Nutritional Habits of Hungarian Older Adults
Abstract
:1. Introduction
2. Subjects and Methods
3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. 2015 Guideline: Sugars Intake for Adults and Children. Available online: www.who.int/publications/i/item/9789241549028 (accessed on 5 August 2023).
- Best, M.; Papies, E.K. Lower socioeconomic status is associated with higher intended consumption from oversized portions of unhealthy food. Appetite 2019, 140, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., III; Gaine, P.C.; Scott, M.O.; Ricciuto, L.; Di Francesco, L. Micronutrient Dilution and Added Sugars Intake in U.S. Adults: Examining This Association Using NHANES 2009–2014. Nutrients 2020, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Mayén, A.-L.; Marques, V.P.; Paccaud, F.; Bovet, P.; Stringhini, S. Socioeconomic determinants of dietary patterns in low- and middle-income countries: A systematic review. Am. J. Clin. Nutr. 2014, 100, 1520–1531. [Google Scholar] [CrossRef] [PubMed]
- Rush, D. Nutrition screening in old people: Its place in a coherent practice of preventive health care. Annu. Rev. Nutr. 1997, 17, 101–125. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Vellas, B.; Garry, P.J. Mini Nutritional Assessment: A practical assessment tool for grading the nutritional state of elderly patients. Facts Res. Gerontol. 1994, 4 (Suppl. 2), 15–59. [Google Scholar]
- Öztürk, M.E.; Poínhos, R.; Afonso, C.; Ayhan, N.Y.; de Almeida, M.D.V.; Oliveira, B.M.P.M. Nutritional Status among Portuguese and Turkish Older Adults Living in the Community: Relationships with Sociodemographic, Health and Anthropometric Characteristics. Nutrients 2023, 15, 1333. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiang, J.; Wang, Z.; Xiao, Y.; Zhang, D.; Chen, X.; Li, H.; Liu, M.; Zhang, O. Associations of Bone Mineral Density with Lean Mass, Fat Mass, and Dietary Patterns in Postmenopausal Chinese Women: A 2-Year Prospective Study. PLoS ONE 2015, 10, e0137097. [Google Scholar] [CrossRef]
- Lainscak, M.; von Haehling, S.; Doehner, W.; Anker, S.D. The obesity paradox in chronic disease: Facts and numbers. J. Cachexia Sarcopenia Muscle 2012, 3, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mathus-Vliegen, E.M. Obesity Management Task Force of the European Association for the Study of Obesity. Prevalence, pathophysiology, health consequences and treatment options of obesity in the elderly: A guideline. Obes. Facts 2012, 5, 460–483. [Google Scholar] [CrossRef]
- Serván, P.R.; Poyatos, R.S.; Rodríguez, H.J.S.; Gómez-Candela, C.; García Luna, P.P.; Serra-Majem, L. Special considerations for nutritional studies in elderly. Nutr. Hosp. 2015, 26, 84–90. [Google Scholar]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Casado, Á.; Ramos, P.; Rodríguez, J.; Moreno, N.; Gil, P. Types and characteristics of drinking water for hydration in the elderly. Crit. Rev. Food Sci. Nutr. 2015, 55, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.J. Dehydration in the Older Adult. J. Gerontol. Nurs. 2015, 41, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Lee, K.W.; Kim, M.-H.; Kim, H.J.; An, Y.S.; Chung, H.-K. Identifying Dietary Patterns Associated with Mild Cognitive Impairment in Older Korean Adults Using Reduced Rank Regression. Int. J. Environ. Res. Public Health 2018, 15, 100. [Google Scholar] [CrossRef]
- Wang, R.S.; Wang, B.L.; Huang, Y.N.; Wan, T.T.H. The combined effect of physical activity and fruit and vegetable intake on decreasing cognitive decline in older Taiwanese adults. Sci. Rep. 2022, 12, 9825. [Google Scholar] [CrossRef] [PubMed]
- Olaya, B.; Essau, C.A.; Moneta, M.V.; Lara, E.; Miret, M.; Martín-María, N.; Moreno-Agostino, D.; Ayuso-Mateos, J.L.; Abduljabbar, A.S.; Haro, J.M. Fruit and Vegetable Consumption and Potential Moderators Associated with All-Cause Mortality in a Representative Sample of Spanish Older Adults. Nutrients 2019, 11, 1794. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Mahato, D.K.; Dey, A.; Dhawan, K.; Kumar, S. Nutritional Interventions for Elderly and Considerations for the Development of Geriatric Foods. Curr. Aging Sci. 2019, 12, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef]
- De Jager, C.A.; Oulhaj, A.; Jacoby, R.; Refsum, H.; Smith, A.D. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: A randomized controlled trial. Int. J. Geriatr. Psychiatry 2012, 27, 592–600. [Google Scholar] [CrossRef]
- Füzesi, Z.; Czirják, L.; Tistyán, L.; Illés, T. General Health Status of the Adult Population in the Transdanubian Region of Hungary; Fact Institute: Pécs, Hungary, 2004. [Google Scholar]
- Rurik, I.; Antal, M. Nutritional habits and lifestyle practice of elderly people in Hungary. Acta Aliment. 2003, 32, 77–88. [Google Scholar] [CrossRef]
- Quality of Life Index by Country 2024. Available online: https://www.numbeo.com/quality-of-life/rankings_by_country.jsp (accessed on 5 March 2024).
- Sarkadi-Nagy, E.; Bakacs, M.; Illés, É.; Nagy, B.; Varga, A.; Kis, O.; Molnár, S.E.; Martos, É. Hungarian Diet and Nutritional Status Survey-OTÁP2014. II. Energy and macronutrient intake of the Hungarian population. Orv. Hetil. 2017, 158, 587–597. [Google Scholar] [PubMed]
- Zámbó, L.; Bakacs, M.; Varga, A.; Horváth, A.; Guba, G.; Sepler, Z.; Doroginé Török, A.; Zentai, A.; Feigl, E.; Sarkadi-Nagy, E. Nutritional risk factors in Hungarian elderly-Biomarker 2019 survey. Eur. J. Public Health 2021, 31, ckab165.646. [Google Scholar] [CrossRef]
- Vellas, B.; Villars, H.; Abellan, G.; Soto, M.E.; Rolland, Y.; Guigoz, Y.; Morley, J.E.; Chumlea, W.; Salva, A.; Rubenstein, L.Z.; et al. Overview of the MNA--Its history and challenges. J. Nutr. Health Aging 2006, 10, 456–465. [Google Scholar] [PubMed]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Bailey, R. Overview of dietary assessment methods for measuring intakes of foods, beverages, and dietary supplements in research studies. Curr. Opin. Biotechnol. 2021, 70, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Károlyiné, R.E. Dietary habits of females between 40–55 years. Master’s Thesis, University of Pécs, Pécs, Hungary, 2011. PTE 2011/1/D:10. [Google Scholar]
- Available online: www.caloriabazis.hu (accessed on 15 March 2024).
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cereda, E.; Cruz-Jentoft, A.; Goisser, S.; de Groot, L.; Großhauser, F.; Kiesswetter, E.; Norman, K.; et al. Management of Malnutrition in Older Patients-Current Approaches, Evidence and Open Questions. J. Clin. Med. 2019, 8, 974. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Maitra, C. A Review of Studies Examining the Link between Food Insecurity and Malnutrition; Technical Paper; FAO: Rome, Italy, 2018; Available online: http://www.fao.org/3/CA1447EN/ca1447en.pdf (accessed on 15 March 2024).
- Ko, D.; Oh, J.; Joo, S.; Park, J.Y.; Cho, M.S. Dietary Habits, Food Product Selection Attributes, Nutritional Status, and Depression in Middle-Aged and Older Adults with Dysphagia. Nutrients 2022, 14, 4045. [Google Scholar] [CrossRef] [PubMed]
- Malenfant, J.H.; Batsis, J.A. Obesity in the geriatric population—A global health perspective. J. Glob. Health Rep. 2019, 3, e2019045. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef]
- Sarkadi-Nagy, E.; Horváth, A.; Varga, A.; Zámbó, L.; Török, A.; Guba, G.; Szilfai, N.; Zentai, A.; Bakacs, M. Dietary Sodium and Potassium Intake in Hungarian Elderly: Results from the Cross-Sectional Biomarker2019 Survey. Int. J. Environ. Res. Public Health 2021, 18, 8806. [Google Scholar] [CrossRef] [PubMed]
- Nédó, E.; Paulik, E. Association of smoking, physical activity, and dietary habits with socioeconomic variables: A cross-sectional study in adults on both sides of the Hungarian-Romanian border. BMC Public Health 2012, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, S.; Kushner, N.; Suminski, R.R.; Farquhar, W.B.; Chai, S.C. Added Sugar Intake is Associated with Blood Pressure in Older Females. Nutrients 2019, 11, 2060. [Google Scholar] [CrossRef] [PubMed]
- OECD, State of Health in the EU Hungary Country Health Profile 2021. European Commission. Available online: https://health.ec.europa.eu/system/files/2021-12/2021_chp_hu_english.pdf (accessed on 19 March 2024).
- Gillespie, K.M.; Kemps, E.; White, M.J.; Bartlett, S.E. The Impact of Free Sugar on Human Health—A Narrative Review. Nutrients 2023, 15, 889. [Google Scholar] [CrossRef] [PubMed]
- Mullie, P.; Mertens, E.; Charlier, R.; Knaeps, S.S.; Lefevre, J.; Clarys, P. Relation between sugar-sweetened beverage consumption and micronutrient intake in a prospective study. Eur. J. Clin. Nutr. 2018, 72, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Mok, A.; Ahmad, R.; Rangan, A.; Chun Yu Louie, J. Intake of free sugars and micronutrient dilution in Australian adults. Am. J. Clin. Nutr. 2018, 107, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.I.; Kim, I.-Y.; Wolfe, R.R. Protein consumption and the elderly: What is the optimal level of intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [PubMed]
- Rosenqvist, E.; Kiviruusu, O.; Konttinen, H. The associations of socioeconomic status and financial strain with restrained and emotional eating among 42-year-old women and men. Appetite 2022, 169, 105795. [Google Scholar] [CrossRef]
- Caldwell, A.E.; Sayer, R.D. Evolutionary considerations on social status, eating behavior, and obesity. Appetite 2019, 132, 238–248. [Google Scholar] [CrossRef]
- Putra, C.; Konow, N.; Gage, M.; York, C.G.; Mangano, K.M. Protein Source and Muscle Health in Older Adults: A Literature Review. Nutrients 2021, 13, 743. [Google Scholar] [CrossRef]
- Kim, J.E.; O’Connor, L.E.; Sands, L.P.; Slebodnik, M.B.; Campbell, W.W. Effects of dietary protein intake on body composition changes after weight loss in older adults: A systematic review and meta-analysis. Nutr. Rev. 2016, 74, 210–224. [Google Scholar] [CrossRef]
- Verlaan, S.; Aspray, T.J.; Bauer, J.M.; Cederholm, T.; Hemsworth, J.; Hill, T.R.; McPhee, J.S.; Piasecki, M.; Seal, C.; Cornel, C.; et al. Nutritional status, body composition, and quality of life in communitydwelling sarcopenic and non-sarcopenic older adults: A case-control study. Clin. Nutr. 2017, 6, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, A.M.; Damaris, H.G.; Daniel, L.G.; Marta, L.M. Nutritional Status, Dietary Habits, and Physical Activity in Older Adults from Manta, Manabí. Foods 2022, 11, 3901. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Hwang, W.; Artan, M.; Jeong, D.-E.; Lee, S.-J. Effects of nutritional components on aging. Aging Cell 2015, 14, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; Bibiloni, M.D.M.; Mateos, D.; Angullo, E.; Tur, J.A. Dietary Fat Intake and Metabolic Syndrome in Older Adults. Nutrients 2019, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. 2015 Promoting Fruit and Vegetable Consumption around the World. Available online: http://www.who.int/dietphysicalactivity/fruit/en/index2.html (accessed on 5 August 2023).
- López-González, L.; Becerra-Tomás, N.; Babio, N.; Martínez-González, M.Á.; Díaz-López, A.; Corella, D.; Goday, A.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Variety in fruits and vegetables, diet quality and lifestyle in an older adult mediterranean population. Clin. Nutr. 2021, 40, 4. [Google Scholar] [CrossRef] [PubMed]
- Hungarian National Statistics Agency. Nutrition, Nutriment. Központi Statisztikai Hivatal. Táplálkozás, Tápláltság. 2019. Available online: https://www.ksh.hu/docs/hun/xftp/idoszaki/elef/taplalkozas_2019/ (accessed on 25 November 2023).
- Lee, Y.H.; Chang, Y.C.; Lee, Y.T.; Shelley, M.; Liu, C.T. Dietary patterns with fresh fruits and vegetables consumption and quality of sleep among older adults in mainland China. Sleep Biol. Rhythm. 2018, 16, 293–305. [Google Scholar] [CrossRef]
- Guan, M. Associations of fruit & vegetable intake and physical activity with poor self-rated health among Chinese older adults. BMC Geriatr. 2022, 22, 10. [Google Scholar]
- Kityo, A.; Kaggwa, A. Fruit and Vegetable Intake, and Metabolic Syndrome Components: A Population-Based Study. Biol. Life Sci. Forum 2022, 12, 18. [Google Scholar] [CrossRef]
- Van der Avoort, C.M.T.; Ten Haaf, D.S.M.; de Vries, J.H.M.; Verdijk, L.B.; van Loon, L.J.C.; Eijsvogels, T.M.H.; Hopman, M.T.E. Higher levels of physical activity are associated with greater fruit and vegetable intake in older adults. J. Nutr. Health Aging 2021, 25, 230–241. [Google Scholar] [CrossRef]
- Landais, E.; Bour, A.; Gartner, A.; McCullough, F.; Delpeuch, F.; Holdsworth, M. Socio-economic and behavioural determinants of fruit and vegetable intake in Moroccan women. Public. Health Nutr. 2015, 18, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, W.; Dahl, A.K.; Xu, Z.; Wang, H.-X.; Qi, X. Relation of socio-economic status to impaired fasting glucose and Type 2 diabetes: Findings based on a large population-based cross-sectional study in Tianjin, China. Diabet. Med. 2013, 30, e157–e162. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Khan, A.A.; Tzora, A.; Voidarou, C.; Skoufos, I. Dietary Implications of the Bidirectional Relationship between the Gut Microflora and Inflammatory Diseases with Special Emphasis on Irritable Bowel Disease: Current and Future Perspective. Nutrients 2023, 15, 2956. [Google Scholar] [CrossRef]
- Haveman-Nies, A.; de Groot, L.C.; Van Staveren, W.A. Fluid intake of elderly Europeans. J. Nutr. Health Aging 1997, 1, 151–155. [Google Scholar] [PubMed]
- Drywień, M.A.; Galon, K. Assessment of water intake from food and beverages by elderly in Poland. Rocz. Panstw. Zakl. Hig. 2016, 67, 399–408. [Google Scholar] [PubMed]
- Volkert, D.; Kreuel, K.; Stehle, P. Fluid intake of community-living, independent elderly in Germany—A nationwide, representative study. J. Nutr. Health Aging 2005, 9, 305–309. [Google Scholar] [PubMed]
- Lichtenstein, A.H.; Rasmussen, H.; Yu, W.W.; Epstein, S.R.; Russell, R.M. Modified MyPyramid for Older Adults. J. Nutr. 2008, 138, 5–11. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Sesso, H.D.; Christen, W.G.; Bubes, V.; Smith, J.P.; MacFadyen, J.; Schvartz, M.; Manson, J.E.; Glynn, R.J.; Buring, J.E. Multivitamins in the prevention of cancer in men: The Physicians’ Health Study II randomized controlled trial. JAMA 2012, 308, 1871–1880. [Google Scholar] [CrossRef]
- Tang, B.M.; Eslick, G.D.; Nowson, C.; Smith, C.; Bensoussan, A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. Lancet 2007, 370, 657–666. [Google Scholar] [CrossRef]
- Jackson, R.D.; LaCroix, A.Z.; Gass, M.; Wallace, R.B.; Robbins, J.; Lewis, C.E.; Bassford, T.; Beresford, S.A.; Black, H.R.; Blanchette, P.; et al. Women’s Health Initiative Investigators. Calcium plus vitamin D supplementation and the risk of fractures. N. Engl. J. Med. 2006, 354, 669–683. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Zhang, H.; Chen, M.; Meng, Y.; Pan, Y.; Zhuang, Q.; Zhao, M. Association between serum soluble α-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: A population-based cross-sectional study. Aging Clin. Exp. Res. 2023, 35, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Van Stappen, V.; Cardon, G.; De Craemer, M.; Mavrogianni, C.; Usheva, N.; Kivelä, J.; Wikström, K.; De Miquel-Etayo, P.; González-Gil, E.M.; Radó, A.S.; et al. The effect of a cluster-randomized controlled trial on lifestyle behaviors among families at risk for developing type 2 diabetes across Europe: The Feel4Diabetes-study. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Sun, X.; Yang, G.; Ding, N.; Pan, X.; Zhong, A.; Guo, T.; Peng, Z.; Chai, X. Sex-specific differences in the association between steps per day and all-cause mortality among a cohort of adult patients from the United States with congestive heart failure. Heart Lung 2023, 62, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Makai, A.; Prépusz, V.; Dóczi, T.; Veress, R.; Rocha, P.; Ács, P. P06-03 Associations between walkability and physical activity of Hungarian adults, preliminary study of the EUPASMOS project. Eur. J. Public Health 2022, 32, ckac095.088. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Craig, C.L.; Aoyagi, Y.; Bell, R.C.; Croteau, K.A.; De Bourdeaudhuij, I.; Ewald, B.; Gardner, A.W.; Hatano, Y.; Lutes, L.D.; et al. How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Soenen, S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. The ageing gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Hussain, N.; Hameed, Z.; Lin, L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: Recent challenges and future recommendations. Gut Microbes 2024, 6, 2297864. [Google Scholar] [CrossRef]
- Bao, M.H.; Luo, H.Q.; Chen, L.H.; Tang, L.; Ma, K.F.; Xiang, J.; Dong, L.P.; Zeng, J.; Li, G.Y.; Li, J.M. Impact of high fat diet on long non-coding RNAs and messenger RNAs expression in the aortas of ApoE(-/-) mice. Sci. Rep. 2016, 6, 34161. [Google Scholar] [CrossRef]
Males (n = 68) % | Females (n = 111) % | Chi2 Test p | |
---|---|---|---|
malnourished | 7.4 | 16.2 | n.s |
risk of malnutrition | 14.7 | 40.5 | <0.001 |
Males (n = 68) % | Females (n = 111) % | Chi2 Test p | |
---|---|---|---|
malnourished | 2.9 | 1.8 | n.s |
uncertain in own assessment | 17.6 | 36.9 | 0.006 |
no problem with eating | 79.4 | 61.2 | 0.011 |
BMI (kg/m2) | n | Min | Max | Mean ± SD |
---|---|---|---|---|
Males | 68 | 21.46 | 32.11 | 26.95 ± 2.35 |
Females | 111 | 17.04 | 37.75 | 26.05 ± 4.43 |
Age (Year) | Males (n = 68) % | Females (n = 111) % | Chi2 Test p |
---|---|---|---|
50–55 | 70 | 36.4 | 0.044 |
56–60 | 90 | 40 | 0.012 |
61–65 | 100 | 73.3 | n.s |
66–70 | 60 | 73.3 | n.s |
71–75 | 80 | 80 | n.s |
76–80 | 83.3 | 66.7 | n.s |
81–85 | 50 | 62.5 | n.s |
85< | 66.7 | 33.3 | n.s |
Age (Year) | Males (n = 68) | Females (n = 111) | ||||||
---|---|---|---|---|---|---|---|---|
Protein (g) | CH (g) | Fat (g) | KCal | Protein (g) | CH (g) | Fat (g) | KCal | |
50–55 | 81 | 247 | 89 | 2148 | 61 | 195 | 57 | 1598 |
56–60 | 81 | 288 | 93 | 2302 | 65 | 190 | 65 | 1690 |
61–65 | 97 | 275 | 92 | 2350 | 54 | 194 | 60 | 1632 |
66–70 | 81 | 236 | 85 | 2152 | 66 | 223 | 66 | 1792 |
71–75 | 75 | 273 | 87 | 2224 | 76 | 233 | 69 | 1912 |
76–80 | 67 | 198 | 69 | 1698 | 62 | 213 | 69 | 1677 |
81–85 | 78 | 196 | 90 | 1858 | 63 | 221 | 53 | 1669 |
85> | 69 | 250 | 75 | 1996 | 57 | 177 | 47 | 1367 |
Mean ± SD | 78 ± 9.2 | 245 ± 34.3 | 85 ± 8.6 | 2091 ± 224.9 | 63 ± 6.6 | 205 ± 19.5 | 60 ± 8 | 1667 ± 156.9 |
Frequency of Fruits Consumption | Males (n = 68) % | Females (n = 111) % | Chi2 Test p |
---|---|---|---|
Once a day | 86.8 | 57.7 | <0.001 |
Several times a day | 4.4 | 15.3 | 0.025 |
Once a week | 7.4 | 5.4 | n.s |
2–3 times a week | 1.5 | 21.6 | <0.001 |
Frequency of vegetables consumption | |||
Once a day | 79.4 | 54.1 | 0.001 |
Several times a day | 5.9 | 10.8 | n.s |
Once a week | 13.2 | 8.1 | n.s |
2–3 times a week | 1.5 | 27 | <0.001 |
Age (Year) | Males (n = 68) | Females (n = 111) | ||
---|---|---|---|---|
Do you Take Dietary Supplements? | ||||
Yes | No | Yes | No | |
50–55 | 1 | 9 | 8 | 14 |
56–60 | 2 | 8 | 5 | 10 |
61–65 | 1 | 9 | 6 | 9 |
66–70 | 1 | 9 | 4 | 11 |
71–75 | 0 | 10 | 6 | 9 |
76–80 | 1 | 5 | 7 | 8 |
81–85 | 2 | 4 | 5 | 3 |
85< | 0 | 6 | 1 | 5 |
Total | 8 | 60 | 42 | 69 |
% | 11.76 | 88.23 | 37.83 | 62.16 |
Mean ± SD | 1 ± 0.75 | 5 ± 2.2 | 5.25 ± 2.12 | 8.62 ± 3.42 |
Liquid Consumption per Day | Males (n = 68) % | Females (n = 111) % | Chi2 Test p |
---|---|---|---|
0.5 L | 31 | 5.4 | p < 0.001 |
1 L | 26.5 | 42.3 | p = 0.032 |
2 L | 42.5 | 33.3 | n.s |
above 2 L | 0 | 19 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soós, R.; Bakó, C.; Gyebrovszki, Á.; Gordos, M.; Csala, D.; Ádám, Z.; Wilhelm, M. Nutritional Habits of Hungarian Older Adults. Nutrients 2024, 16, 1203. https://doi.org/10.3390/nu16081203
Soós R, Bakó C, Gyebrovszki Á, Gordos M, Csala D, Ádám Z, Wilhelm M. Nutritional Habits of Hungarian Older Adults. Nutrients. 2024; 16(8):1203. https://doi.org/10.3390/nu16081203
Chicago/Turabian StyleSoós, Rita, Csilla Bakó, Ádám Gyebrovszki, Mónika Gordos, Dávid Csala, Zoltán Ádám, and Márta Wilhelm. 2024. "Nutritional Habits of Hungarian Older Adults" Nutrients 16, no. 8: 1203. https://doi.org/10.3390/nu16081203
APA StyleSoós, R., Bakó, C., Gyebrovszki, Á., Gordos, M., Csala, D., Ádám, Z., & Wilhelm, M. (2024). Nutritional Habits of Hungarian Older Adults. Nutrients, 16(8), 1203. https://doi.org/10.3390/nu16081203