Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults
Abstract
:1. Introduction
2. Objects and Methods
2.1. Study Population
2.2. Intake of Edible Mushrooms and Algae
2.3. Assessment of Cognitive Impairment
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Zhu, M.; Jiao, H.; Song, Y.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.J.; Jia, S.S.; Man, Q.Q.; Song, S.; Li, Y.Q.; Song, P.K.; Zhao, W.H.; Zhang, J. Dietary Cholesterol in the Elderly Chinese Population: An Analysis of CNHS 2010–2012. Nutrients 2017, 9, 934. [Google Scholar] [CrossRef] [PubMed]
- Prince, M. World Alzheimer Report 2015: The Global Impact of Dementia. 2015. Available online: https://www.alzint.org/resource/world-alzheimer-report-2015/ (accessed on 5 December 2023).
- Bredesen, D.E.; Amos, E.C.; Canick, J.; Ackerley, M.; Raji, C.; Fiala, M.; Ahdidan, J. Reversal of cognitive decline in Alzheimer’s disease. Aging 2016, 8, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Giebel, C.M.; Sutcliffe, C.; Challis, D. Activities of daily living and quality of life across different stages of dementia: A UK study. Aging Ment. Health 2015, 19, 63–71. [Google Scholar] [CrossRef]
- Whitehouse, P.J. Alzheimer’s disease: Past, present, and future. Eur. Arch. Psychiatry Clin. Neurosci. 1999, 249 (Suppl. S3), 43. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A.; Smart, C.M.; Amariglio, R.E. Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Annu. Rev. Clin. Psychol. 2017, 13, 369–396. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, F.; Zhang, J.; Wei, Y.; Bai, J.; Wang, H.; Jia, X. Association between Micronutrient-Related Dietary Pattern and Cognitive Function among Persons 55 Years and Older in China: A Longitudinal Study. Nutrients 2023, 15, 481. [Google Scholar] [CrossRef]
- Gou, R.; Qin, J.; Pang, W.; Cai, J.; Luo, T.; He, K.; Xiao, S.; Tang, X.; Zhang, Z.; Li, Y. Correlation between dietary patterns and cognitive function in older Chinese adults: A representative cross-sectional study. Front. Nutr. 2023, 10, 1093456. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, H.; Chen, L.; Ju, S.-Y.; Yang, H.; Zeng, Y.; Gu, D.; Ng, T.P. Type of tea consumption and depressive symptoms in Chinese older adults. BMC Geriatr. 2021, 21, 331. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, H.; Ni, R.; Cao, Y.; Fang, W.; Chen, Y.; Pan, G. Interaction between the animal-based dietary pattern and green space on cognitive function among Chinese older adults: A prospective cohort study. Int. J. Hyg. Environ. Health 2023, 250, 114147. [Google Scholar] [CrossRef]
- Jo Feeney, M.; Miller, A.M.; Roupas, P. Mushrooms-Biologically Distinct and Nutritionally Unique: Exploring a “Third Food Kingdom”. Nutr. Today 2014, 49, 301–307. [Google Scholar] [CrossRef]
- Fulgoni, V.L., 3rd; Agarwal, S. Nutritional impact of adding a serving of mushrooms on usual intakes and nutrient adequacy using National Health and Nutrition Examination Survey 2011–2016 data. Food Sci. Nutr. 2021, 9, 1504–1511. [Google Scholar] [CrossRef]
- Cha, S.; Bell, L.; Williams, C.M. The Relationship between Mushroom Intake and Cognitive Performance: An Epidemiological Study in the European Investigation of Cancer-Norfolk Cohort (EPIC-Norfolk). Nutrients 2024, 16, 353. [Google Scholar] [CrossRef]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.E.; Chinchilli, V.M.; Ssentongo, P.; Beelman, R.B.; Richie, J. Mushroom intake and cognitive performance among US older adults: The National Health and Nutrition Examination Survey, 2011–2014. Br. J. Nutr. 2022, 128, 2241–2248. [Google Scholar] [CrossRef]
- Zhang, S.; Tomata, Y.; Sugiyama, K.; Sugawara, Y.; Tsuji, I. Mushroom Consumption and Incident Dementia in Elderly Japanese: The Ohsaki Cohort 2006 Study. J. Am. Geriatr. Soc. 2017, 65, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Cheah, I.K.-M.; Ng, M.M.-X.; Li, J.; Chan, S.M.; Lim, S.L.; Mahendran, R.; Kua, E.-H.; Halliwell, B. The Association between Mushroom Consumption and Mild Cognitive Impairment: A Community-Based Cross-Sectional Study in Singapore. J. Alzheimers Dis. 2019, 68, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-H.; Huang, Z.-P.; Zhang, X.; He, L.; Willett, W.; Wang, J.-L.; Hasegawa, K.; Chen, J.-S. Reproducibility and validity of a Chinese Food Frequency Questionnaire. Biomed. Environ. Sci. 2010, 23, 1–38. [Google Scholar] [CrossRef]
- Zhao, W.; Hasegawa, K.; Chen, J. The use of food-frequency questionnaires for various purposes in China. Public Health Nutr. 2002, 5, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Li, H.; Yang, L.; Hu, B.; Sun, L.; Sheng, J.; Zhang, D.; Chen, G.; Cheng, B.; Meng, X.; et al. Association of Nighttime Sleep Duration with Cognitive Impairment among Community-dwelling Older Adults. Chin. Gen. Pract. 2023, 26, 7. [Google Scholar]
- Li, M.; Zhang, C.; Zhao, H.; Zheng, X.; Lu, J.; Chang, Y.; Cai, Y. Disability Status and Its Influencing Factors among Empty Nesters and Non-empty Nesters in China. Chin. Gen. Pract. 2019, 22, 1949–1953. [Google Scholar]
- Kim, J.H.; Ha, H.-C.; Lee, M.-S.; Kang, J.-I.; Kim, H.-S.; Lee, S.-Y.; Pyun, K.-H.; Shim, I. Effect of Tremella fuciformis on the neurite outgrowth of PC12h cells and the improvement of memory in rats. Biol. Pharm. Bull. 2007, 30, 708–714. [Google Scholar] [CrossRef]
- Park, H.J.; Shim, H.S.; Ahn, Y.H.; Kim, K.S.; Park, K.J.; Choi, W.K.; Ha, H.C.; Kang, J.I.; Kim, T.S.; Yeo, I.H.; et al. Tremella fuciformis enhances the neurite outgrowth of PC12 cells and restores trime-thyltin-induced impairment of memory in rats via activation of CREB transcription and cholinergic systems. Behav. Brain Res. 2012, 229, 82–90. [Google Scholar] [CrossRef]
- Nurk, E.; Refsum, H.; Drevon, C.A.; Tell, G.S.; Nygaard, H.A.; Engedal, K.; Smith, A.D. Cognitive performance among the elderly in relation to the intake of plant foods. The Hordaland Health Study. Br. J. Nutr. 2010, 104, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.N.S.; Ryu, J.-K.; Kim, Y.; Jeon, B.H. The Effects of Fermented Laminaria japonica on Short-Term Working Memory and Physical Fitness in the Elderly. Evid.-Based Complement. Altern. Med. 2018, 2018, 1–12. [Google Scholar]
- Zhang, Q.; Wu, Y.; Han, T.; Liu, E. Changes in Cognitive Function and Risk Factors for Cognitive Impairment of the Elderly in China: 2005–2014. Int. J. Environ. Res. Public Health 2019, 16, 2847. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, X.; Chaput, D.; Shin, M.-K.; Koh, Y.; Gan, L.; Pieper, A.A.; Woo, J.-A.; Kang, D.E. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 2022, 185, 3913–3930.e19. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Liu, W.W.; Guan, Z.Y.; Tang, S.Y. Correlation analysis of activities of daily living and cognitive function of the elderly in senior care centers. Chin. J. Prev. Med. 2020, 21, 98–102. [Google Scholar]
- Jayakumar, T.; Thomas, P.A.; Mathivanan, I.; Geraldine, P. An extract of the oyster mushroom, Pleurotus ostreatus, increases catalase gene expression and reduces protein oxidation during aging in rats. Zhong Xi Yi Jie He Xue Bao 2010, 8, 774–780. [Google Scholar] [CrossRef]
- Lam, Y.S.; Okello, E.J. Determination of Lovastatin, β-glucan, Total Polyphenols, and Antioxidant Activity in Raw and Processed Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Higher Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.; Kersaitis, C.; Macaulay, S.L.; Münch, G.; Niedermayer, G.; Nigro, J.; Payne, M.; Sheean, P.; Vallotton, P.; Zabaras, D.; et al. Vitamin D2-enriched button mushroom (Agaricus bisporus) improves memory in both wild type and APPswe/PS1dE9 transgenic mice. PLoS ONE 2013, 8, e76362. [Google Scholar] [CrossRef]
- Vamanu, E. Antioxidant properties of mushroom mycelia obtained by batch cultivation and tocopherol content affected by extraction procedures. BioMed Res. Int. 2014, 2014, 974804. [Google Scholar] [CrossRef]
- Kobori, M.; Yoshida, M.; Ohnishi-Kameyama, M.; Shinmoto, H. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br. J. Pharmacol. 2007, 150, 209–219. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Pardhi, P.; Bhadoriya, S.S.; Jain, N.; Rai, G.; Jain, A.P. Antioxidant Potential of White Oyster Culinary-Medicinal Mushroom, Pleurotus florida (Higher Basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.J.; Jeong, J.B.; Kim, K.J.; Lee, S.H. Anti-inflammatory activity of mushroom-derived hispidin through blocking of NF-κB activation. J. Sci. Food Agric. 2015, 95, 2482–2486. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, Y.C.; O’Brien, N.M.; Kenny, O.; Harrington, T.; Brunton, N.; Smyth, T.J. Anti-inflammatory effects of wild Irish mushroom extracts in RAW264.7 mouse macrophage cells. J. Med. Food 2015, 18, 202–207. [Google Scholar] [CrossRef]
- Phan, C.W.; David, P.; Naidu, M.; Wong, K.H.; Sabaratnam, V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: Diversity, metabolite, and mechanism. Crit. Rev. Biotechnol. 2015, 35, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Beelman, R.B.; Kalaras, M.D.; Richie, J.P. Micronutrients and Bioactive Compounds in Mushrooms: A Recipe for Healthy Aging? Nutr. Today 2019, 54, 16–22. [Google Scholar] [CrossRef]
- Kalaras, M.D.; Richie, J.P.; Calcagnotto, A.; Beelman, R.B. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017, 233, 429–433. [Google Scholar] [CrossRef]
- Ey, J.; Schömig, E.; Taubert, D. Dietary sources and antioxidant effects of ergothioneine. J. Agric. Food Chem. 2007, 55, 6466–6474. [Google Scholar] [CrossRef]
- Jang, J.H.; Aruoma, O.I.; Jen, L.S.; Chung, H.Y.; Surh, Y.J. Ergothioneine rescues PC12 cells from beta-amyloid-induced apoptotic death. Free Radic. Biol. Med. 2004, 36, 288–299. [Google Scholar] [CrossRef]
- Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine—A diet-derived antioxidant with therapeutic potential. FEBS Lett. 2018, 592, 3357–3366. [Google Scholar] [CrossRef]
- Dolan, H.; Crain, B.; Troncoso, J.; Resnick, S.M.; Zonderman, A.B.; Obrien, R.J. Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann. Neurol. 2010, 68, 231–240. [Google Scholar] [CrossRef]
- Yoo, K.D.; Park, E.S.; Lim, Y.; Kang, S.I.; Yoo, S.H.; Won, H.H.; Kim, Y.H.; Yoo, I.D.; Yoo, H.S.; Hong, J.T.; et al. Clitocybin A, a novel isoindolinone, from the mushroom Clitocybe aurantiaca, inhibits cell proliferation through G1 phase arrest by regulating the PI3K/Akt cascade in vascular smooth muscle cells. J. Pharmacol. Sci. 2012, 118, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. Hypertension and dementia. Hypertension 2014, 64, 3–5. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Kohli, S.; Rai, G. Antidiabetic potential of polysaccharides from the white oyster culinary-medicinal mushroom Pleurotus florida (higher basidiomycetes). Int. J. Med. Mushrooms 2014, 16, 207–217. [Google Scholar] [CrossRef]
- Yoon, K.N.; Alam, N.; Shim, M.J.; Lee, T.S. Hypolipidemic and antiatherogenesis effect of culinary-medicinal pink oyster mushroom, Pleurotus salmoneostramineus L. Vass. (higher Basidiomycetes), in hypercholesterolemic rats. Int. J. Med. Mushrooms 2012, 14, 27–36. [Google Scholar] [CrossRef]
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Awasthi, A. Therapeutic potential of mushrooms in diabetes mellitus: Role of polysaccharides. Int. J. Biol. Macromol 2020, 164, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Nichols, R.G.; Roy, P.; Gui, W.; Smith, P.B.; Zhang, J.; Lin, Y.; Weaver, V.; Cai, J.; Patterson, A.D.; et al. Prebiotic effects of white button mushroom (Agaricus bisporus) feeding on succinate and intestinal gluconeogenesis in C57BL/6 mice. J. Funct. Foods 2018, 45, 223–232. [Google Scholar] [CrossRef]
- Alghamdi, A. Structural and Functional Brain Changes Associated with Vitamin B12 Deficiency using Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Curr. Med. Imaging 2023, 19, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-Containing Plant Food Sources for Vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total | Edible Mushrooms and Algae Intake Frequency | p Value | ||
---|---|---|---|---|---|
Never | Occasionally | Daily | |||
N | 14,150 | 5990 (42.3) | 7751 (54.8) | 409 (2.9) | |
Age (years) | <0.001 | ||||
<80 | 4898 (34.6) | 1760 (29.4) | 2954 (38.1) | 184 (45.0) | |
≥80 | 9252 (65.4) | 4230 (70.6) | 4797 (61.9) | 225 (55.0) | |
Sex | <0.001 | ||||
Male | 6213 (43.9) | 2503 (41.8) | 3515 (45.3) | 195 (47.7) | |
Female | 7937 (56.1) | 3487 (58.2) | 4236 (54.7) | 214 (52.3) | |
Residence | <0.001 | ||||
Urban | 7911 (55.9) | 2773 (46.3) | 4822 (62.2) | 316 (77.3) | |
Rural | 6239 (44.1) | 3217 (53.7) | 2929 (37.8) | 93 (22.7) | |
Education | <0.001 | ||||
Illiterate | 7207 (50.9) | 3714 (62.0) | 3385 (43.7) | 108 (26.4) | |
Primary | 4418 (31.2) | 1721 (28.7) | 2583 (33.3) | 114 (27.9) | |
Secondary and above | 2525 (17.8) | 555 (9.3) | 1783 (23.0) | 187 (45.7) | |
Marital status | <0.001 | ||||
Without spouse | 8291 (58.6) | 3814 (63.7) | 4294 (55.4) | 183 (44.7) | |
With spouse | 5859 (41.4) | 2176 (36.3) | 3457 (44.6) | 226 (55.3) | |
Sleep duration | <0.001 | ||||
≤6 h | 5303 (37.5) | 2419 (40.4) | 2737 (35.3) | 147 (35.9) | |
7–8 h | 5053 (35.7) | 1909 (31.9) | 2984 (38.5) | 160 (39.1) | |
≥9 h | 3794 (26.8) | 1662 (27.7) | 2030 (26.2) | 102 (24.9) | |
Smoking | <0.001 | ||||
Never | 9984 (70.6) | 4331 (72.3) | 5369 (69.3) | 284 (69.4) | |
Former | 2072 (14.6) | 774 (12.9) | 1229 (15.9) | 69 (16.9) | |
Current | 2094 (14.8) | 885 (14.8) | 1153 (14.9) | 56 (13.7) | |
Alcohol consumption | <0.001 | ||||
Never | 10,546 (74.5) | 4591 (76.6) | 5660 (73.0) | 295 (72.1) | |
Former | 1612 (11.4) | 659 (11.0) | 901 (11.6) | 52 (12.7) | |
Current | 1992 (14.1) | 740 (12.4) | 1190 (15.4) | 62 (15.2) | |
Fruit intake | <0.001 | ||||
No | 3511 (24.8) | 2043 (34.1) | 1421 (18.3) | 47 (11.5) | |
Yes | 10,639 (75.2) | 3947 (65.9) | 6330 (81.7) | 362 (88.5) | |
Vegetable intake | <0.001 | ||||
No | 545 (3.9) | 382 (6.4) | 157 (2.0) | 6 (1.5) | |
Yes | 13,605 (96.1) | 5608 (93.6) | 7594 (98.0) | 403 (98.5) | |
Social activity level | <0.001 | ||||
Low | 12,171 (86.0) | 5527 (92.3) | 6372 (82.2) | 272 (66.5) | |
High | 1979 (14.0) | 463 (7.7) | 1379 (17.8) | 137 (33.5) | |
BMI (kg/m2) | <0.001 | ||||
Underweight | 2452 (17.3) | 1268 (21.2) | 1135 (14.6) | 49 (12.0) | |
Normal | 7344 (51.9) | 3220 (53.8) | 3912 (50.5) | 212 (51.8) | |
Overweight or obese | 4354 (30.8) | 1502 (25.1) | 2704 (34.9) | 148 (36.2) | |
Disability in activities of daily living | 0.009 | ||||
No | 10,154 (71.8) | 4229 (70.6) | 5627 (72.6) | 298 (72.9) | |
Yes | 3996 (28.2) | 1761 (29.4) | 2124 (27.4) | 111 (27.1) | |
Hypertension | <0.001 | ||||
No | 8228 (58.1) | 3785 (63.2) | 4259 (54.9) | 184 (45.0) | |
Yes | 5922 (41.9) | 2205 (36.8) | 3492 (45.1) | 225 (55.0) | |
Diabetes | <0.001 | ||||
No | 12,784 (90.3) | 5614 (93.7) | 6829 (88.1) | 341 (83.4) | |
Yes | 1366 (9.7) | 376 (6.3) | 922 (11.9) | 68 (16.6) | |
Heart disease | |||||
No | 11,709 (82.7) | 5179 (86.5) | 6223 (80.3) | 307 (75.1) | <0.001 |
Yes | 2441 (17.3) | 811 (13.5) | 1528 (19.7) | 102 (24.9) | |
Stroke and cerebrovascular disease | <0.001 | ||||
No | 12,591 (89.0) | 5438 (90.8) | 6814 (87.9) | 339 (82.9) | |
Yes | 1559 (11.0) | 552 (9.2) | 937 (12.1) | 70 (17.1) |
Model | Never | Occasionally | Daily | ||
---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | ||
Model 1 a | 1.00 (Ref.) | 0.67 (0.62, 0.73) | <0.001 | 0.61 (0.46, 0.82) | 0.001 |
Model 2 b | 1.00 (Ref.) | 0.70 (0.64, 0.76) | <0.001 | 0.67 (0.50, 0.91) | 0.010 |
Model 3 c | 1.00 (Ref.) | 0.75(0.68, 0.83) | <0.001 | 0.71 (0.51, 0.99) | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, D.; Qi, R.; Chen, Y.; Sheng, B.; Zhang, X. Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults. Nutrients 2024, 16, 637. https://doi.org/10.3390/nu16050637
Yang Y, Zhu D, Qi R, Chen Y, Sheng B, Zhang X. Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults. Nutrients. 2024; 16(5):637. https://doi.org/10.3390/nu16050637
Chicago/Turabian StyleYang, Yun, Danni Zhu, Ran Qi, Yanchun Chen, Baihe Sheng, and Xinyu Zhang. 2024. "Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults" Nutrients 16, no. 5: 637. https://doi.org/10.3390/nu16050637
APA StyleYang, Y., Zhu, D., Qi, R., Chen, Y., Sheng, B., & Zhang, X. (2024). Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults. Nutrients, 16(5), 637. https://doi.org/10.3390/nu16050637