Glycomacropeptide-Based Protein Substitutes for Children with Phenylketonuria in Italy: A Nutritional Comparison
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Risk of Overweight and Obesity in PKU
4.2. Impact on Carbohydrate Metabolism and Glycaemia
4.3. GMP-Based PSs and Blood Phe Levels
4.4. Impact of GMP on Gut Microbiota Composition
4.5. Advantages and Beneficial Effects of GMP-Based PSs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primers 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; van Wegberg, A.M.J.; Ahring, K.; Beblo, S.; Bélanger-Quintana, A.; Burlina, A.; Campistol, J.; Coşkun, T.; Feillet, F.; Giżewska, M.; et al. PKU Dietary Handbook to Accompany PKU Guidelines. Orphanet J. Rare Dis. 2020, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Ilgaz, F.; Pinto, A.; MacDonald, A. Casein glycomacropeptide in phenylketonuria: Does it bring clinical benefit? Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Pena, M.J.; de Almeida, M.F.; van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; MacDonald, A.; Robert, M.; et al. Protein substitutes for phenylketonuria in Europe: Access and nutritional composition. Eur. J. Clin. Nutr. 2016, 70, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; van Calcar, S.C.; Nelson, K.L.; Gleason, S.T.; Ney, D.M. Acceptable Low-Phenylalanine Foods and Beverages Can Be Made with Glycomacropeptide from Cheese Whey for Individuals with PKU. Mol. Genet. Metab. 2007, 92, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Ozimek, L. A sialic acid assay in isolation and purification of bovine k-casein glycomacropeptide: A review. Recent. Pat. Food Nutr. Agric. 2014, 6, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Neelima; Sharma, R.; Rajput, Y.S.; Mann, B. Chemical and Functional Properties of Glycomacropeptide (GMP) and Its Role in the Detection of Cheese Whey Adulteration in Milk: A Review. Dairy Sci. Technol. 2013, 93, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Ney, D.M.; Stroup, B.M.; Clayton, M.K.; Murali, S.G.; Rice, G.M.; Rohr, F.; Levy, H.L. Glycomacropeptide for Nutritional Management of Phenylketonuria: A Randomized, Controlled, Crossover Trial. Am. J. Clin. Nutr. 2016, 104, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; Verduci, E.; Salvatici, E.; Paci, S.; Riva, E. Phenylketonuria: Nutritional Advances and Challenges. Nutr. Metab. 2012, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Zaki, O.K.; El-Wakeel, L.; Ebeid, Y.; Ez Elarab, H.S.; Moustafa, A.; Abdulazim, N.; Karara, H.; Elghawaby, A. The Use of Glycomacropeptide in Dietary Management of Phenylketonuria. J. Nutr. Metab. 2016, 2016, 2453027. [Google Scholar] [CrossRef]
- Pena, M.J.; Pinto, A.; Daly, A.; MacDonald, A.; Azevedo, L.; Rocha, J.C.; Borges, N. The Use of Glycomacropeptide in Patients with Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1794. [Google Scholar] [CrossRef] [PubMed]
- Tiele, A.; Daly, A.; Hattersley, J.; Pinto, A.; Evans, S.; Ashmore, C.; MacDonald, A.; Covington, J.A. Investigation of Paediatric PKU Breath Malodour, Comparing Glycomacropeptide with Phenylalanine Free L-Amino Acid Supplements. J. Breath Res. 2019, 14, 016001. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.; Pinto, A.; Faria, A.; Teixeira, D.; van Wegberg, A.M.J.; Ahring, K.; Feillet, F.; Calhau, C.; MacDonald, A.; Moreira-Rosário, A.; et al. Is the Phenylalanine-Restricted Diet a Risk Factor for Overweight or Obesity in Patients with Phenylketonuria (PKU)? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3443. [Google Scholar] [CrossRef] [PubMed]
- Irace, C.; Carallo, C.; Scavelli, F.B.; De Franceschi, M.S.; Esposito, T.; Tripolino, C.; Gnasso, A. Markers of Insulin Resistance and Carotid Atherosclerosis. A Comparison of the Homeostasis Model Assessment and Triglyceride Glucose Index. Int. J. Clin. Pract. 2013, 67, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Moretti, F.; Pellegrini, N.; Salvatici, E.; Rovelli, V.; Banderali, G.; Radaelli, G.; Scazzina, F.; Giovannini, M.; Verduci, E. Dietary Glycemic Index, Glycemic Load and Metabolic Profile in Children with Phenylketonuria. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Bassanini, G.; Ceccarani, C.; Borgo, F.; Severgnini, M.; Rovelli, V.; Morace, G.; Verduci, E.; Borghi, E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front. Cell Infect. Microbiol. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; Moretti, F.; Bassanini, G.; Banderali, G.; Rovelli, V.; Casiraghi, M.C.; Morace, G.; Borgo, F.; Borghi, E. Phenylketonuric Diet Negatively Impacts on Butyrate Production. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 385–392. [Google Scholar] [CrossRef]
- Ubaldi, F.; Frangella, C.; Volpini, V.; Fortugno, P.; Valeriani, F.; Romano Spica, V. Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria. Int. J. Mol. Sci. 2023, 24, 17428. [Google Scholar] [CrossRef]
- Weigel, C.; Rauh, M.; Kiener, C.; Rascher, W.; Knerr, I. Effects of Various Dietary Amino Acid Preparations for Phenylketonuric Patients on the Metabolic Profiles along with Postprandial Insulin and Ghrelin Responses. Ann. Nutr. Metab. 2007, 51, 352–358. [Google Scholar] [CrossRef]
- Pena, M.J.; Rocha, J.C.; Borges, N. Amino Acids, Glucose Metabolism and Clinical Relevance for Phenylketonuria Management. Ann. Nutr. Disord. Ther. 2015, 2, 1026. [Google Scholar]
- Pena, M.J.; Costa, R.; Rodrigues, I.; Martins, S.; Guimarães, J.T.; Faria, A.; Calhau, C.; Rocha, J.C.; Borges, N. Unveiling the Metabolic Effects of Glycomacropeptide. Int. J. Mol. Sci. 2021, 22, 9731. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, C.; Mølgaard, C.; Dalum, C.; Vaag, A.; Michaelsen, K.F. Differential Effects of Casein versus Whey on Fasting Plasma Levels of Insulin, IGF-1 and IGF-1/IGFBP-3: Results from a Randomized 7-Day Supplementation Study in Prepubertal Boys. Eur. J. Clin. Nutr. 2009, 63, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Ahring, K.K.; Lund, A.M.; Jensen, E.; Jensen, T.G.; Brøndum-Nielsen, K.; Pedersen, M.; Bardow, A.; Holst, J.J.; Rehfeld, J.F.; Møller, L.B. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels. J. Nutr. Metab. 2018, 2018, 6352919. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; MacDonald, A. Glycomacropeptide in Children with Phenylketonuria: Does Its Phenylalanine Content Affect Blood Phenylalanine Control? J. Hum. Nutr. Diet. 2017, 30, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Pinto, A.; Gingell, C.; Rocha, J.C.; van Spronsen, F.; Jackson, R.; MacDonald, A. The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients 2019, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- van Calcar, S.C.; MacLeod, E.L.; Gleason, S.T.; Etzel, M.R.; Clayton, M.K.; Wolff, J.A.; Ney, D.M. Improved Nutritional Management of Phenylketonuria by Using a Diet Containing Glycomacropeptide Compared with Amino Acids. Am. J. Clin. Nutr. 2009, 89, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballèvre, O.; Beaufrère, B. The Digestion Rate of Protein Is an Independent Regulating Factor of Postprandial Protein Retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef]
- Young, V.R.; El-Khoury, A.E.; Raguso, C.A.; Forslund, A.H.; Hambraeus, L. Rates of Urea Production and Hydrolysis and Leucine Oxidation Change Linearly over Widely Varying Protein Intakes in Healthy Adults. J. Nutr. 2000, 130, 761–766. [Google Scholar] [CrossRef]
- Ney, D.M.; Etzel, M.R. Designing Medical Foods for Inherited Metabolic Disorders: Why Intact Protein Is Superior to Amino Acids. Curr. Opin. Biotechnol. 2017, 44, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Thiele, A.G.; Gausche, R.; Lindenberg, C.; Beger, C.; Arelin, M.; Rohde, C.; Mütze, U.; Weigel, J.F.; Mohnike, K.; Baerwald, C.; et al. Growth and Final Height Among Children With Phenylketonuria. Pediatrics 2017, 140, e20170015. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Almeida, M.F.; MacDonald, A.; Ramos, P.C.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; Jackson, R.; et al. Over Restriction of Dietary Protein Allowance: The Importance of Ongoing Reassessment of Natural Protein Tolerance in Phenylketonuria. Nutrients 2019, 11, 995. [Google Scholar] [CrossRef]
- Sawin, E.A.; De Wolfe, T.J.; Aktas, B.; Stroup, B.M.; Murali, S.G.; Steele, J.L.; Ney, D.M. Glycomacropeptide Is a Prebiotic That Reduces Desulfovibrio Bacteria, Increases Cecal Short-Chain Fatty Acids, and Is Anti-Inflammatory in Mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G590–G601. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Ceccarani, C.; Corsello, A.; Zuvadelli, J.; Ottaviano, E.; Dei Cas, M.; Banderali, G.; Zuccotti, G.; Borghi, E.; Verduci, E. Glycomacropeptide Safety and Its Effect on Gut Microbiota in Patients with Phenylketonuria: A Pilot Study. Nutrients 2022, 14, 1883. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Purpura, M.; Farmer, S.; Cash, H.A.; Keller, D. Probiotic Bacillus Coagulans GBI-30, 6086 Improves Protein Absorption and Utilization. Probiotics Antimicrob. Proteins 2018, 10, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Martina, A.; Felis, G.E.; Corradi, M.; Maffeis, C.; Torriani, S.; Venema, K. Effects of Functional Pasta Ingredients on Different Gut Microbiota as Revealed by TIM-2 in Vitro Model of the Proximal Colon. Benef. Microbes 2019, 10, 301–313. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.; Almeida, M.F.; Ramos, P.C.; Rocha, S.; Guimas, A.; Ribeiro, R.; Martins, E.; Bandeira, A.; MacDonald, A.; Rocha, J.C. Nutritional Status in Patients with Phenylketonuria Using Glycomacropeptide as Their Major Protein Source. Eur. J. Clin. Nutr. 2017, 71, 1230–1234. [Google Scholar] [CrossRef]
- MacLeod, E.L.; Clayton, M.K.; van Calcar, S.C.; Ney, D.M. Breakfast with Glycomacropeptide Compared with Amino Acids Suppresses Plasma Ghrelin Levels in Individuals with Phenylketonuria. Mol. Genet. Metab. 2010, 100, 303–308. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Fiori, L.; Li, J.; Fanzaga, M.; d’Adduzio, L.; Tosi, M.; Burlina, A.; Zuccotti, G.; Verduci, E. Glycomacropeptide (GMP) Rescued the Oxidative and Inflammatory Activity of Free L-AAs in Human Caco-2 Cells: New Insights That Support GMP as a Valid and Health-Promoting Product for the Dietary Management of Phenylketonuria (PKU) Patients. Food Res. Int. 2023, 173, 113258. [Google Scholar] [CrossRef] [PubMed]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Grechanina, E.; Novikov, P.; McDonald, J.D.; Grady, J.; Tyring, S.K.; Guttler, F. Large neutral amino acids in the treatment of phenylketonuria (PKU). J. Inherit. Metab. Dis. 2006, 29, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.; Högler, W.; Crabtree, N.; Shaw, N.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.C.; Strauss, B.J.; et al. A Three-Year Longitudinal Study Comparing Bone Mass, Density, and Geometry Measured by DXA, pQCT, and Bone Turnover Markers in Children with PKU Taking L-Amino Acid or Glycomacropeptide Protein Substitutes. Nutrients 2021, 13, 2075. [Google Scholar] [CrossRef]
- Hansen, K.E.; Murali, S.; Chaves, I.Z.; Suen, G.; Ney, D.M. Glycomacropeptide Impacts Amylin-Mediated Satiety, Postprandial Markers of Glucose Homeostasis, and the Fecal Microbiome in Obese Postmenopausal Women. J. Nutr. 2023, 153, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- Foisy Sauvé, M.; Spahis, S.; Delvin, E.; Levy, E. Glycomacropeptide: A Bioactive Milk Derivative to Alleviate Metabolic Syndrome Outcomes. Antioxid. Redox Signal. 2021, 34, 201–222. [Google Scholar] [CrossRef] [PubMed]
Content per 10 g of P.Eq. | Unit | MEDIFOOD | NUTRICIA | MAMOXI | MEVALIA | VITAFLO | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Powdered 1 | Powdered 2 | Powdered 3 | Powdered 4 | Powdered 5 | Powdered 6 | Powdered 7 | Powdered 8 | Powdered 9 | Powdered 10 | ||||
Energy | Kcal | 79.50 | 79.00 | 128.00 | 54.18 | 54.18 | 54.18 | 74.19 | 78.05 | 60.36 | 60.36 | ||
Total fats | g | 0.05 | 0.05 | 3.90 | 0.36 | 0.36 | 0.36 | 0.40 | 0.37 | 0.84 | 0.84 | ||
Saturated fatty acids | g | 0.03 | 0.03 | 0.93 | 0.18 | 0.18 | 0.18 | 0.16 | 0.10 | 0.18 | 0.18 | ||
Carbohydrates | g | 9.78 | 9.70 | 12.50 | 1.45 | 1.45 | 1.45 | 7.44 | 8.05 | 3.21 | 3.21 | ||
Sugars | g | 0.60 | 0.60 | 8.67 | 0.15 | 0.15 | 0.15 | 4.42 | 5.37 | 1.12 (1.42) | 1.125 | ||
Fibre | g | ND | ND | 1.50 | 2.55 | 2.55 | 2.55 | 0.70 | 0.73 | ND | ND | ||
Salt | g | 0.21 | 0.21 | 0.43 | 0.27 | 0.27 | 0.27 | 0.19 | 0.23 | 0.36 | 0.36 | ||
Content per 10 g of P.Eq. | Unit | CAMBROOKE | |||||||||||
Powdered 11 | Powdered 12 | Powdered 13 | Powdered 14 | Powdered 15 | Powdered 16 | Powdered 17 | Powdered 18 | Powdered 19 | Powdered 20 | Powdered 21 | |||
Energy | Kcal | 105.26 | 101.32 | 105.26 | 50.00 | 50.00 | 54.60 | 55.47 | 52.03 | 55.16 | 146.00 | 146.00 | |
Total fats | g | 2.89 | 3.03 | 2.89 | 0.63 | 0.63 | 1.00 | 1.02 | 0.95 | 1.00 | 0.00 | 0.00 | |
Saturated fatty acids | g | 1.21 | 1.18 | 1.21 | 0.10 | 0.10 | 0.13 | 0.11 | 0.09 | 0.11 | 0.00 | 0.00 | |
Carbohydrates | g | 9.74 | 13.16 | 13.16 | 0.36 | 0.36 | 0.83 | 0.86 | 0.86 | 0.84 | 27.20 | 27.20 | |
Sugars | g | 3.16 | 3.42 | 3.42 | 0.12 | 0.12 | 0.10 | 0.13 | 0.13 | 0.09 | 26.00 | 26.00 | |
Fibre | g | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.16 | 0.16 | 0.16 | 0.16 | 0.00 | 0.00 | |
Salt | g | 0.47 | 0.32 | 0.32 | 0.33 | 0.33 | 0.33 | 0.34 | 0.34 | 0.34 | 0.80 | 0.80 |
Content per 10 g of P.Eq. | Unit | NUTRICIA | CAMBROOKE | ||||||
---|---|---|---|---|---|---|---|---|---|
Ready to Drink 1 | Ready to Drink 2 | Ready to Drink 3 | Ready to Drink 4 | Ready to Drink 5 | Ready to Drink 6 | Ready to Drink 7 | Ready to Drink 8 | ||
Energy | Kcal | 112.50 | 161.50 | 161.50 | 136.67 | 136.67 | 80.00 | 80.00 | 70.00 |
Total fats | g | 4.00 | 3.50 | 3.50 | 3.33 | 3.33 | 2.33 | 2.33 | 0.00 |
Saturated fatty acids | g | 0.40 | 1.00 | 1.00 | 1.33 | 1.33 | 0.33 | 0.33 | 0.00 |
Carbohydrates | g | 8.50 | 22.50 | 22.50 | 16.67 | 16.67 | 4.83 | 5.00 | 7.00 |
Sugars | g | 7.50 | 17.50 | 17.50 | 13.33 | 13.33 | 0.00 | 0.00 | 5.00 |
Fibre | g | 0.93 | 1.00 | 1.00 | 0.67 | 0.67 | 1.50 | 1.50 | 0.00 |
Salt | g | 0.40 | 0.63 | 0.63 | 0.40 | 0.40 | 0.50 | 0.50 | 0.95 |
Content per 10 g of P.Eq. | Unit | MEDIFOOD | CAMBROOKE | ||||
---|---|---|---|---|---|---|---|
Bar 1 | Bar 2 | Bar 3 | Bar 4 | Bar 5 | Bar 6 | ||
Energy | Kcal | 156.00 | 210.00 | 210.00 | 213.33 | 220.00 | 220.00 |
Total fats | g | 0.90 | 4.30 | 6.00 | 5.33 | 8.00 | 8.00 |
Saturated fatty acids | g | 0.40 | 3.40 | 4.00 | 4.00 | 7.00 | 6.00 |
Carbohydrates | g | 24.70 | 30.20 | 30.00 | 30.00 | 26.00 | 22.67 |
Sugars | g | 6.20 | 12.00 | 14.00 | 12.67 | 19.00 | 16.67 |
Fibre | g | 5.00 | 5.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Salt | g | 0.21 | 0.21 | 0.30 | 0.26 | 0.30 | 0.33 |
Content per 10 g of P.Eq. | Unit | Mean of 3 L-AA PSs |
---|---|---|
Energy | Kcal | 55.07 |
Total fats | g | 0.25 |
Saturated fatty acids | g | 0.09 |
Carbohydrates | g | 2.93 |
Sugars | g | 0.67 |
Fibre | g | 1.27 |
Salt | g | 0.04 |
EFSA—DRV | Male and Female |
---|---|
Total fats | Reference intake (RI) 2–3 years 35–40 of energy intake 4–17 years 20–35 of energy intake |
Saturated fatty acids | Adequate intake (AI) All ages: as low as possible (ALAP) |
Carbohydrates | Reference intake (RI) 1–17 years 45–60% of energy intake |
Fibre | Adequate intake (AI) 1–3 years 10 g/day 4–6 years 14 g/day 7–10 years 16 g/day 11–14 years 19 g/day 15–17 years 21 g/day |
Sodium | Safe and adequate intake 1–3 years 1.1 g/day 4–6 years 1.3 g/day 7–10 years 1.7 g/day 11–17 years 2 g/day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosi, M.; Fiori, L.; Tagi, V.M.; Gambino, M.; Montanari, C.; Bosetti, A.; Zuccotti, G.; Verduci, E. Glycomacropeptide-Based Protein Substitutes for Children with Phenylketonuria in Italy: A Nutritional Comparison. Nutrients 2024, 16, 956. https://doi.org/10.3390/nu16070956
Tosi M, Fiori L, Tagi VM, Gambino M, Montanari C, Bosetti A, Zuccotti G, Verduci E. Glycomacropeptide-Based Protein Substitutes for Children with Phenylketonuria in Italy: A Nutritional Comparison. Nutrients. 2024; 16(7):956. https://doi.org/10.3390/nu16070956
Chicago/Turabian StyleTosi, Martina, Laura Fiori, Veronica Maria Tagi, Mirko Gambino, Chiara Montanari, Alessandra Bosetti, Gianvincenzo Zuccotti, and Elvira Verduci. 2024. "Glycomacropeptide-Based Protein Substitutes for Children with Phenylketonuria in Italy: A Nutritional Comparison" Nutrients 16, no. 7: 956. https://doi.org/10.3390/nu16070956
APA StyleTosi, M., Fiori, L., Tagi, V. M., Gambino, M., Montanari, C., Bosetti, A., Zuccotti, G., & Verduci, E. (2024). Glycomacropeptide-Based Protein Substitutes for Children with Phenylketonuria in Italy: A Nutritional Comparison. Nutrients, 16(7), 956. https://doi.org/10.3390/nu16070956