Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics
Abstract
:1. Introduction
2. Methods
3. Results
3.1. The Impact of Probiotic/Prebiotic/Symbiotic Supplementation on Cognitive Function in Individuals without Cognitive Impairment
3.2. The Influence of Probiotic/Prebiotic/Symbiotic Supplementation on Cognitive Function in Individuals Diagnosed with Mild Cognitive Impairment
3.3. The Effect of Probiotic Supplementation on Cognitive Function in Individuals Afflicted by Alzheimer’s Disease
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. MicrobiologyOpen 2022, 11, e1260. [Google Scholar] [CrossRef]
- Chaudhari, D.S.; Jain, S.; Yata, V.K.; Mishra, S.P.; Kumar, A.; Fraser, A.; Kociolek, J.; Dangiolo, M.; Smith, A.; Golden, A.; et al. Unique trans-kingdom microbiome structural and functional signatures predict cognitive decline in older adults. Geroscience 2023, 45, 2819–2834. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary lifestyle: Overview of updated evidence of potential health risks. Korean J. Fam. Med. 2020, 41, 365. [Google Scholar] [CrossRef]
- Noto, S. Perspectives on Aging and Quality of Life. Healthcare 2023, 11, 2131. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Vernuccio, L.; Catanese, G.; Inzerillo, F.; Salemi, G.; Barbagallo, M. Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients 2021, 13, 4080. [Google Scholar] [CrossRef]
- Shi, L.H.; Balakrishnan, K.; Thiagarajah, K.; Ismail, N.I.M.; Yin, O.S. Beneficial properties of probiotics. Trop. Life Sci. Res. 2016, 27, 73. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Health and Nutritional Properties of Powder Milk and Live Lactic Acid Bacteria; Joint FAO/WHO Expert Consultation: Cordoba, Argentina, 2001; pp. 1–34.
- Sartor, R.B.; LaMont, T.; Grover, S. Probiotics for Gastrointestinal Diseases. Uptodate Feb 2013. Available online: https://www.uptodate.com/contents/probiotics-for-gastrointestinal-diseases (accessed on 2 February 2024).
- Rosander, A.; Connolly, E.; Roos, S. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl. Environ. Microbiol. 2008, 74, 6032–6040. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Jach, M.E.; Serefko, A.; Szopa, A.; Sajnaga, E.; Golczyk, H.; Santos, L.S.; Borowicz-Reutt, K.; Sieniawska, E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023, 28, 3213. [Google Scholar] [CrossRef]
- Mörkl, S.; Butler, M.I.; Holl, A.; Cryan, J.F.; Dinan, T.G. Probiotics and the Microbiota-Gut-Brain Axis: Focus on Psychiatry. Curr. Nutr. Rep. 2020, 9, 171–182. [Google Scholar] [CrossRef]
- Madison, A.; Kiecolt-Glaser, J.K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci. 2019, 28, 105–110. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Zhang, X. Probiotics regulate gut microbiota: An effective method to improve immunity. Molecules 2021, 26, 6076. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Tarantini, S.; Fazekas-Pongor, V.; Csípő, T.; Csizmadia, Z.; Varga, J.T. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023, 15, 5116. [Google Scholar] [CrossRef]
- Kim, C.S.; Cha, L.; Sim, M.; Jung, S.; Chun, W.Y.; Baik, H.W.; Shin, D.M. Probiotic Supplementation Improves Cognitive Function and Mood with Changes in Gut Microbiota in Community-Dwelling Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 32–40. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, Q.; Sang, Y.; Ge, S.; Wang, Q.; Wang, R.; He, J. Probiotic Bifidobacterium longum BB68S Improves Cognitive Functions in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2022, 15, 51. [Google Scholar] [CrossRef]
- Sakurai, K.; Toshimitsu, T.; Okada, E.; Anzai, S.; Shiraishi, I.; Inamura, N.; Kobayashi, S.; Sashihara, T.; Hisatsune, T. Effects of Lactiplantibacillus plantarum OLL2712 on Memory Function in Older Adults with Declining Memory: A Randomized Placebo-Controlled Trial. Nutrients 2022, 14, 4300. [Google Scholar] [CrossRef]
- Czajeczny, D.; Kabzińska, K.; Wójciak, R.W. Effects of Bifidobacterium Lactis BS01 and Lactobacillus Acidophilus LA02 on cognitive functioning in healthy women. Appl. Neuropsychol. Adult 2023, 30, 552–560. [Google Scholar] [CrossRef]
- Lochlainn, M.N.; Bowyer, R.; Whelan, K.; Steves, C.J. 66 The PROMOTe study: Prebiotic supplementation improves cognition versus placebo in healthy older twins. Age Ageing 2023, 52, afad156-006. [Google Scholar] [CrossRef]
- Azuma, N.; Mawatari, T.; Saito, Y.; Tsukamoto, M.; Sampei, M.; Iwama, Y. Effect of Continuous Ingestion of Bifidobacteria and Dietary Fiber on Improvement in Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 4175. [Google Scholar] [CrossRef]
- Berding, K.; Long-Smith, C.M.; Carbia, C.; Bastiaanssen, T.F.S.; van de Wouw, M.; Wiley, N.; Strain, C.R.; Fouhy, F.; Stanton, C.; Cryan, J.F.; et al. A specific dietary fibre supplementation improves cognitive performance—An exploratory randomised, placebo-controlled, crossover study. Psychopharmacology 2021, 238, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, V.; Azcarate-Peril, M.A.; Updegraff, J.; Manderino, L.; Gunstad, J. Randomized Clinical Trial Examining the Impact of Lactobacillus rhamnosus GG Probiotic Supplementation on Cognitive Functioning in Middle-aged and Older Adults. Neuropsychiatr. Dis. Treat. 2020, 16, 2765–2777. [Google Scholar] [CrossRef] [PubMed]
- Louzada, E.R.; Ribeiro, S.M.L. Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr. Neurosci. 2020, 23, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sanborn, V.; Aljumaah, M.; Azcarate-Peril, M.A.; Gunstad, J. Examining the cognitive benefits of probiotic supplementation in physically active older adults: A randomized clinical trial. Appl. Physiol. Nutr. Metab. 2022, 47, 871–882. [Google Scholar] [CrossRef]
- Edebol Carlman, H.M.T.; Rode, J.; König, J.; Repsilber, D.; Hutchinson, A.N.; Thunberg, P.; Persson, J.; Kiselev, A.; Pruessner, J.C.; Brummer, R.J. Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses to an Arithmetic Stress Task in Healthy Subjects: A Randomised Clinical Trial and Proof-of-Concept Study. Nutrients 2022, 14, 1329. [Google Scholar] [CrossRef] [PubMed]
- Ascone, L.; Forlim, C.G.; Gallinat, J.; Kühn, S. Effects of a multi-strain probiotic on hippocampal structure and function, cognition, and emotional well-being in healthy individuals: A double-blind randomised-controlled trial. Psychol. Med. 2022, 52, 4197–4207. [Google Scholar] [CrossRef]
- Cannavale, C.N.; Mysonhimer, A.R.; Bailey, M.A.; Cohen, N.J.; Holscher, H.D.; Khan, N.A. Consumption of a fermented dairy beverage improves hippocampal-dependent relational memory in a randomized, controlled cross-over trial. Nutr. Neurosci. 2023, 26, 265–274. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Bhatia, U.; Roach, J.; Gunstad, J.; Azcarate Peril, M.A. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr. 2022, 41, 2565–2576. [Google Scholar] [CrossRef]
- Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; et al. Effect of Probiotic Bifidobacterium breve in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimers Dis. 2022, 88, 75–95. [Google Scholar] [CrossRef]
- Xiao, J.; Katsumata, N.; Bernier, F.; Ohno, K.; Yamauchi, Y.; Odamaki, T.; Yoshikawa, K.; Ito, K.; Kaneko, T. Probiotic Bifidobacterium breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimers Dis. 2020, 77, 139–147. [Google Scholar] [CrossRef]
- Fei, Y.; Wang, R.; Lu, J.; Peng, S.; Yang, S.; Wang, Y.; Zheng, K.; Li, R.; Lin, L.; Li, M. Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatr. Nurs. 2023, 51, 167–175. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kinoshita, T.; Matsumoto, A.; Yoshino, K.; Saito, I.; Xiao, J.Z. Bifidobacterium Breve A1 Supplementation Improved Cognitive Decline in Older Adults with Mild Cognitive Impairment: An Open-Label, Single-Arm Study. J. Prev. Alzheimers Dis. 2019, 6, 70–75. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Park, S.; Paik, J.W.; Chae, S.W.; Kim, D.H.; Jeong, D.G.; Ha, E.; Kim, M.; Hong, G.; Park, S.H.; et al. Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2019, 11, 305. [Google Scholar] [CrossRef]
- Ton, A.M.M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra, E.O.T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira, T.M.C.; et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxid. Med. Cell Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef]
- Akhgarjand, C.; Vahabi, Z.; Shab-Bidar, S.; Etesam, F.; Djafarian, K. Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer’s disease: A randomized, double-blind, and placebo-controlled study. Front. Aging Neurosci. 2022, 14, 1032494. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kuhara, T.; Oki, M.; Xiao, J.Z. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: A randomised, double-blind, placebo-controlled trial. Benef. Microbes 2019, 10, 511–520. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Heidari-Soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr. 2019, 38, 2569–2575. [Google Scholar] [CrossRef]
- Liu, Y.; Alookaran, J.J.; Rhoads, J.M. Probiotics in autoimmune and inflammatory disorders. Nutrients 2018, 10, 1537. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Fehér, Á.; Varga, J.T. Az emberi szervezetben élő baktériumok klinikai jelentősége a gyakorlatban. Egészségfejlesztés 2021, 62, 31–43. [Google Scholar] [CrossRef]
- You, S.; Ma, Y.; Yan, B.; Pei, W.; Wu, Q.; Ding, C.; Huang, C. The promotion mechanism of prebiotics for probiotics: A review. Front. Nutr. 2022, 9, 1000517. [Google Scholar] [CrossRef]
- Roy, S.; Dhaneshwar, S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J. Gastroenterol. 2023, 29, 2078. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203. [Google Scholar]
- Tzemah-Shahar, R.; Turjeman, S.; Sharon, E.; Gamliel, G.; Hochner, H.; Koren, O.; Agmon, M. Signs of aging in midlife: Physical function and sex differences in microbiota. Geroscience 2024, 46, 1477–1488. [Google Scholar] [CrossRef]
- Brunt, V.E.; LaRocca, T.J.; Bazzoni, A.E.; Sapinsley, Z.J.; Miyamoto-Ditmon, J.; Gioscia-Ryan, R.A.; Neilson, A.P.; Link, C.D.; Seals, D.R. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. Geroscience 2021, 43, 377–394. [Google Scholar] [CrossRef]
- Galland, L. The gut microbiome and the brain. J. Med. Food 2014, 17, 1261–1272. [Google Scholar] [CrossRef]
- Csipo, T.; Lipecz, A.; Fulop, G.A.; Hand, R.A.; Ngo, B.-T.N.; Dzialendzik, M.; Tarantini, S.; Balasubramanian, P.; Kiss, T.; Yabluchanska, V. Age-related decline in peripheral vascular health predicts cognitive impairment. Geroscience 2019, 41, 125–136. [Google Scholar] [CrossRef]
- Fekete, M.; Balazs, P.; Lehoczki, A.; Forrai, J.; Dosa, N.; Fazekas-Pongor, V.; Feher, A.; Madarasz, B.; Varga, J.T. The role of gut microbiome and its modification while regulating the defence mechanisms, particularly in severe COVID-19 cases. Med. Int. Rev. 2023, 30, 154–166. [Google Scholar]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S. Nutrition strategies promoting healthy aging: From improvement of cardiovascular and brain health to prevention of age-associated diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef]
- Coradduzza, D.; Sedda, S.; Cruciani, S.; De Miglio, M.R.; Ventura, C.; Nivoli, A.; Maioli, M. Age-Related Cognitive Decline, Focus on Microbiome: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 13680. [Google Scholar] [CrossRef] [PubMed]
- Shintani, T.; Shintani, H.; Sato, M.; Ashida, H. Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension. Geroscience 2023, 45, 3475–3490. [Google Scholar] [CrossRef] [PubMed]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of chronic inflammation in aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Wall, R.; Cryan, J.F.; Ross, R.P.; Fitzgerald, G.F.; Dinan, T.G.; Stanton, C. Bacterial neuroactive compounds produced by psychobiotics. Adv. Exp. Med. Biol. 2014, 817, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Mackin, P. HPA axis function in mood disorders. Psychiatry 2006, 5, 166–170. [Google Scholar] [CrossRef]
- Wu, H.-J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012, 3, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Nandwana, V.; Nandwana, N.K.; Das, Y.; Saito, M.; Panda, T.; Das, S.; Almaguel, F.; Hosmane, N.S.; Das, B.C. The role of microbiome in brain development and neurodegenerative diseases. Molecules 2022, 27, 3402. [Google Scholar] [CrossRef] [PubMed]
- Hossain, K.S.; Amarasena, S.; Mayengbam, S. B vitamins and their roles in gut health. Microorganisms 2022, 10, 1168. [Google Scholar] [CrossRef]
- Petra, A.I.; Panagiotidou, S.; Hatziagelaki, E.; Stewart, J.M.; Conti, P.; Theoharides, T.C. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders with Suspected Immune Dysregulation. Clin. Ther. 2015, 37, 984–995. [Google Scholar] [CrossRef]
- Lee, C.-H.; Giuliani, F. The role of inflammation in depression and fatigue. Front. Immunol. 2019, 10, 1696. [Google Scholar] [CrossRef]
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for health care practice and research. J. Neurosci. Nurs. 2012, 44, 206. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Chan, A.K.Y.; Wu, J.; Lee, T.M.C. Relationships between inflammation and age-related neurocognitive changes. Int. J. Mol. Sci. 2022, 23, 12573. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol.-Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Piao, X.; Mahfuz, S.; Long, S.; Wang, J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim. Nutr. 2022, 9, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Gulej, R.; Nyul-Toth, A.; Csik, B.; Petersen, B.; Faakye, J.; Negri, S.; Chandragiri, S.S.; Mukli, P.; Yabluchanskiy, A.; Conley, S.; et al. Rejuvenation of cerebromicrovascular function in aged mice through heterochronic parabiosis: Insights into neurovascular coupling and the impact of young blood factors. Geroscience 2024, 46, 327–347. [Google Scholar] [CrossRef] [PubMed]
- Ting, K.K.; Coleman, P.; Kim, H.J.; Zhao, Y.; Mulangala, J.; Cheng, N.C.; Li, W.; Gunatilake, D.; Johnstone, D.M.; Loo, L.; et al. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer’s disease models. Geroscience 2023, 45, 3307–3331. [Google Scholar] [CrossRef]
- Lineback, C.M.; Stamm, B.; Sorond, F.; Caprio, F.Z. Carotid disease, cognition, and aging: Time to redefine asymptomatic disease? Geroscience 2023, 45, 719–725. [Google Scholar] [CrossRef]
- Zhang, H.; Roman, R.J.; Fan, F. Hippocampus is more susceptible to hypoxic injury: Has the Rosetta Stone of regional variation in neurovascular coupling been deciphered? Geroscience 2022, 44, 127–130. [Google Scholar] [CrossRef]
- Vestergaard, M.B.; Lindberg, U.; Knudsen, M.H.; Urdanibia-Centelles, O.; Bakhtiari, A.; Mortensen, E.L.; Osler, M.; Fagerlund, B.; Benedek, K.; Lauritzen, M.; et al. Subclinical cognitive deficits are associated with reduced cerebrovascular response to visual stimulation in mid-sixties men. Geroscience 2022, 44, 1905–1923. [Google Scholar] [CrossRef]
- Toth, L.; Czigler, A.; Hegedus, E.; Komaromy, H.; Amrein, K.; Czeiter, E.; Yabluchanskiy, A.; Koller, A.; Orsi, G.; Perlaki, G.; et al. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. Geroscience 2022, 44, 2771–2783. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Barnes, S.R.; Nation, D.A.; Kisler, K.; Toga, A.W.; Zlokovic, B.V. Imaging subtle leaks in the blood-brain barrier in the aging human brain: Potential pitfalls, challenges, and possible solutions. Geroscience 2022, 44, 1339–1351. [Google Scholar] [CrossRef]
- Tarantini, S.; Balasubramanian, P.; Delfavero, J.; Csipo, T.; Yabluchanskiy, A.; Kiss, T.; Nyul-Toth, A.; Mukli, P.; Toth, P.; Ahire, C.; et al. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience 2021, 43, 2427–2440. [Google Scholar] [CrossRef] [PubMed]
- Sabayan, B.; Westendorp, R.G.J. Neurovascular-glymphatic dysfunction and white matter lesions. Geroscience 2021, 43, 1635–1642. [Google Scholar] [CrossRef]
- Faakye, J.; Nyul-Toth, A.; Muranyi, M.; Gulej, R.; Csik, B.; Shanmugarama, S.; Tarantini, S.; Negri, S.; Prodan, C.; Mukli, P.; et al. Preventing spontaneous cerebral microhemorrhages in aging mice: A novel approach targeting cellular senescence with ABT263/navitoclax. Geroscience 2024, 46, 21–37. [Google Scholar] [CrossRef]
- Kiss, T.; Nyul-Toth, A.; Balasubramanian, P.; Tarantini, S.; Ahire, C.; DelFavero, J.; Yabluchanskiy, A.; Csipo, T.; Farkas, E.; Wiley, G.; et al. Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 2020, 42, 429–444. [Google Scholar] [CrossRef]
- Czakó, C.; Kovács, T.; Ungvari, Z.; Csiszar, A.; Yabluchanskiy, A.; Conley, S.; Csipo, T.; Lipecz, A.; Horváth, H.; Sándor, G.L.; et al. Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): Implication for early diagnosis and prognosis. Geroscience 2020, 42, 1499–1525. [Google Scholar] [CrossRef] [PubMed]
- Papalini, S.; Michels, F.; Kohn, N.; Wegman, J.; van Hemert, S.; Roelofs, K.; Arias-Vasquez, A.; Aarts, E. Stress matters: Randomized controlled trial on the effect of probiotics on neurocognition. Neurobiol. Stress 2019, 10, 100141. [Google Scholar] [CrossRef]
- Chaiyasut, C.; Sivamaruthi, B.S. Influence of probiotic supplementation on brain function: Involvement of gut microbiome, inflammation, and stress pathway. Gut Microbiota-Brain Axis 2018, 20–33. [Google Scholar] [CrossRef]
- National Institutes of Health. Probiotics: Fact Sheet for Health Professionals. 2020. Available online: https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/ (accessed on 12 February 2024).
- Lee, J. Mild cognitive impairment in relation to Alzheimer’s disease: An investigation of principles, classifications, ethics, and problems. Neuroethics 2023, 16, 16. [Google Scholar] [CrossRef]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.-A.; Smith, G.; De Wit, L.; DeFeis, B.; Ying, G.; Amofa, P.; Locke, D.; Shandera-Ochsner, A.; McAlister, C.; Phatak, V. Behavioral interventions in mild cognitive impairment (MCI): Lessons from a multicomponent program. Neurotherapeutics 2023, 19, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. Probiotics for mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Foods 2021, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lv, C.; Song, J.; Li, J. Effect of probiotic supplementation on cognitive function and metabolic status in mild cognitive impairment and alzheimer’s disease: A meta-analysis. Front. Nutr. 2021, 8, 757673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fan, C.; Wang, L.; Li, T.; Wang, M.; Han, Y.; Jiang, J.; and for the Alzheimer’s Disease Neuroimaging Initiative. Glucose metabolism in posterior cingulate cortex has supplementary value to predict the progression of cognitively unimpaired to dementia due to Alzheimer’s disease: An exploratory study of (18)F-FDG-PET. Geroscience 2024, 46, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Zadka, L.; Sochocka, M.; Hachiya, N.; Chojdak-Lukasiewicz, J.; Dziegiel, P.; Piasecki, E.; Leszek, J. Endocytosis and Alzheimer’s disease. Geroscience 2024, 46, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Wortha, S.M.; Schulz, J.; Hanna, J.; Schwarz, C.; Stubbe, B.; Frenzel, S.; Bulow, R.; Friedrich, N.; Nauck, M.; Volzke, H.; et al. Association of spermidine blood levels with microstructure of sleep-implications from a population-based study. Geroscience 2024, 46, 1319–1330. [Google Scholar] [CrossRef]
- Williamson, J.; James, S.A.; Mukli, P.; Yabluchanskiy, A.; Wu, D.H.; Sonntag, W.; Alzheimer’s Disease Neuroimaging Initiative, C.; Yang, Y. Sex difference in brain functional connectivity of hippocampus in Alzheimer’s disease. Geroscience 2024, 46, 563–572. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, A.; Yu, J.; Wang, P.; Bi, Y.; Xue, S.; Zhang, J.; Guo, H.; Zhang, W. The effect of aperiodic components in distinguishing Alzheimer’s disease from frontotemporal dementia. Geroscience 2024, 46, 751–768. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, L.; He, C.; Feng, H.; Xie, C.; Depression Imaging, R.C. Age- and gender-related dispersion of brain networks across the lifespan. Geroscience 2024, 46, 1303–1318. [Google Scholar] [CrossRef] [PubMed]
- van Gennip, A.C.E.; Satizabal, C.L.; Tracy, R.P.; Sigurdsson, S.; Gudnason, V.; Launer, L.J.; van Sloten, T.T. Associations of plasma NfL, GFAP, and t-tau with cerebral small vessel disease and incident dementia: Longitudinal data of the AGES-Reykjavik Study. Geroscience 2024, 46, 505–516. [Google Scholar] [CrossRef]
- Salwierz, P.; Thapa, S.; Taghdiri, F.; Vasilevskaya, A.; Anastassiadis, C.; Tang-Wai, D.F.; Golas, A.C.; Tartaglia, M.C. Investigating the association between a history of depression and biomarkers of Alzheimer’s disease, cerebrovascular disease, and neurodegeneration in patients with dementia. Geroscience 2024, 46, 783–793. [Google Scholar] [CrossRef]
- Fernandez, A.; Cuesta, P.; Marcos, A.; Montenegro-Pena, M.; Yus, M.; Rodriguez-Rojo, I.C.; Bruna, R.; Maestu, F.; Lopez, M.E. Sex differences in the progression to Alzheimer’s disease: A combination of functional and structural markers. Geroscience 2024, 46, 2619–2640. [Google Scholar] [CrossRef]
- Ercolano, E.; Bencivenga, L.; Palaia, M.E.; Carbone, G.; Scognamiglio, F.; Rengo, G.; Femminella, G.D. Intricate relationship between obstructive sleep apnea and dementia in older adults. Geroscience 2024, 46, 99–111. [Google Scholar] [CrossRef] [PubMed]
- DeVries, S.A.; Conner, B.; Dimovasili, C.; Moore, T.L.; Medalla, M.; Mortazavi, F.; Rosene, D.L. Immune proteins C1q and CD47 may contribute to aberrant microglia-mediated synapse loss in the aging monkey brain that is associated with cognitive impairment. Geroscience 2024, 46, 2503–2519. [Google Scholar] [CrossRef]
- da Silva, S.P.; de Castro, C.C.M.; Rabelo, L.N.; Engelberth, R.C.; Fernandez-Calvo, B.; Fiuza, F.P. Neuropathological and sociodemographic factors associated with the cortical amyloid load in aging and Alzheimer’s disease. Geroscience 2024, 46, 621–643. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Yang, H.; Li, H.; Zhou, L.; Zhang, M.; Wang, Y. Associations of sugar-sweetened, artificially sweetened, and naturally sweet juices with Alzheimer’s disease: A prospective cohort study. Geroscience 2024, 46, 1229–1240. [Google Scholar] [CrossRef]
- Weijs, R.W.J.; Oudegeest-Sander, M.H.; Vloet, J.I.A.; Hopman, M.T.E.; Claassen, J.; Thijssen, D.H.J. A decade of aging in healthy older adults: Longitudinal findings on cerebrovascular and cognitive health. Geroscience 2023, 45, 2629–2641. [Google Scholar] [CrossRef] [PubMed]
- Waigi, E.W.; Webb, R.C.; Moss, M.A.; Uline, M.J.; McCarthy, C.G.; Wenceslau, C.F. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer’s disease and cardiovascular diseases. Geroscience 2023, 45, 1411–1438. [Google Scholar] [CrossRef] [PubMed]
- Van Skike, C.E.; DeRosa, N.; Galvan, V.; Hussong, S.A. Rapamycin restores peripheral blood flow in aged mice and in mouse models of atherosclerosis and Alzheimer’s disease. Geroscience 2023, 45, 1987–1996. [Google Scholar] [CrossRef]
- Seman, A.; Chandra, P.K.; Byrum, S.D.; Mackintosh, S.G.; Gies, A.J.; Busija, D.W.; Rutkai, I. Targeting mitochondria in the aged cerebral vasculature with SS-31, a proteomic study of brain microvessels. Geroscience 2023, 45, 2951–2965. [Google Scholar] [CrossRef]
- Dorigatti, A.O.; Riordan, R.; Yu, Z.; Ross, G.; Wang, R.; Reynolds-Lallement, N.; Magnusson, K.; Galvan, V.; Perez, V.I. Brain cellular senescence in mouse models of Alzheimer’s disease. Geroscience 2022, 44, 1157–1168. [Google Scholar] [CrossRef]
- Custodero, C.; Ciavarella, A.; Panza, F.; Gnocchi, D.; Lenato, G.M.; Lee, J.; Mazzocca, A.; Sabba, C.; Solfrizzi, V. Role of inflammatory markers in the diagnosis of vascular contributions to cognitive impairment and dementia: A systematic review and meta-analysis. Geroscience 2022, 44, 1373–1392. [Google Scholar] [CrossRef]
- Bagi, Z.; Kroenke, C.D.; Fopiano, K.A.; Tian, Y.; Filosa, J.A.; Sherman, L.S.; Larson, E.B.; Keene, C.D.; Degener O’Brien, K.; Adeniyi, P.A.; et al. Association of cerebral microvascular dysfunction and white matter injury in Alzheimer’s disease. Geroscience 2022, 44, 1–14. [Google Scholar] [CrossRef]
- Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 58, 1–15. [Google Scholar] [CrossRef]
- Ferreiro, A.L.; Choi, J.; Ryou, J.; Newcomer, E.P.; Thompson, R.; Bollinger, R.M.; Hall-Moore, C.; Ndao, I.M.; Sax, L.; Benzinger, T.L.S.; et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 2023, 15, eabo2984. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; et al. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep. 2023, 13, 5258. [Google Scholar] [CrossRef]
- Jemimah, S.; Chabib, C.M.M.; Hadjileontiadis, L.; AlShehhi, A. Gut microbiome dysbiosis in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285346. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Sarkar, P.; Sarkar, T. Beyond the acute illness: Exploring long COVID and its impact on multiple organ systems. Physiol. Int. 2023, 110, 291–310. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Bartolome, B.; Penalvo, J.L.; Perez-Matute, P.; Motilva, M.J. Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer’s Disease. Nutrients 2020, 12, 3082. [Google Scholar] [CrossRef]
- Lamichhane, G.; Liu, J.; Lee, S.J.; Lee, D.Y.; Zhang, G.; Kim, Y. Curcumin Mitigates the High-Fat High-Sugar Diet-Induced Impairment of Spatial Memory, Hepatic Metabolism, and the Alteration of the Gut Microbiome in Alzheimer’s Disease-Induced (3xTg-AD) Mice. Nutrients 2024, 16, 240. [Google Scholar] [CrossRef]
- Giridharan, V.V.; Catumbela, C.S.G.; Catalao, C.H.R.; Lee, J.; Ganesh, B.P.; Petronilho, F.; Dal-Pizzol, F.; Morales, R.; Barichello, T. Sepsis exacerbates Alzheimer’s disease pathophysiology, modulates the gut microbiome, increases neuroinflammation and amyloid burden. Mol. Psychiatry 2023, 28, 4463–4473. [Google Scholar] [CrossRef]
- Mansell, V.; Hall Dykgraaf, S.; Kidd, M.; Goodyear-Smith, F. Long COVID and older people. Lancet Healthy Longev. 2022, 3, e849–e854. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Shah, R.; Alford, N.; Mishra, S.P.; Jain, S.; Hansen, B.; Sanberg, P.; Molina, A.J.A.; Yadav, H. The Triple Alliance: Microbiome, Mitochondria, and Metabolites in the Context of Age-Related Cognitive Decline and Alzheimer’s Disease. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 2187–2202. [Google Scholar] [CrossRef]
- Zhao, Y.; Jaber, V.; Lukiw, W.J. Gastrointestinal Tract Microbiome-Derived Pro-inflammatory Neurotoxins in Alzheimer’s Disease. J. Aging Sci. 2021, 9, 002. [Google Scholar]
- Li, X.Y.; Qin, H.Y.; Li, T.T. Advances in the study of the relationship between Alzheimer’s disease and the gastrointestinal microbiome. Ibrain 2022, 8, 465–475. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, G.; Kwok, L.Y.; Sun, Z. Gut microbiome-targeted therapies for Alzheimer’s disease. Gut Microbes 2023, 15, 2271613. [Google Scholar] [CrossRef]
- Zhan, Y.; Al-Nusaif, M.; Ding, C.; Zhao, L.; Dong, C. The potential of the gut microbiome for identifying Alzheimer’s disease diagnostic biomarkers and future therapies. Front. Neurosci. 2023, 17, 1130730. [Google Scholar] [CrossRef]
- Laske, C.; Muller, S.; Preische, O.; Ruschil, V.; Munk, M.H.J.; Honold, I.; Peter, S.; Schoppmeier, U.; Willmann, M. Signature of Alzheimer’s Disease in Intestinal Microbiome: Results from the AlzBiom Study. Front. Neurosci. 2022, 16, 792996. [Google Scholar] [CrossRef]
- Bello-Corral, L.; Sanchez-Valdeon, L.; Casado-Verdejo, I.; Seco-Calvo, J.A.; Antonio Fernandez-Fernandez, J.; Nelida Fernandez-Martinez, M. The Influence of Nutrition in Alzheimer’s Disease: Neuroinflammation and the Microbiome vs. Transmissible Prion. Front. Neurosci. 2021, 15, 677777. [Google Scholar] [CrossRef]
- Hill, J.M.; Bhattacharjee, S.; Pogue, A.I.; Lukiw, W.J. The gastrointestinal tract microbiome and potential link to Alzheimer’s disease. Front. Neurol. 2014, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Mone, Y.; Earl, J.P.; Krol, J.E.; Ahmed, A.; Sen, B.; Ehrlich, G.D.; Lapides, J.R. Evidence supportive of a bacterial component in the etiology for Alzheimer’s disease and for a temporal-spatial development of a pathogenic microbiome in the brain. Front. Cell Infect. Microbiol. 2023, 13, 1123228. [Google Scholar] [CrossRef]
- Arora, K.; Green, M.; Prakash, S. The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations. Front. Bioeng. Biotechnol. 2020, 8, 537847. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, G.H.; Park, H.K.; Kang, H.J.; Park, Y.K.; Lee, H.A.; Hong, C.H.; Moon, S.Y.; Kang, W.; Oh, H.S.; et al. Effects of the multidomain intervention with nutritional supplements on cognition and gut microbiome in early symptomatic Alzheimer’s disease: A randomized controlled trial. Front. Aging Neurosci. 2023, 15, 1266955. [Google Scholar] [CrossRef]
- Hill, J.M.; Clement, C.; Pogue, A.I.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front. Aging Neurosci. 2014, 6, 127. [Google Scholar] [CrossRef]
- Seo, D.O.; Holtzman, D.M. Current understanding of the Alzheimer’s disease-associated microbiome and therapeutic strategies. Exp. Mol. Med. 2024, 56, 86–94. [Google Scholar] [CrossRef]
- Abraham, D.; Feher, J.; Scuderi, G.L.; Szabo, D.; Dobolyi, A.; Cservenak, M.; Juhasz, J.; Ligeti, B.; Pongor, S.; Gomez-Cabrera, M.C.; et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp. Gerontol. 2019, 115, 122–131. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, X.; Zhu, Y.; Shi, W.; Kong, L. Gut microbiome characteristics in subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Neurol. 2023, 30, 3568–3580. [Google Scholar] [CrossRef]
- Kohler, C.A.; Maes, M.; Slyepchenko, A.; Berk, M.; Solmi, M.; Lanctot, K.L.; Carvalho, A.F. The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer’s Disease. Curr. Pharm. Des. 2016, 22, 6152–6166. [Google Scholar] [CrossRef]
- Bou Zerdan, M.; Hebbo, E.; Hijazi, A.; El Gemayel, M.; Nasr, J.; Nasr, D.; Yaghi, M.; Bouferraa, Y.; Nagarajan, A. The Gut Microbiome and Alzheimer’s Disease: A Growing Relationship. Curr. Alzheimer Res. 2022, 19, 808–818. [Google Scholar] [CrossRef]
- Kaur, H.; Nookala, S.; Singh, S.; Mukundan, S.; Nagamoto-Combs, K.; Combs, C.K. Sex-Dependent Effects of Intestinal Microbiome Manipulation in a Mouse Model of Alzheimer’s Disease. Cells 2021, 10, 2370. [Google Scholar] [CrossRef]
- Dilmore, A.H.; Martino, C.; Neth, B.J.; West, K.A.; Zemlin, J.; Rahman, G.; Panitchpakdi, M.; Meehan, M.J.; Weldon, K.C.; Blach, C.; et al. Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and foodome in adults at risk for Alzheimer’s disease. Alzheimers Dement. 2023, 19, 4805–4816. [Google Scholar] [CrossRef]
- Nagarajan, A.; Srivastava, H.; Morrow, C.D.; Sun, L.Y. Characterizing the gut microbiome changes with aging in a novel Alzheimer’s disease rat model. Aging 2023, 15, 459–471. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Tang, P.; Chong, L.; Li, R. Integration of genome-wide association studies (GWAS) and microbiome data highlights the impact of sulfate-reducing bacteria on Alzheimer’s disease. Age Ageing 2023, 52, afad112. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Bezirtzoglou, E. Probiotics in Medicine: A Long Debate. Front Immunol. 2020, 11, 2192. [Google Scholar] [CrossRef]
- Lekchand Dasriya, V.; Samtiya, M.; Dhewa, T.; Puniya, M.; Kumar, S.; Ranveer, S.; Chaudhary, V.; Vij, S.; Behare, P.; Singh, N. Etiology and management of Alzheimer’s disease: Potential role of gut microbiota modulation with probiotics supplementation. J. Food Biochem. 2022, 46, e14043. [Google Scholar] [CrossRef]
- Murai, T.; Matsuda, S. Therapeutic implications of probiotics in the gut microbe-modulated neuroinflammation and progression of Alzheimer’s disease. Life 2023, 13, 1466. [Google Scholar] [CrossRef]
- Islam, S.U. Clinical Uses of Probiotics. Medicine 2016, 95, e2658. [Google Scholar] [CrossRef]
- Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci. 2016, 8, 256. [Google Scholar] [CrossRef]
- Lourida, I.; Soni, M.; Thompson-Coon, J.; Purandare, N.; Lang, I.A.; Ukoumunne, O.C.; Llewellyn, D.J. Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology 2013, 24, 479–489. [Google Scholar] [CrossRef]
- Jennings, A.; Cunnane, S.C.; Minihane, A.M. Can nutrition support healthy cognitive ageing and reduce dementia risk? Bmj 2020, 369, m2269. [Google Scholar] [CrossRef]
- Rizzo, G. Soy-Based Tempeh as a Functional Food: Evidence for Human Health and Future Perspective. Front. Biosci.-Elite 2024, 16, 3. [Google Scholar] [CrossRef]
- Miceli, S.; Maniscalco, L.; Matranga, D. Social networks and social activities promote cognitive functioning in both concurrent and prospective time: Evidence from the SHARE survey. Eur. J. Ageing 2019, 16, 145–154. [Google Scholar] [CrossRef]
- Jensen, E. Teaching with the Brain in Mind; ASCD: Alexandria, VA, USA, 2005. [Google Scholar]
- Qi, X.; Pei, Y.; Malone, S.K.; Wu, B. Social Isolation, sleep disturbance, and cognitive functioning (HRS): A Longitudinal Mediation Study. J. Gerontol. Ser. A 2023, 78, 1826–1833. [Google Scholar] [CrossRef]
- Trivieri, L., Jr.; Association, A.H.M. The American Holistic Medical Association Guide to Holistic Health: Healing Therapies for Optimal Wellness; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Crane, P.K.; Walker, R.; Hubbard, R.A.; Li, G.; Nathan, D.M.; Zheng, H.; Haneuse, S.; Craft, S.; Montine, T.J.; Kahn, S.E. Glucose levels and risk of dementia. N. Engl. J. Med. 2013, 369, 540–548. [Google Scholar] [CrossRef]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef]
- Organization, W.H. Decade of Healthy Ageing: Baseline Report; World Health Organization: Geneva, Switzerland, 2021.
- Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Fehér, Á.; Szarvas, Z.; Kaposvári, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD-A Review. Nutrients 2023, 15, 2741. [Google Scholar] [CrossRef]
- Baldi, S.; Mundula, T.; Nannini, G.; Amedei, A. Microbiota shaping—The effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. World J. Gastroenterol. 2021, 27, 6715. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, S.; Chen, Y.; Wang, C.; Chen, C. Causal associations between gut microbiota and regional cortical structure: A Mendelian randomization study. Front. Neurosci. 2023, 17, 1296145. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Q.; Chen, J.; Liao, X.; Xie, H.; Zhao, Y.; Liu, J.; Sun, J.; Chen, S. Gut microbiota alterations are associated with functional outcomes in patients of acute ischemic stroke with non-alcoholic fatty liver disease. Front. Neurosci. 2023, 17, 1327499. [Google Scholar] [CrossRef]
- Ullah, H.; Arbab, S.; Tian, Y.; Liu, C.Q.; Chen, Y.; Qijie, L.; Khan, M.I.U.; Hassan, I.U.; Li, K. The gut microbiota-brain axis in neurological disorder. Front. Neurosci. 2023, 17, 1225875. [Google Scholar] [CrossRef]
- Turroni, S.; Provensi, G. Editorial: Gut biodiversity and its influence in brain health. Front. Neurosci. 2023, 17, 1221543. [Google Scholar] [CrossRef]
- Thomasi, B.; Valdetaro, L.; Ricciardi, M.C.; Goncalves de Carvalho, M.; Fialho Tavares, I.; Tavares-Gomes, A.L. Enteric glia as a player of gut-brain interactions during Parkinson’s disease. Front. Neurosci. 2023, 17, 1281710. [Google Scholar] [CrossRef]
- Tan, H.E. The microbiota-gut-brain axis in stress and depression. Front. Neurosci. 2023, 17, 1151478. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, X.; Chen, J.; Shen, R.; Cui, H.; Wu, H. Acupuncture and moxibustion therapy for cognitive impairment: The microbiome-gut-brain axis and its role. Front. Neurosci. 2023, 17, 1275860. [Google Scholar] [CrossRef]
- Riehl, L.; Furst, J.; Kress, M.; Rykalo, N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front. Neurosci. 2023, 17, 1302957. [Google Scholar] [CrossRef]
- Plummer, A.M.; Matos, Y.L.; Lin, H.C.; Ryman, S.G.; Birg, A.; Quinn, D.K.; Parada, A.N.; Vakhtin, A.A. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front. Neurosci. 2023, 17, 1232480. [Google Scholar] [CrossRef]
- Liang, J.; Liu, B.; Dong, X.; Wang, Y.; Cai, W.; Zhang, N.; Zhang, H. Decoding the role of gut microbiota in Alzheimer’s pathogenesis and envisioning future therapeutic avenues. Front. Neurosci. 2023, 17, 1242254. [Google Scholar] [CrossRef]
- Klepinowski, T.; Skonieczna-Zydecka, K.; Pala, B.; Stachowska, E.; Sagan, L. Gut microbiome in intracranial aneurysm growth, subarachnoid hemorrhage, and cerebral vasospasm: A systematic review with a narrative synthesis. Front. Neurosci. 2023, 17, 1247151. [Google Scholar] [CrossRef]
- Hayer, S.S.; Hwang, S.; Clayton, J.B. Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: A systematic review and meta-analysis. Front. Neurosci. 2023, 17, 1237177. [Google Scholar] [CrossRef]
- Denman, C.R.; Park, S.M.; Jo, J. Gut-brain axis: Gut dysbiosis and psychiatric disorders in Alzheimer’s and Parkinson’s disease. Front. Neurosci. 2023, 17, 1268419. [Google Scholar] [CrossRef]
- Corley, C.; McElroy, T.; Sridharan, B.; Trujillo, M.; Simmons, P.; Kandel, S.; Sykes, D.J.; Robeson, M.S., 2nd; Allen, A.R. Physiological and cognitive changes after treatments of cyclophosphamide, methotrexate, and fluorouracil: Implications of the gut microbiome and depressive-like behavior. Front. Neurosci. 2023, 17, 1212791. [Google Scholar] [CrossRef]
- Boem, F.; Greslehner, G.P.; Konsman, J.P.; Chiu, L. Minding the gut: Extending embodied cognition and perception to the gut complex. Front. Neurosci. 2023, 17, 1172783. [Google Scholar] [CrossRef]
- Barton, J.R.; Londregan, A.K.; Alexander, T.D.; Entezari, A.A.; Covarrubias, M.; Waldman, S.A. Enteroendocrine cell regulation of the gut-brain axis. Front. Neurosci. 2023, 17, 1272955. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Guo, Z.N.; Yang, Y.; Qu, Y.; Jin, H. Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions. Front. Neurosci. 2023, 17, 1081347. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, K.; Chen, B.; Liu, R.; Cheng, S.; Zhang, Y.; Lu, J. Overnutrition Induced Cognitive Impairment: Insulin Resistance, Gut-Brain Axis, and Neuroinflammation. Front. Neurosci. 2022, 16, 884579. [Google Scholar] [CrossRef]
- Yan, C.; Diao, Q.; Zhao, Y.; Zhang, C.; He, X.; Huang, R.; Li, Y. Fusobacterium nucleatum infection-induced neurodegeneration and abnormal gut microbiota composition in Alzheimer’s disease-like rats. Front. Neurosci. 2022, 16, 884543. [Google Scholar] [CrossRef]
- Wang, Y.; Hang, C.; Hu, J.; Li, C.; Zhan, C.; Pan, J.; Yuan, T. Role of gut-brain axis in neurodevelopmental impairment of necrotizing enterocolitis. Front. Neurosci. 2023, 17, 1059552. [Google Scholar] [CrossRef]
- Sun, X.; Xue, L.; Wang, Z.; Xie, A. Update to the Treatment of Parkinson’s Disease Based on the Gut-Brain Axis Mechanism. Front. Neurosci. 2022, 16, 878239. [Google Scholar] [CrossRef]
- Salami, M.; Soheili, M. The microbiota-gut- hippocampus axis. Front. Neurosci. 2022, 16, 1065995. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Liang, H.; Ye, L.; Lan, L.; Lu, F.; Wang, Q.; Lei, T.; Yang, X.; Cui, P.; et al. Differences in Alpha Diversity of Gut Microbiota in Neurological Diseases. Front. Neurosci. 2022, 16, 879318. [Google Scholar] [CrossRef]
- Krakovski, M.A.; Arora, N.; Jain, S.; Glover, J.; Dombrowski, K.; Hernandez, B.; Yadav, H.; Sarma, A.K. Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Front. Neurosci. 2022, 16, 1002266. [Google Scholar] [CrossRef]
- Hao, X.; Ding, N.; Zhang, Y.; Yang, Y.; Zhao, Y.; Zhao, J.; Li, Y.; Li, Z. Benign regulation of the gut microbiota: The possible mechanism through which the beneficial effects of manual acupuncture on cognitive ability and intestinal mucosal barrier function occur in APP/PS1 mice. Front. Neurosci. 2022, 16, 960026. [Google Scholar] [CrossRef]
- Han, W.; Wang, N.; Han, M.; Ban, M.; Sun, T.; Xu, J. Reviewing the role of gut microbiota in the pathogenesis of depression and exploring new therapeutic options. Front. Neurosci. 2022, 16, 1029495. [Google Scholar] [CrossRef]
- Freijy, T.M.; Cribb, L.; Oliver, G.; Metri, N.J.; Opie, R.S.; Jacka, F.N.; Hawrelak, J.A.; Rucklidge, J.J.; Ng, C.H.; Sarris, J. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The “Gut Feelings” randomised controlled trial. Front. Neurosci. 2022, 16, 1097278. [Google Scholar] [CrossRef]
- Eltokhi, A.; Sommer, I.E. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front. Neurosci. 2022, 16, 852506. [Google Scholar] [CrossRef]
- Bashir, Y.; Khan, A.U. The interplay between the gut-brain axis and the microbiome: A perspective on psychiatric and neurodegenerative disorders. Front. Neurosci. 2022, 16, 1030694. [Google Scholar] [CrossRef]
Inclusion Criteria | Description |
---|---|
Study design | Randomized controlled trial or human clinical trial |
Study population | Individuals in good health or patients admitted with a diagnosis of mild cognitive impairment or Alzheimer’s disease |
Intervention | Prebiotic, probiotic, and symbiotic interventions |
Language of publication | No limitations on language |
Published articles | In the PubMed, ClinicalTrials.gov, and Cochrane Central Register of Controlled Trials (CENTRAL) databases |
Output concepts | Score representing cognitive performance and various assessments of cognitive functions: attention, calculation, memory, verbal fluency, psychomotor speed, visual-constructional ability, neuropsychological function, reaction time, and psychocognitive tests. Various cognitive functions and their assessment tools include validated questionnaires like the Mini-Mental State Examination, Verbal Fluency Test, Repeatable Battery for the Assessment of Neuropsychological Status, Rapid Visual Information Processing, Wisconsin Card Sorting Test, Japanese version of Alzheimer’s Disease Assessment Scale, etc. |
Exclusion Criteria | |
In vitro studies | |
Animal experiments | |
Interventions targeting a range of health conditions, including but not limited to malignancies, post-traumatic stress disorder, depression, anxiety, stroke, multiple sclerosis, chronic cerebral ischemia, polycystic kidney disease, schizophrenia, bipolar disorder, autism spectrum disorder, attention deficit hyperactivity disorder, diabetes mellitus, fibromyalgia, hepatic encephalopathy, perioperative and postoperative conditions, Huntington’s disease, cirrhosis hepatis, allergic rhinitis, frailty syndrome, psychosis, mood disorders, bipolar disorder, epilepsy, portal hypertension, and a human immunodeficiency virus (HIV)-positive status | |
Interventions tailored for various life stages and situations, including but not limited to premature, infancy, adolescence, pregnancy, and interventions designed for athletes | |
Nutritional guidance, dietary recommendations, and food interventions | |
Brief interventions lasting less than 4 weeks | |
Weight loss support for overweight patients |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female (%) | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Kim CS et al. [18] | RCT | 12 weeks | Republic of Korea | 63 | 71.5 ± 4.3 | 49.06/50.94 | The research participants were administered a probiotic supplement consisting of a total of 1 × 109 CFU of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI, suspended in soybean oil. | At week 12, individuals in the probiotics group demonstrated a notable enhancement in mental flexibility compared to those in the placebo group (p < 0.05). Enhanced cognitive and mental capabilities following the administration of probiotic supplements. |
Shi S et al. [19] | RCT | 8 weeks | China | 60 | 64.1 ± 3.4 | 57/43 | Participants were required to consume one sachet of probiotics (BB68S, 5 × 1010 CFU per sachet) or a placebo daily. | BB68S demonstrated a significant enhancement in participants’ cognitive functions, as evidenced by a notable 18.89-point increase in the total RBANS score post-intervention (p < 0.0001). This improvement was particularly prominent in the domains of immediate memory, visuospatial/constructional abilities, attention, and delayed memory. |
Sakurai K et al. [20] | RCT | 12 weeks | Japan | 78 | 76.8 ± 4.6 | 46/54 | The participants received a 1 g packet containing Lactiplantibacillus plantarum OLL2712 cells in a quantity exceeding 5 × 109 daily. | The analysis results indicated that the intake of OLL2712 exerted a protective effect on memory function in the elderly (p < 0.05). |
Czajeczny D et al. [21] | RCT | 6 weeks | Poland | 38 | 19–31 | 100% female | The individuals received a probiotic supplement containing Bifidobacterium lactis BS01 and Lactobacillus acidophilus LA02. | In the group supplemented with probiotics, there was a significant improvement in cognitive performance compared to the placebo group, as assessed by the Wisconsin Card Sorting Test (WCST) (p < 0.05). |
M Ni [22] | RCT | 12 weeks | United Kingdom | 72 | >60 | 37/63 | The elderly subjects received a daily intake of one sachet of prebiotic dietary supplement. | In comparison to the placebo group, the prebiotic intervention arm exhibited an enhanced cognition factor score (0.482; 95% CI 0.823–0.141; p = 0.014). |
Azuma N et al. [23] | RCT | 12 weeks | Japan | 80 | 64.6 ± 7.1 | 50/50 | During the 12-week study period, participants ingested test drinks containing 1 × 1010 CFU of GCL2505 per 100 g along with 2.0 g of inulin per 100 g. | Substantial enhancements were observed in the scores within the neurocognitive index domain (p = 0.027), evaluating overall cognitive function, as well as across the attention, cognitive flexibility, and executive function domains (p = 0.044). |
Berding K et al. [24] | RCT | 4 weeks | Ireland | 18 | 26 ± 1.3 | 100% female | The female participants received 12.5 g of Litesse® Ultra (>90% polydextrose (PDX) polymer). | PDX demonstrated enhanced cognitive flexibility, indicated by a reduction in errors during the Intra–Extra Dimensional Set Shift (IED) task. Improved sustained attention was evident through a higher number of correct responses and rejections in the Rapid Visual Information Processing (RVP) task. |
Sanborn V et al. [25] | RCT | 3 months | USA | 145 | 64.3 ± 5.5 | 40.7/59.3 | The intervention involved Culturelle Vegetarian Capsules which contained a blend of 10 billion CFUs of Lactobacillus rhamnosus GG for the experimental group. | Probiotic supplementation with Lactobacillus rhamnosus GG was linked to enhanced cognitive performance in middle-aged and older adults (p < 0.05). |
Louzada ER et al. [26] | RCT | 6 months | Brazil | 49 | 77.2 ± 1.3 | 80/20 | The synbiotic group was administered two daily doses (6 g + 6 g) of a compound containing fructooligosaccharide (6 g), L. paracasei (109 CFU), L. rhamnosus (109 CFU), L. acidophilus (109 CFU), and B. lactis (109 CFU). | According to their results, the supplement exhibits modest effects on reducing depressive symptoms and more favorable effects on cognitive functions in elderly individuals (MMSE; p < 0.05). |
Sanborn V et al. [27] | RCT | 8 weeks | USA | 127 | 64.3 ± 3.6 | 42/58 | The probiotic supplement for the subjects was Lactobacillus rhamnosus GG (2 × 1010 CFU/day). | The probiotic intervention did not influence cognitive performance. |
Edebol Carlman HMT et al. [28] | RCT | 8 weeks | Sweden | 22 | 24.2 ± 3.4 | 27/73 | The subjects received a combination of three probiotic strains—Lactobacillus helveticus R0052 (CNCM-I-1722; 2 × 109 CFU), Lactiplantibacillus plantarum R1012 (CNCM-I-3736; 8 × 108 CFU), and Bifidobacterium longum R0175 (CNCM-I-3470; 7 × 107 CFU)—at a dosage of 3 g per day. | The probiotic intervention did not influence cognitive performance. |
Ascone et al. [29] | RCT | 4 weeks | Germany | 59 | 27.1 ± 6.7 | 43/57 | The participants received a multi-strain probiotic (Vivomixx®) at a daily dosage of 4.4 g. | The administered multi-strain probiotic did not induce any effects on cognition or mental well-being in young, healthy adults. |
Cannavale CN et al. [30] | RCT | 4 weeks | USA | 26 | 25–45 | 58/42 | Participants underwent testing before and after a 4-week consumption period, which included 8 oz of a dairy-based fermented beverage containing 25–30 billion CFUs of live and active kefir cultures. | The fermented dairy beverage led to enhanced performance in two aspects of relational memory: misplacement (p = 0.04) and object-location binding (p = 0.03). |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female (%) | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Aljumaah MR et al. [31] | RCT | 3 months | USA | 169 | 64.4 ± 5.5 | 38/48 | The LGG supplementation consisted of two capsules of Culturelle Vegetarian Capsules comprising a blend of 10 billion CFUs of Lactobacillus rhamnosus GG and 200 mg of prebiotic inulin derived from chicory root extract. | The reduction in the relative abundance of the Prevotella and Dehalobacterium genera following LGG supplementation in the MCI group showed a correlation with an enhanced cognitive score. |
Asaoka D et al. [32] | RCT | 24 weeks | Japan | 130 | 77.2 ± 5.8 | 26/29 | The patients received a daily dosage of a probiotic (B. breve MCC1274, 2 × 1010 CFU/day). | The ADAS-Jcog subscale “orientation” showed significant improvement; MMSE subscales “orientation in time” and “writing” demonstrated significant improvement, specifically in the subgroup with lower baseline MMSE scores (p < 0.05). |
Xiao J et al. [33] | RCT | 16 weeks | Japan | 79 | 61.3 ± 7.7 | 100% male | The patients received a daily dosage of a probiotic (B. breve A1, 2 × 1010 CFU/day). | The probiotic group exhibited a significant improvement in RBANS total score (p < 0.0001). Notably, there was a substantial enhancement in domain scores, including immediate memory, visuospatial/constructional, and delayed memory (p < 0.0001), observed in both intention-to-treat (ITT) analysis and per-protocol (PP) analysis. |
Fei Y et al. [34] | RCT | 12 weeks | China | 42 | 76.4 ± 9.6 | 90/10 | The group receiving the probiotic received a daily dosage of 2 g of a probiotic blend. | The probiotic group exhibited a notably higher MMSE score (24.75 ± 2.47), and there were significant improvements in attention and calculation (0.90 ± 0.79 vs. 0.65 ± 0.74, p < 0.001) and recall scores (1.95 ± 0.76 vs. 0.70 ± 0.47, p < 0.001) in comparison to the control group. |
Kobayashi Y et al. [35] | RCT | 8 weeks | Japan | 19 | 82.5 ± 5.3 | 2/98 | The patients received B. breve A1 capsules, each containing more than 1 × 1010 CFU (2 × 1010 CFU/day). | MMSE scores showed a significant increase during the intervention (+1.7, p < 0.01). POMS2 and GSRS scores exhibited significant improvement during the intervention. |
Hwang YH et al. [36] | RCT | 12 weeks | Korea | 100 | 69.2 ± 7.0 | 28/72 | Lactobacillus plantarum C29-fermented soybean (DW2009) 800 mg per day (1 × 1010 CFU/day). | The group receiving DW2009 exhibited more significant enhancements in overall cognitive functions (z = 2.36, p = 0.02), particularly in the attention domain (z = 2.34, p = 0.02). |
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex Male/Female (%) | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Ton AMM et al. [37] | Clinical Trial | 90 days | Brazil | 13 | 78.7 ± 3 | 15/85 | The participants received a probiotic fermented milk (4% kefir) supplement at a dosage of 2 mL/kg/day 1. | Most patients exhibited a notable improvement in memory, visual–spatial/abstraction abilities, and executive/language functions (p < 0.05). |
Akhgarjand et al. [38] | RCT | 12 weeks | Iran | 90 | 67.9 ± 7.9 | 33/67 | They received probiotic capsules containing L. rhamnosus HA (each capsule with 1015 CFU probiotics) or probiotic capsules containing B. longum R0175 (1015 CFU probiotics per capsule) twice daily. | Cognition showed a significant improvement with MMSE (p < 0.0001). Post hoc comparisons revealed a notably greater enhancement in the B. longum intervention group (4.86, 95% CI: 3.91–5.81; p < 0.0001) compared to both the placebo and L. rhamnosus intervention groups (4.06, 95% CI: 3.11–5.01; p < 0.0001). |
Kobayashi Y et al. [39] | RCT | 12 weeks | Japan | 117 | 61.5 ± 6.8 | 49/51 | The individuals took two capsules every day, each containing around more than 2.0 × 1010 CFU of B. breve A1. | In a stratified analysis, a notable distinction emerged between the B. breve A1 and placebo groups concerning the ‘immediate memory’ subscale of RBANS and the total MMSE score in participants with a low RBANS total score at the baseline. The scores on the ‘language’ and ‘attention’ subscales showed a significant increase. |
Tamtaji et al. [40] | RCT | 12 weeks | Iran | 79 | 76.2 ± 8.1 | 50/50 | The patients received selenium (200 μg/day) plus a probiotic containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum (each at 2 × 109 CFU/day). | The combined use of the probiotic and selenium resulted in a significant improvement in the MMSE test (p < 0.001). Cognitive functions significantly improved. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, M.; Lehoczki, A.; Major, D.; Fazekas-Pongor, V.; Csípő, T.; Tarantini, S.; Csizmadia, Z.; Varga, J.T. Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024, 16, 789. https://doi.org/10.3390/nu16060789
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients. 2024; 16(6):789. https://doi.org/10.3390/nu16060789
Chicago/Turabian StyleFekete, Mónika, Andrea Lehoczki, Dávid Major, Vince Fazekas-Pongor, Tamás Csípő, Stefano Tarantini, Zoltán Csizmadia, and János Tamás Varga. 2024. "Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics" Nutrients 16, no. 6: 789. https://doi.org/10.3390/nu16060789
APA StyleFekete, M., Lehoczki, A., Major, D., Fazekas-Pongor, V., Csípő, T., Tarantini, S., Csizmadia, Z., & Varga, J. T. (2024). Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients, 16(6), 789. https://doi.org/10.3390/nu16060789