ± 8.5 | 346.1 ± 10.6 | −2.3 (−4.4 to −0.3) | 0.02 |
RDW, % | 12.6 ± 1.3 | 12.9 ± 0.8 | 0.2 (0.0–0.5) | 0.07 |
RetCount, % | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.0 (−0.1 to 0.0) | 0.24 |
Ret-He, pg | 30.4 ± 2.1 | 30.5 + 3.2 | 0.1 (−0.8 to 0.9) | 0.91 |
Hemoglobin, g/L | 124.1 ± 9.3 | 122.3 ± 10.7 | −1.8 (−4.0 to 0.4) | 0.10 |
Variables | ID N = 105 n (%) | Non-ID N = 180 n (%) | OR or Mean Difference (95% CI) |
---|---|---|---|
Antenatal Variables | |||
Maternal age, years, mean ± SD | 30.1 ± 6.2 | 28.7 ± 5.8 | −1.43 (−2.9 to 0.03) |
Maternal anemia | 7 (6.7) | 13 (7.2) | 0.92 (0.35, 2.37) |
Gestational hypertension * | 27 (25.7) | 24 (13.3) | 2.25 (1.22, 4.16) |
Smoking | 31 (29.5) | 57 (31.7) | 0.93 (0.55, 1.58) |
Maternal diabetes | 6 (5.7) | 11 (6.1) | 0.93 (0.33, 2.59) |
Antepartum hemorrhage | 19 (18.1) | 28 (15.6) | 1.20 (0.63, 2.27) |
Multiple gestation | 30 (28.6) | 52 (28.9) | 1.00 (0.59, 1.70) |
Mode of delivery * | |||
Vaginal | 34 (32.4) | 82 (45.6) | Ref |
Cesarean section | 71 (67.6) | 98 (54.4) | 1.75 (1.06, 2.89) |
Neonatal Variables | |||
Gestational age, weeks, mean ± SD * | 27.5 ± 2.0 | 28.0 ± 1.9 | 0.52 (0.05 to 0.99) |
Gestational age, weeks | |||
23–27 | 45 (42.9) | 63 (35.0) | 1.39 (0.85, 2.28) |
28–30 | 60 (57.1) | 117 (65.0) | Ref |
Birth weight, grams, mean ± SD * | 1069 ± 294 | 1170 ± 326 | 101.09 (27.01 to 175.17) |
Birth weight, grams * | |||
<1100 | 59 (56.2) | 74 (41.1) | 1.84 (1.13, 2.99) |
≥1100 | 46 (43.8) | 106 (58.9) | Ref |
Length of hospital stay, days, mean ± SD | 80 ± 56 | 77 ± 46 | −2.89 (−15.89 to 10.12) |
Need of any blood transfusions during neonatal stay * | 65 (61.9) | 85 (47.2) | 1.76 (1.08, 2.88) |
Hemoglobin at discharge, g/L, mean ± SD | 109 ± 20 | 113 ± 28 | 3.94 (−1.73 to 9.60) |
Ferritin at discharge, µg/L, mean ± SD | 85 ± 81 | 99 ± 98 | 13.97 (−12.44 to 40.37) |
Dose of iron at discharge, mg/kg/d, mean ± SD | 3.0 ± 1.1 | 3.0 ± 1.1 | 0.00 (−0.26 to 0.27) |
Male sex | 63 (60.0) | 92 (51.1) | 1.47 (0.90, 2.40) |
BPD requiring oxygen at 36 weeks | 28 (26.7) | 36 (20.0) | 1.48 (0.84, 2.62) |
HS-PDA | 31 (29.5) | 42 (23.3) | 1.38 (0.80, 2.37) |
Necrotizing enterocolitis | 3 (2.9) | 6 (3.3) | 0.86 (0.21, 3.52) |
Culture positive sepsis | 26 (24.8) | 30 (16.7) | 1.65 (0.91, 2.97) |
Intraventricular hemorrhage, any grade | 32 (30.5) | 61 (33.9) | 0.86 (0.51, 1.44) |
Cystic brain injury | 8 (7.6) | 6 (3.3) | 2.42 (0.82, 7.17) |
Sociodemographic Variables | |||
Single parent | 15 (14.3) | 21 (11.7) | 1.31 (0.64, 2.67) |
Urban dweller (vs. rural) | 81 (77.1) | 144 (80.0) | 0.88 (0.49, 1.59) |
Variable | ID N = 105 n (%) | Non-ID N = 180 n (%) | Odds Ratios and Mean Differences (95% CI) | p-Values |
---|---|---|---|---|
Corrected age at time of assessment, months (mean ± SD) * | 4.4 ± 0.88 | 5.2 ± 1.20 | 0.78 (0.53 to 1.02) | <0.001 |
Post-discharge Preterm formula * | 59 (56.2) | 45 (25.0) | 3.85 (2.31–6.42) | <0.001 |
Formula intake, mL/kg/day (mean ± SD) * | 142 ± 43 | 127 ± 36 | −14.75 (−24.62 to −4.87) | 0.004 |
Iron obtained from formula, mg/kg/day, mean ± SD * | 1.83 ± 0.57 | 1.55 ± 0.49 | −0.27 (−0.40 to −0.14) | <0.001 |
Iron supplements | 66 (62.9) | 99 (55.0) | 1.39 (0.85–2.27) | 0.20 |
Iron intake from supplement, mg/kg/day, mean ± SD | 1.08 ± 1.05 | 0.85 ± 0.95 | −0.24 (−0.48 to 0.01) | 0.06 |
Total iron intake, mg/kg/day, mean ± SD * | 2.92 ± 1.27 | 2.40 ± 1.16 | −0.52 (−0.82 to −0.22) | <0.001 |
Anti-reflux medication | 44 (41.9) | 61 (33.9) | 1.41 (0.86–2.31) | 0.18 |
Marker | Iron Deficient N = 105 Mean ± SD | Non-Iron Deficient N = 180 Mean ± SD | Mean Differences (95% CI) | p-Values |
---|---|---|---|---|
Ferritin, µg/L * | 15.7 ± 5.9 | 33.2 ± 20.0 | 17.5 (13.5–21.5) | <0.001 |
Ferritin, µg/L * median (IQR) | 15.4 (6.7) | 26.4 (18.8) | <0.001 | |
MCV, fL | 78.8 ± 3.1 | 78.7 ± 3.1 | 0.0 (−0.8–0.7) | 0.92 |
MCH, pg | 27.4 ± 1.2 | 27.4 ± 1.2 | 0.0 (−0.3–0.3) | 0.81 |
MCHC, g/L | 348.0 ± 8.3 | 348.6 ± 8.6 | 0.6 (−1.4–2.7) | 0.56 |
RDW, % | 12.5 ± 1.9 | 12.7 ± 0.7 | 0.1 (−0.2–0.5) | 0.37 |
RetCount, % | 1.1 ± 0.3 | 1.1 ± 0.3 | 0.0 (−0.1–0.1) | 0.72 |
Ret-He, pg * | 29.7 ± 2.0 | 30.7 ± 2.0 | 1.0 (0.2–1.9) | 0.02 |
Hemoglobin, g/L | 124.2 ± 9.3 | 124.1 ± 9.2 | −0.1 (−2.3–2.2) | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Power, G.; Morrison, L.; Kulkarni, K.; Barr, H.; Campbell-Yeo, M.; Singh, B.; Stratas, A.; Landry, C.; Higgins, M.; Ghotra, S. Non Breast-Milk-Fed Very Preterm Infants Are at Increased Risk of Iron Deficiency at 4–6-Months Corrected Age: A Retrospective Population-Based Cohort Study. Nutrients 2024, 16, 407. https://doi.org/10.3390/nu16030407
Power G, Morrison L, Kulkarni K, Barr H, Campbell-Yeo M, Singh B, Stratas A, Landry C, Higgins M, Ghotra S. Non Breast-Milk-Fed Very Preterm Infants Are at Increased Risk of Iron Deficiency at 4–6-Months Corrected Age: A Retrospective Population-Based Cohort Study. Nutrients. 2024; 16(3):407. https://doi.org/10.3390/nu16030407
Chicago/Turabian StylePower, Grace, Lisa Morrison, Ketan Kulkarni, Hudson Barr, Marsha Campbell-Yeo, Balpreet Singh, Alexandra Stratas, Carmen Landry, Michelle Higgins, and Satvinder Ghotra. 2024. "Non Breast-Milk-Fed Very Preterm Infants Are at Increased Risk of Iron Deficiency at 4–6-Months Corrected Age: A Retrospective Population-Based Cohort Study" Nutrients 16, no. 3: 407. https://doi.org/10.3390/nu16030407
APA StylePower, G., Morrison, L., Kulkarni, K., Barr, H., Campbell-Yeo, M., Singh, B., Stratas, A., Landry, C., Higgins, M., & Ghotra, S. (2024). Non Breast-Milk-Fed Very Preterm Infants Are at Increased Risk of Iron Deficiency at 4–6-Months Corrected Age: A Retrospective Population-Based Cohort Study. Nutrients, 16(3), 407. https://doi.org/10.3390/nu16030407