Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Serum Levels of Lipid-Soluble Micronutrients
2.3. Defining Steatotic Liver Disease (SLD) and Its Subtypes
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Day, C.P.; James, O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology 1998, 114, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Schuppan, D.; Schattenberg, J.M. Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. J. Gastroenterol. Hepatol. 2013, 28 (Suppl. S1), 68–76. [Google Scholar] [CrossRef]
- Jenab, M.; Slimani, N.; Bictash, M.; Ferrari, P.; Bingham, S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum. Genet. 2009, 125, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bellentani, S. Nutraceutical Approach to Non-Alcoholic Fatty Liver Disease (NAFLD): The Available Clinical Evidence. Nutrients 2018, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- Keane, J.T.; Elangovan, H.; Stokes, R.A.; Gunton, J.E. Vitamin D and the Liver-Correlation or Cause? Nutrients 2018, 10, 496. [Google Scholar] [CrossRef]
- Chai, W.; Eaton, S.; Rasmussen, H.E.; Tao, M.H. Associations of Dietary Lipid-Soluble Micronutrients with Hepatic Steatosis among Adults in the United States. Biomedicines 2021, 9, 1093. [Google Scholar] [CrossRef]
- Lefebvre, P.; Staels, B. Hepatic sexual dimorphism—Implications for non-alcoholic fatty liver disease. Nat. Rev. Endocrinol. 2021, 17, 662–670. [Google Scholar] [CrossRef]
- National Center for Health Statistics. National Health and Nutrition Examination Survey. Available online: http://www.cdc.gov/nchs/nhanes/ (accessed on 1 September 2023).
- CDC. Laboratory Procedure Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/VITAEC-J-MET-508.pdf (accessed on 1 September 2023).
- CDC. Laboratory Procedure Manual. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/labmethods/VID-J-MET-508.pdf (accessed on 1 September 2023).
- National Health and Nutrition Examination Survey. Liver Ultrasound Transient Elastography Procedures Manual. 2018. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2018_Liver_Ultrasound_Elastography_Procedures_Manual.pdf (accessed on 4 April 2021).
- Myers, R.P.; Pollett, A.; Kirsch, R.; Pomier-Layrargues, G.; Beaton, M.; Levstik, M.; Duarte-Rojo, A.; Wong, D.; Crotty, P.; Elkashab, M. Controlled Attenuation Parameter (CAP): A noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int. 2012, 32, 902–910. [Google Scholar] [CrossRef] [PubMed]
- de Ledinghen, V.; Wong, G.L.; Vergniol, J.; Chan, H.L.; Hiriart, J.B.; Chan, A.W.; Chermak, F.; Choi, P.C.; Foucher, J.; Chan, C.K.; et al. Controlled attenuation parameter for the diagnosis of steatosis in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016, 31, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Audiere, S.; Kemgang, A.; Gaouar, F.; Corpechot, C.; Chazouilleres, O.; Fournier, C.; Golsztejn, O.; Prince, S.; Menu, Y.; et al. Liver Steatosis Assessed by Controlled Attenuation Parameter (CAP) Measured with the XL Probe of the FibroScan: A Pilot Study Assessing Diagnostic Accuracy. Ultrasound Med. Biol. 2016, 42, 92–103. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Moon, J.H.; Jeong, S.; Jang, H.; Koo, B.K.; Kim, W. Metabolic dysfunction-associated steatotic liver disease increases the risk of incident cardiovascular disease: A nationwide cohort study. eClinicalMedicine 2023, 65, 102292. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Office of Dietary Supplements. Dietary Supplement Fact Sheets. Available online: https://ods.od.nih.gov/factsheets/list-all/ (accessed on 10 April 2024).
- Jablonski, N.G.; Chaplin, G. The roles of vitamin D and cutaneous vitamin D production in human evolution and health. Int. J. Paleopathol. 2018, 23, 54–59. [Google Scholar] [CrossRef]
- Barchetta, I.; Angelico, F.; Del Ben, M.; Baroni, M.G.; Pozzilli, P.; Morini, S.; Cavallo, M.G. Strong association between non alcoholic fatty liver disease (NAFLD) and low 25(OH) vitamin D levels in an adult population with normal serum liver enzymes. BMC Med. 2011, 9, 85. [Google Scholar] [CrossRef]
- Targher, G.; Bertolini, L.; Scala, L.; Cigolini, M.; Zenari, L.; Falezza, G.; Arcarom, G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 517–524. [Google Scholar] [CrossRef]
- Chung, G.E.; Kim, D.; Kwak, M.S.; Yang, J.I.; Yim, J.Y.; Lim, S.H.; Itani, M. The serum vitamin D level is inversely correlated with nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2016, 22, 146–151. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Wan, B.; Zhang, H.; Wu, S.; Zhu, Z.; Lin, Y.; Wang, M.; Zhang, N.; Lin, S.; et al. Association between Vitamin D Status and Non-Alcoholic Fatty Liver Disease: A Population-Based Study. J. Nutr. Sci. Vitaminol. 2019, 65, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.; Lawler, T.; Mares, J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003–2014. Nutrients 2019, 11, 1101. [Google Scholar] [CrossRef]
- Office of Dietary Supplements. Vitamin D: Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/ (accessed on 1 September 2023).
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steato-hepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Lavine, J.E.; Schwimmer, J.B.; Van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.; Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Effect of vitamin E or metformin for treatment of nonal-coholic fatty liver disease in children and adolescents: The TONIC randomized controlled trial. JAMA 2011, 305, 1659–1668. [Google Scholar] [CrossRef]
- Peeri, N.C.; Chai, W.; Cooney, R.V.; Tao, M.H. Association of serum levels of antioxidant micronutrients with mortality in US adults: National Health and Nutrition Examination Survey 1999–2002. Public Health Nutr. 2021, 24, 4859–4868. [Google Scholar] [CrossRef]
- Chai, W.; Maskarinec, G.; Franke, A.A.; Monroe, K.R.; Park, S.Y.; Kolonel, L.N.; Wilkens, L.R.; Le Marchand, L.; Cooney, R.V. Association of serum gamma-tocopherol levels with mortality: The Multiethnic Cohort Study. Eur. J. Clin. Nutr. 2020, 74, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Lykkesfeldt, J.; Shigenaga, M.K.; Shigeno, E.T.; Christen, S.; Ames, B.N. Gamma-tocopherol supplementation inhibits protein nitration and ascorbate oxidation in rats with inflammation. Free Radic. Biol. Med. 2002, 33, 1534–1542. [Google Scholar] [CrossRef]
- Burnett, T.S.; Tanaka, Y.; Harwood, P.J.; Cooney, R.V. Mechanisms of phytochemical inhibition of carcinogenesis: Elucidating the role of γ-tocpherol in nutrition. In Functional Foods for Disease Prevention; Shibamoto, I.T., Terao, J., Osawa, T., Eds.; American Chemical Society: Washington, DC, USA, 1998; pp. 45–58. [Google Scholar]
- Mozumdar, A.; Liquori, G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 2011, 34, 218–229. [Google Scholar] [CrossRef]
- Lee, S.; Ko, Y.; Kwak, C.; Yim, E.S. Gender differences in metabolic syndrome components among the Korean 66-year-old population with metabolic syndrome. BMC Geriatr. 2016, 16, 27. [Google Scholar]
- Chai, W.; Conroy, S.M.; Maskarinec, G.; Franke, A.A.; Pagano, I.S.; Cooney, R.V. Associations between obesity and serum lipid-soluble micronutrients among premenopausal women. Nutr. Res. 2010, 30, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Ito, Y.; Ochiai, J.; Kusuhara, Y.; Hashimoto, S.; Tokudome, S.; Tokudome, S.; Kojima, M.; Wakai, K.; Toyo-shima, H.; et al. Relationship between obesity and serum markers of oxidativestress and inflammation in Japanese. Asian Pac. J. Cancer Prev. 2003, 4, 259–266. [Google Scholar] [PubMed]
All Participants | Men | Women | |||||||
---|---|---|---|---|---|---|---|---|---|
Non-MASLD | MASLD | p a | Non-MASLD | MASLD | p a | Non-MASLD | MASLD | p a | |
N | 2808 | 1148 | 1304 | 687 | 1504 | 461 | |||
MASLD prevalence (%) | 27.7 | 34.1 | 21.2 | ||||||
Age (y) | 46.7 ± 0.7 | 51.4 ± 0.7 | <0.0001 | 45.2 ± 0.8 | 51.0 ± 0.8 | <0.0001 | 48.0 ± 0.8 | 52.1 ± 0.9 | <0.0001 |
Sex, (%) | <0.0001 | ||||||||
Men | 45.7 | 61.8 | |||||||
Women | 54.3 | 38.2 | |||||||
Ethnicity (%) | 0.002 | <0.0001 | 0.29 | ||||||
Black | 11.4 | 7.6 | 11.6 | 6.2 | 11.1 | 9.7 | |||
White | 63.5 | 64.3 | 62.2 | 65.5 | 64.5 | 62.5 | |||
Hispanic | 14.3 | 18.7 | 14.7 | 19.0 | 14.1 | 18.3 | |||
Asian and others | 10.8 | 9.4 | 11.5 | 9.3 | 10.3 | 9.5 | |||
Education (%) | 0.006 | 0.03 | 0.13 | ||||||
Below high school | 10.3 | 10.5 | 10.9 | 11.4 | 9.7 | 9.0 | |||
High school/some college | 56.6 | 63.9 | 56.0 | 63.4 | 57.1 | 64.9 | |||
College graduate | 33.2 | 25.6 | 33.1 | 25.2 | 33.2 | 26.1 | |||
Body mass index (kg/m2) | 27.6 ± 0.3 | 34.9 ± 0.5 | <0.0001 | 27.3 ± 0.3 | 33.9 ± 0.5 | <0.0001 | 27.9 ± 0.4 | 36.3 ± 0.7 | <0.0001 |
Waist circumference (cm) | 95.2 ± 0.6 | 114.8 ± 1.1 | <0.0001 | 96.9 ± 0.6 | 115.4 ± 1.2 | <0.0001 | 93.9 ± 0.9 | 113.9 ± 1.5 | <0.0001 |
HDL (mg/dL) | 56.2 ± 0.6 | 46.3 ± 0.7 | <0.0001 | 50.5 ± 0.4 | 43.1 ± 0.6 | <0.0001 | 60.9 ± 0.9 | 51.4 ± 1.0 | <0.0001 |
LDL (mg/dL) | 110.5 ± 1.7 | 113.3 ± 2.8 | 0.15 | 109.8 ± 2.1 | 112.3 ± 3.1 | 0.08 | 111.1 ± 2.4 | 114.6 ± 4.0 | 0.09 |
Triglycerides (mg/dL) | 99.4 ± 2.2 | 150.0 ± 9.3 | <0.0001 | 108.2 ± 4.6 | 164.7 ± 13.7 | 0.0001 | 90.9 ± 3.4 | 129.0 ± 6.4 | 0.007 |
Hemoglobin A1C (%) | 5.50 ± 0.02 | 6.08 ± 0.04 | <0.0001 | 5.50 ± 0.03 | 6.04 ± 0.05 | <0.0001 | 5.50 ± 0.02 | 6.15 ± 0.08 | <0.0001 |
Smoke status (%) | <0.0001 | 0.006 | 0.01 | ||||||
Never | 58.8 | 51.1 | 49.2 | 46.1 | 66.9 | 59.3 | |||
Former | 22.6 | 32.8 | 29.3 | 38.6 | 17.0 | 23.4 | |||
Current | 18.5 | 16.1 | 21.5 | 15.3 | 16.1 | 17.3 | |||
Alcohol drinking habits in past 12 months (%) | 0.24 | 0.24 | 0.05 | ||||||
Never/rarely | 30.9 | 35.6 | 27.4 | 34.0 | 33.9 | 38.3 | |||
Occasionally | 21.3 | 23.2 | 18.2 | 18.9 | 23.9 | 30.2 | |||
Sometimes | 32.9 | 29.3 | 34.2 | 30.8 | 31.8 | 26.8 | |||
Frequently | 14.9 | 11.9 | 20.2 | 16.3 | 10.3 | 4.7 | |||
Alcohol intake (g/d) b | 12.1 ± 0.7 | 10.6 ± 1.4 | 0.79 | 16.4 ± 1.3 | 13.9 ± 1.8 | 0.65 | 8.4 ± 0.6 | 5.3 ± 1.2 | 0.35 |
Diabetes (%) | 8.2 | 26.9 | <0.0001 | 8.3 | 29.1 | <0.0001 | 8.2 | 23.4 | <0.0001 |
High blood pressure (%) | 24.6 | 48.8 | <0.0001 | 29.4 | 52.1 | <0.0001 | 26.3 | 61.2 | <0.0001 |
All Participants | Men | Women | ||||
---|---|---|---|---|---|---|
Quartile (Q1–Q4) | OR (95% CI) a | Ptrend a | OR (95% CI) b | Ptrend b | OR (95% CI) b | Ptrend b |
α-tocopherol (µg/dL) | ||||||
Q1 (<858) | 1.00 | 1.00 | 1.00 | |||
Q2 (858–1050) | 1.08 (0.81–1.46) | 1.05 (0.70–1.57) | 1.11 (0.68–1.81) | |||
Q3 (1050–1310) | 1.55 (1.13–2.11) | 1.54 (1.09–2.16) | 1.43 (0.93–2.21) | |||
Q4 (≥1310) | 1.53 (1.05–2.22) | 0.03 | 1.79 (1.21–2.65) | 0.01 | 1.21 (0.72–2.05) | 0.67 |
γ-tocopherol (µg/dL) | ||||||
Q1 (<112) | 1.00 | 1.00 | 1.00 | |||
Q2 (112–157) | 1.23 (0.86–1.77) | 0.92 (0.56–1.51) | 2.14 (1.14–3.90) | |||
Q3 (157–214) | 1.93 (1.29–2.89) | 1.26 (0.82–1.93) | 3.94 (1.86–8.35) | |||
Q4 (≥214) | 4.15 (3.00–5.74) | <0.0001 | 2.95 (1.93–4.51) | <0.0001 | 7.36 (4.45–12.18) | <0.0001 |
25(OH)D (nmol/L) | ||||||
Q1 (<47.4) | 1.00 | 1.00 | 1.00 | |||
Q2 (47.4–63.7) | 0.65 (0.46–0.93) | 0.58 (0.39–0.85) | 0.77 (0.41–1.45) | |||
Q3 (63.7–81.6) | 0.51 (0.36–0.74) | 0.51 (0.34–0.75) | 0.49 (0.28–0.86) | |||
Q4 (≥81.6) | 0.41 (0.27–0.61) | 0.0001 | 0.43 (0.30–0.60) | <0.0001 | 0.40 (0.20–0.79) | 0.003 |
Retinol (µg/dL) | ||||||
Q1 (<38.1) | 1.00 | 1.00 | 1.00 | |||
Q2 (38.1–46.9) | 0.96 (0.64–1.43) | 1.05 (0.65–1.71) | 0.96 (0.56–1.65) | |||
Q3 (46.9–57.8) | 1.08 (0.79–1.47) | 1.23 (0.82–1.85) | 1.09 (0.64–1.87) | |||
Q4 (≥57.8) | 1.05 (0.69–1.60) | 0.62 | 1.28 (0.77–2.14) | 0.26 | 0.97 (0.52–1.83) | 0.99 |
α-carotene (µg/dL) | ||||||
Q1 (<1.4) | 1.00 | 1.00 | 1.00 | |||
Q2 (1.4–2.7) | 0.74 (0.51–1.08) | 0.94 (0.57–1.54) | 0.55 (0.32–0.93) | |||
Q3 (2.7–5.5) | 0.36 (0.26–0.50) | 0.44 (0.27–0.71) | 0.28 (0.20–0.39) | |||
Q4 (≥5.5) | 0.24 (0.18–0.33) | <0.0001 | 0.28 (0.18–0.43) | <0.0001 | 0.20 (0.15–0.28) | <0.0001 |
β-carotene (µg/dL) | ||||||
Q1 (<7.7) | 1.00 | 1.00 | 1.00 | |||
Q2 (7.7–13.2) | 0.46 (0.35–0.62) | 0.45 (0.29–0.70) | 0.48 (0.32–0.72) | |||
Q3 (13.2–23.8) | 0.30 (0.21–0.43) | 0.31 (0.20–0.48) | 0.29 (0.20–0.42) | |||
Q4 (≥23.8) | 0.16 (0.11–0.24) | <0.0001 | 0.17 (0.09–0.34) | <0.0001 | 0.16 (0.10–0.25) | <0.0001 |
α-cryptoxanthin (µg/dL) | ||||||
Q1 (<1.8) | 1.00 | 1.00 | 1.00 | |||
Q2 (1.8–2.6) | 0.72 (0.55–0.96) | 0.79 (0.55–1.13) | 0.67 (0.46–0.97) | |||
Q3 (2.6–3.8) | 0.47 (0.34–0.66) | 0.51 (0.34–0.76) | 0.43 (0.26–0.73) | |||
Q4 (≥3.8) | 0.28 (0.20–0.38) | <0.0001 | 0.46 (0.28–0.76) | 0.0005 | 0.12 (0.07–0.20) | <0.0001 |
β-cryptoxanthin (µg/dL) | ||||||
Q1 (<4.6) | 1.00 | 1.00 | 1.00 | |||
Q2 (4.6–7.5) | 0.86 (0.68–1.08) | 0.86 (0.60–1.23) | 0.87 (0.66–1.16) | |||
Q3 (7.5–13.0) | 0.46 (0.33–0.65) | 0.58 (0.41–0.83) | 0.34 (0.22–0.51) | |||
Q4 (≥13.0) | 0.51 (0.29–0.89) | 0.008 | 0.75 (0.36–1.56) | 0.36 | 0.30 (0.17–0.54) | <0.0001 |
Lutein and zeaxanthin (µg/dL) | ||||||
Q1 (<11.6) | 1.00 | 1.00 | 1.00 | |||
Q2 (11.6–16.3) | 0.72 (0.52–0.99) | 0.69 (0.40–1.20) | 0.76 (0.40–1.46) | |||
Q3 (16.3–23.5) | 0.63 (0.39–1.01) | 0.67 (0.38–1.19) | 0.57 (0.31–1.05) | |||
Q4 (≥23.5) | 0.40 (0.29–0.56) | <0.0001 | 0.47 (0.25–0.90) | 0.039 | 0.32 (0.21–0.50) | <0.0001 |
Lycopene (µg/dL) | ||||||
Q1 (<25.0) | 1.00 | 1.00 | 1.00 | |||
Q2 (25.0–35.8) | 0.92 (0.63–1.33) | 0.81 (0.48–1.37) | 1.10 (0.72–1.66) | |||
Q3 (35.8–48.6) | 0.94 (0.71–1.25) | 0.77 (0.48–1.21) | 1.22 (0.79–1.90) | |||
Q4 (≥48.6) | 0.71 (0.50–0.99) | 0.02 | 0.66 (0.41–1.06) | 0.05 | 0.76 (0.45–1.27) | 0.28 |
Low Alcohol Consumption (M: <30 g/d; F: <20 g/d) a Cases/Participants = 932/3186 | Moderate Alcohol Consumption (M: 30–60 g/d; F 20–50 g/d) a Cases/Participants = 74/296 | |||
---|---|---|---|---|
Quartile (Q1–Q4) | OR (95% CI) b | Ptrend b | OR (95% CI) b | Ptrend b |
α-tocopherol (µg/dL) | ||||
Q1 (<858) | 1.00 | 1.00 | ||
Q2 (858–1050) | 1.06 (0.81–1.39) | 1.28 (0.33–5.05) | ||
Q3 (1050–1310) | 1.52 (1.07–2.15) | 2.28 (0.58–8.99) | ||
Q4 (≥1310) | 1.48 (1.00–2.20) | 0.056 | 1.46 (0.46–4.65) | 0.96 |
γ-tocopherol (µg/dL) | ||||
Q1 (<112) | 1.00 | 1.00 | ||
Q2 (112–157) | 1.25 (0.89–1.78) | 2.62 (0.52–13.26) | ||
Q3 (157–214) | 1.83 (1.21–2.78) | 8.03 (1.59–40.49) | ||
Q4 (≥214) | 4.13 (2.80–6.11) | <0.0001 | 8.84 (2.95–26.49) | <0.0001 |
25(OH)D (nmol/L) | ||||
Q1 (<47.4) | 1.00 | 1.00 | ||
Q2 (47.4–63.7) | 0.63 (0.44–0.91) | 1.11 (0.22–5.55) | ||
Q3 (63.7–81.6) | 0.52 (0.37–0.74) | 1.14 (0.33–3.95) | ||
Q4 (≥81.6) | 0.42 (0.28–0.63) | 0.0004 | 0.41 (0.10–1.68) | 0.11 |
Retinol (µg/dL) | ||||
Q1 (<38.1) | 1.00 | 1.00 | ||
Q2 (38.1–46.9) | 0.94 (0.68–1.31) | 0.74 (0.18–3.08) | ||
Q3 (46.9–57.8) | 1.13 (0.81–1.58) | 0.34 (0.10–1.11) | ||
Q4 (≥57.8) | 1.20 (0.78–1.84) | 0.20 | 0.20 (0.05–0.70) | 0.004 |
α-carotene (µg/dL) | ||||
Q1 (<1.4) | 1.00 | 1.00 | ||
Q2 (1.4–2.7) | 0.65 (0.44–0.96) | 0.73 (0.25–2.16) | ||
Q3 (2.7–5.5) | 0.33 (0.24–0.47) | 0.19 (0.06–0.62) | ||
Q4 (≥5.5) | 0.23 (0.16–0.33) | <0.0001 | 0.19 (0.06–0.61) | 0.004 |
β-carotene (µg/dL) | ||||
Q1 (<7.7) | 1.00 | 1.00 | ||
Q2 (7.7–13.2) | 0.46 (0.35–0.59) | 0.36 (0.11–1.18) | ||
Q3 (13.2–23.8) | 0.31 (0.21–0.46) | 0.13 (0.05–0.37) | ||
Q4 (≥23.8) | 0.16 (0.11–0.24) | <0.0001 | 0.10 (0.03–0.41) | 0.008 |
α-cryptoxanthin (µg/dL) | ||||
Q1 (<1.8) | 1.00 | 1.00 | ||
Q2 (1.8–2.6) | 0.77 (0.54–1.10) | 0.51 (0.12–2.24) | ||
Q3 (2.6–3.8) | 0.46 (0.31–0.67) | 0.93 (0.17–5.09) | ||
Q4 (≥3.8) | 0.28 (0.20–0.39) | <0.0001 | 0.17 (0.03–1.10) | 0.16 |
β-cryptoxanthin (µg/dL) | ||||
Q1 (<4.6) | 1.00 | 1.00 | ||
Q2 (4.6–7.5) | 0.89 (0.68–1.16) | 0.67 (0.22–2.04) | ||
Q3 (7.5–13.0) | 0.41 (0.30–0.55) | 0.58 (0.17–1.93) | ||
Q4 (≥13.0) | 0.49 (0.29–0.85) | 0.002 | 0.42 (0.11–1.70) | 0.29 |
Lutein and zeaxanthin (µg/dL) | ||||
Q1 (<11.6) | 1.00 | 1.00 | ||
Q2 (11.6–16.3) | 0.70 (0.51–0.97) | 0.85 (0.18–3.93) | ||
Q3 (16.3–23.5) | 0.63 (0.37–1.07) | 0.57 (0.25–1.28) | ||
Q4 (≥23.5) | 0.38 (0.28–0.52) | <0.0001 | 0.39 (0.10–1.47) | 0.12 |
Lycopene (µg/dL) | ||||
Q1 (<25.0) | 1.00 | 1.00 | ||
Q2 (25.0–35.8) | 1.04 (0.69–1.56) | 0.62 (0.21–1.82) | ||
Q3 (35.8–48.6) | 1.03 (0.75–1.40) | 0.46 (0.17–1.27) | ||
Q4 (≥48.6) | 0.68 (0.50–0.94) | 0.002 | 0.92 (0.37–2.33) | 0.90 |
α-Toc | Vit. D | Retinol | α-Carot | β-Carot | β-Cryp | Lut/zea | Lyco | ||
---|---|---|---|---|---|---|---|---|---|
All participants | Correlation Coefficient (r) a | 0.10 | 0.16 | 0.05 | 0.34 | 0.31 | 0.29 | 0.30 | 0.25 |
Dietary Intake (µg/d) | 9.6 ± 0.2 (mg/d) | 4.2 ± 0.1 | 418 ± 9 | 396 ± 43 | 2535 ± 159 | 89.4 ± 7.0 | 1694 ± 114 | 5180 ± 253 | |
Serum (µg/dL) | 1247 ± 11 | 73.3 ± 1.7 (nmol/L) | 54.2 ± 0.3 | 5.3 ± 0.3 | 20.9 ± 0.9 | 9.1 ± 0.4 | 19.7 ± 0.6 | 40.4 ± 0.6 | |
MASLD b | Correlation Coefficient a | 0.09 | 0.17 | 0.11 | 0.30 | 0.31 | 0.29 | 0.25 | 0.24 |
Dietary Intake (µg/d) | 9.2 ± 0.3 (mg/d) | 4.3 ± 0.1 | 415 ± 22 | 416 ± 70 | 2449 ± 214 | 90.3 ± 6.8 | 1328 ± 97 | 5006 ± 378 | |
Serum (µg/dL) | 1314 ± 26 | 69.5 ± 2.3 (nmol/L) | 55.5 ± 0.8 | 3.6 ± 0.3 | 13.6 ± 0.5 | 7.9 ± 0.5 | 17.5 ± 0.8 | 38.1 ± 1.1 | |
Non-MASLD c | Correlation Coefficient a | 0.07 | 0.15 | 0.11 | 0.36 | 0.34 | 0.29 | 0.32 | 0.26 |
Dietary Intake (µg/d) | 9.8 ± 0.3 (mg/d) | 4.1 ± 0.2 | 419 ± 12 | 388 ± 42 | 2568 ± 181 | 89.0 ± 9.0 | 1835 ± 145 | 5247 ± 259 | |
Serum (µg/dL) | 1222 ± 13 | 74.6 ± 1.7 (nmol/L) | 53.7 ± 0.3 | 6.0 ± 0.4 | 23.7 ± 1.0 | 9.6 ± 0.5 | 20.7 ± 0.7 | 41.3 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, W.; Tao, M.-H. Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States. Nutrients 2024, 16, 1242. https://doi.org/10.3390/nu16081242
Chai W, Tao M-H. Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States. Nutrients. 2024; 16(8):1242. https://doi.org/10.3390/nu16081242
Chicago/Turabian StyleChai, Weiwen, and Meng-Hua Tao. 2024. "Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States" Nutrients 16, no. 8: 1242. https://doi.org/10.3390/nu16081242
APA StyleChai, W., & Tao, M. -H. (2024). Overall and Sex-Specific Associations of Serum Lipid-Soluble Micronutrients with Metabolic Dysfunction-Associated Steatotic Liver Disease among Adults in the United States. Nutrients, 16(8), 1242. https://doi.org/10.3390/nu16081242