Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measures of Endocrine Parameters
2.3. Morbidities
2.4. Nutrition
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Potential Pathways through Which IGF-I and IGFBP-3 Could Influence the Occurrence of BPD
4.2. Possible Interactions between Nutrition, IGF-I Levels and BPD
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobe, A.H. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia. Am. J. Perinatol. 2016, 33, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, T.; Radajewski, S.; Chao, C.M.; Bellusci, S.; Ehrhardt, H. Pathogenesis of bronchopulmonary dysplasia: When inflammation meets organ development. Mol. Cell. Pediatr. 2016, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Thekkeveedu, R.K.; Guaman, M.C.; Shivanna, B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir. Med. 2017, 132, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Mandell, E.W.; Kratimenos, P.; Abman, S.H.; Steinhorn, R.H. Drugs for the Prevention and Treatment of Bronchopulmonary Dysplasia. Clin. Perinatol. 2019, 46, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Ley, D.; Hallberg, B.; Hansen-Pupp, I.; Dani, C.; Ramenghi, L.A.; Marlow, N.; Beardsall, K.; Bhatti, F.; Dunger, D.; Higginson, J.D.; et al. rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J. Pediatr. 2019, 206, 56–65.e58. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, W. Oxidative stress and bronchopulmonary dysplasia. Gene 2018, 678, 177–183. [Google Scholar] [CrossRef]
- Rowland, K.J.; Choi, P.M.; Warner, B.W. The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin. Pediatr. Surg. 2013, 22, 101–111. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Sun, R.; Liu, J.; Hong, J.; Li, Q.; Hu, B.; Gong, F. IGF-1 may predict the severity and outcome of patients with sepsis and be associated with microRNA-1 level changes. Exp. Ther. Med. 2017, 14, 797–804. [Google Scholar] [CrossRef]
- Tanner, S.M.; Berryhill, T.F.; Ellenburg, J.L.; Jilling, T.; Cleveland, D.S.; Lorenz, R.G.; Martin, C.A. Pathogenesis of necrotizing enterocolitis: Modeling the innate immune response. Am. J. Pathol. 2015, 185, 4–16. [Google Scholar] [CrossRef]
- Engstrom, E.; Niklasson, A.; Wikland, K.A.; Ewald, U.; Hellstrom, A. The role of maternal factors, postnatal nutrition, weight gain, and gender in regulation of serum IGF-I among preterm infants. Pediatr. Res. 2005, 57, 605–610. [Google Scholar] [CrossRef]
- Yumani, D.F.; Lafeber, H.N.; van Weissenbruch, M. Study Protocol Nutrition in Relation to the Endocrine Regulation of Preterm Growth. Available online: https://onderzoekmetmensen.nl/en/trial/27985 (accessed on 19 March 2024).
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Boyce, C.; Watson, M.; Lazidis, G.; Reeve, S.; Dods, K.; Simmer, K.; McLeod, G. Preterm human milk composition: A systematic literature review. Br. J. Nutr. 2016, 116, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Yumani, D.F.J.; Calor, A.K.; van Weissenbruch, M.M. The Course Of IGF-1 Levels and Nutrient Intake in Extremely and Very Preterm Infants During Hospitalisation. Nutrients 2020, 12, 675. [Google Scholar] [CrossRef] [PubMed]
- Lofqvist, C.; Hellgren, G.; Niklasson, A.; Engstrom, E.; Ley, D.; Hansen-Pupp, I. Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr. 2012, 101, 1211–1216. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, A.; Engstrom, E.; Hard, A.L.; Albertsson-Wikland, K.; Carlsson, B.; Niklasson, A.; Lofqvist, C.; Svensson, E.; Holm, S.; Ewald, U.; et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 2003, 112, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Perez-Munuzuri, A.; Couce-Pico, M.L.; Bana-Souto, A.; Lopez-Suarez, O.; Iglesias-Deus, A.; Blanco-Teijeiro, J.; Fernandez-Lorenzo, J.R.; Fraga-Bermudez, J.M. Preclinical screening for retinopathy of prematurity risk using IGF1 levels at 3 weeks post-partum. PLoS ONE 2014, 9, e88781. [Google Scholar] [CrossRef] [PubMed]
- Gortner, L.; Reiss, I.; Hilgendorff, A. Bronchopulmonary dysplasia and intrauterine growth restriction. Lancet 2006, 368, 28. [Google Scholar] [CrossRef]
- Kurata, H.; Ochiai, M.; Inoue, H.; Kusuda, T.; Fujiyoshi, J.; Ichiyama, M.; Wakata, Y.; Takada, H. Inflammation in the neonatal period and intrauterine growth restriction aggravate bronchopulmonary dysplasia. Pediatr. Neonatol. 2019, 60, 496–503. [Google Scholar] [CrossRef]
- Capoluongo, E.; Ameglio, F.; Zuppi, C. Insulin-like growth factor-I and complications of prematurity: A focus on bronchopulmonary dysplasia. Clin. Chem. Lab. Med. 2008, 46, 1061–1066. [Google Scholar] [CrossRef]
- Jensen, E.A.; Schmidt, B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Klevebro, S.; Hellgren, G.; Hansen-Pupp, I.; Wackernagel, D.; Hallberg, B.; Borg, J.; Pivodic, A.; Smith, L.; Ley, D.; Hellstrom, A. Elevated levels of IL-6 and IGFBP-1 predict low serum IGF-1 levels during continuous infusion of rhIGF-1/rhIGFBP-3 in extremely preterm infants. Growth Horm. IGF Res. 2019, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Dammann, C.; Nielsen, H.C.; Volpe, M.V. A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front. Pediatr. 2018, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Milanesi, B.G.; Lima, P.A.; Villela, L.D.; Martins, A.S.; Gomes-Junior, S.C.S.; Moreira, M.E.L.; Meio, M. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: A cohort study. Eur. J. Pediatr. 2021, 180, 1423–1430. [Google Scholar] [CrossRef]
- Kon, I.Y.; Shilina, N.M.; Gmoshinskaya, M.V.; Ivanushkina, T.A. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants. Ann. Nutr. Metab. 2014, 65, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Goelz, R.; Hihn, E.; Hamprecht, K.; Dietz, K.; Jahn, G.; Poets, C.; Elmlinger, M. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk. Pediatr. Res. 2009, 65, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Hoeflich, A.; Meyer, Z. Functional analysis of the IGF-system in milk. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef]
- Moro, G.E.; Billeaud, C.; Rachel, B.; Calvo, J.; Cavallarin, L.; Christen, L.; Escuder-Vieco, D.; Gaya, A.; Lembo, D.; Wesolowska, A.; et al. Processing of Donor Human Milk: Update and Recommendations From the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 49. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Travers, C.P.; Clark, R.H.; Spitzer, A.R.; Das, A.; Garite, T.J.; Carlo, W.A. Exposure to any antenatal corticosteroids and outcomes in preterm infants by gestational age: Prospective cohort study. BMJ 2017, 356, j1039. [Google Scholar] [CrossRef] [PubMed]
OMM | OMM + BMF (4.4 g/100 mL) | DHM | DHM + BMF (4.4 g/100 mL) | |
---|---|---|---|---|
Energy (kcal) | 68.5 | 83.8 | 60 | 75 |
Protein (g) | 1.5 | 2.6 | 0.8 | 1.9 |
Carbohydrates (g) | 7.3 | 10.0 | 7.5 | 10.2 |
Fat (g) | 3.3 | 3.3 | 2.9 | 2.9 |
All (n = 86) a | BPD (n = 29) | No BPD (n = 57) | p Value | |
---|---|---|---|---|
Gender, n male (%) | 44 (51.2) | 17 (58.6) | 27 (47.4) | 0.324 b |
Ethnicity, n white (%) | 65 (75.6) | 22 (75.9) | 43 (75.4) | 0.966 b |
Gestational age (weeks), mean (SD) | 29.0 (1.7) | 27.9 (1.7) | 29.6 (1.5) | <0.001 c |
Birthweight (g), mean (SD) | 1217 (312) | 1055 (271) | 1298 (301) | 0.001 c |
Birthweight SDS, mean (SD) | 0.0 (0.7) | 0.0 (0.7) | 0.0 (0.7) | 0.765 c |
Birthweight SDS < −1.3, n (%) | 3 (3.5) | 1 (3.4) | 2 (3.5) | 1.000 d |
Antenatal steroids e, n (%) | 56 (65.1) | 17 (58.6) | 39 (68.4) | 0.473 b |
Postnatal steroids f, n (%) | 8 (9.3) | 5 (17.2) | 3 (5.3) | 0.113 d |
Ventilation days, median (IQR) | 0 (0.0–5.0) | 2.0 (0.0–9.0) | 0.0 (0.0–2.3) | 0.007 g |
IRDS, n (%) | <0.001 b | |||
IRDS stage I–II | 24 (27.9) | 14 (48.3) | 10 (17.5) | |
IRDS stage III–IV | 19 (22.1) | 9 (31.0) | 10 (17.5) | |
ROP, n (%) | 0.532 d | |||
ROP stage I | 4 (4.7) | 1 (3.4) | 3 (5.3) | |
ROP stage III | 1 (1.2) | 1 (3.4) | 0 (0.0) | |
PDA requiring treatment, n (%) | 8 (9.3) | 5 (17.2) | 3 (5.3) | 0.113 d |
NEC, n (%) | 6 (7.0) | 4 (13.8) | 2 (3.5) | 0.173 d |
LOS, n (%) | 30 (34.9) | 14 (48.3) | 16 (28.1) | 0.063 b |
IVH grade ≥ III, n (%) | 3 (3.5) | 3 (10.3) | 0 (0) | 0.036 d |
PHVD, n (%) | 8 (9.3) | 3 (10.3) | 5 (8.8) | 1.000 d |
PVL, n (%) | 3 (3.5) | 1 (3.4) | 2 (3.5) | 1.000 d |
B (SE) | p-Value | Odds Ratio (95% CI) | |
---|---|---|---|
Included variables | |||
Constant | 23.9 (8.0) | 0.003 | |
Change in IGF-I (µg/L per week) | −0.5 (0.2) | 0.018 | 0.63 (0.43–0.92) |
Gestational age at birth (weeks) | −0.8 (0.3) | 0.003 | 0.44 (0.26–0.76) |
Predominantly donor human milk for at least 1 week a | 2.0 (1.0) | 0.035 | 7.6 (1.2–50.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yumani, D.F.J.; Walschot, F.H.; Lafeber, H.N.; van Weissenbruch, M.M. Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition. Nutrients 2024, 16, 957. https://doi.org/10.3390/nu16070957
Yumani DFJ, Walschot FH, Lafeber HN, van Weissenbruch MM. Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition. Nutrients. 2024; 16(7):957. https://doi.org/10.3390/nu16070957
Chicago/Turabian StyleYumani, Dana F. J., Floor H. Walschot, Harrie N. Lafeber, and Mirjam M. van Weissenbruch. 2024. "Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition" Nutrients 16, no. 7: 957. https://doi.org/10.3390/nu16070957
APA StyleYumani, D. F. J., Walschot, F. H., Lafeber, H. N., & van Weissenbruch, M. M. (2024). Associations between Bronchopulmonary Dysplasia, Insulin-like Growth Factor I and Nutrition. Nutrients, 16(7), 957. https://doi.org/10.3390/nu16070957