Timing of Dietary Fatty Acids to Optimize Reduced Risk of Type 2 Diabetes Mellitus: Findings from China Health and Nutrition Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment and Main Exposure
2.3. T2DM Ascertainment
2.4. Confounding Measurements
2.5. Statistical Analysis
3. Results
3.1. Population Characteristic
3.2. Associations of Dietary Fatty Acid Intake Timing with the Risk of T2DM
3.3. Substitution Analyses
3.4. Associations of Subtypes of Dietary Fatty Acid Intake Timing with the Risk of T2DM
3.5. Sensitivity Analysis
3.6. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHNS | China Health and Nutrition Survey |
T2DM | type 2 diabetes mellitus |
FA | fatty acids |
MUFA | monounsaturated fatty acid |
PUFA | polyunsaturated fatty acid |
SFA | saturated fatty acid |
P-MUFA | Plant-sourced monounsaturated fatty acid |
A-MUFA | Animal-sourced monounsaturated fatty acid |
OA | oleic acid |
PA | palmitoleic acid |
ALA | Alpha-linolenic acid |
EPA | eicosapentaenoic acid |
DHA | docosahexaenoic acid |
AA | arachidonic acid |
LA | linoleic acid |
% en | percentage of energy |
HR | hazard ratio |
CI | confidence interval |
SD | standard deviation |
SE | standard error |
CCDC | Chinese Center for Disease Control and Prevention |
AHEI | Alternative Healthy Eating Index; SSB, sugar-sweetened beverage |
SSB | sugar-sweetened beverage |
BMI | body mass index |
GCK | glucokinase |
CLOCK | Circadian Locomotor Output Cycles Kaput |
BMAL1 | aryl hydrocarbon receptor nuclear translocator-like protein 1 |
SREBP1c | sterol regulatory element-binding protein 1c |
References
- Ren, X.; Yang, X.; Jiang, H.; Han, T.; Sun, C. The association of energy and macronutrient intake at dinner vs breakfast with the incidence of type 2 diabetes mellitus in a cohort study: The China Health and Nutrition Survey, 1997–2011. J. Diabetes 2021, 13, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Mason, I.C.; Qian, J.; Adler, G.K.; Scheer, F. Impact of circadian disruption on glucose metabolism: Implications for type 2 diabetes. Diabetologia 2020, 63, 462–472. [Google Scholar] [CrossRef]
- Han, T.; Gao, J.; Wang, L.; Li, C.; Qi, L.; Sun, C.; Li, Y. The Association of Energy and Macronutrient Intake at Dinner Versus Breakfast with Disease-Specific and All-Cause Mortality Among People with Diabetes: The, U.S. National Health and Nutrition Examination Survey, 2003–2014. Diabetes Care 2020, 43, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Parr, E.B.; Devlin, B.L.; Lim, K.; Moresi, L.; Geils, C.; Brennan, L.; Hawley, J.A. Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients 2020, 12, 3228. [Google Scholar] [CrossRef]
- Albosta, M.; Bakke, J. Intermittent fasting: Is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians. Clin. Diabetes Endocrinol. 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Yaegashi, A.; Kimura, T.; Wakai, K.; Iso, H.; Tamakoshi, A. Associations of Total Fat and Fatty Acid Intake with the Risk of Type 2 Diabetes Mellitus Among Japanese Adults: Analysis Based on the JACC Study. J. Epidemiol. 2024, 34, 316–323. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, L.; Wang, D.; Yan, N.; Li, C.; Wu, M.; Wang, F.; Mi, B.; Chen, F.; Jia, W.; et al. Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes, cardiovascular disease, cancer, and mortality. Clin. Nutr. 2022, 41, 1798–1807. [Google Scholar] [CrossRef]
- Hu, M.; Fang, Z.; Zhang, T.; Chen, Y. Polyunsaturated fatty acid intake and incidence of type 2 diabetes in adults: A dose response meta-analysis of cohort studies. Diabetol. Metab. Syndr. 2022, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, P.; Mao, L.; Chen, X.; Wang, J.; Cheng, L.; Ding, G.; Jiao, J. Current level of fish and omega-3 fatty acid intakes and risk of Type 2 diabetes in China. J. Nutr. Biochem. 2019, 74, 108249. [Google Scholar] [CrossRef]
- Zhuang, P.; Zhang, Y.; Mao, L.; Wang, L.; Wu, F.; Cheng, L.; Jiao, J. The association between consumption of monounsaturated fats from animal- v. plant-based foods and the risk of type 2 diabetes: A prospective nationwide cohort study. Br. J Nutr. 2020, 124, 102–111. [Google Scholar] [CrossRef]
- Lytrivi, M.; Gomes, D.S.C.C.; Kibanda, J.; Kristanto, P.; Paesmans, M.; Cnop, M. Impact of saturated compared with unsaturated dietary fat on insulin sensitivity, pancreatic beta-cell function and glucose tolerance: A systematic review and meta-analysis of randomized, controlled trials. Am. J. Clin. Nutr. 2023, 118, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yang, W.; Li, Y.; Feng, J.; Miao, J.; Shi, H.; Xue, H. Monounsaturated and polyunsaturated fatty acids concerning prediabetes and type 2 diabetes mellitus risk among participants in the National Health and Nutrition Examination Surveys (NHANES) from 2005 to March 2020. Front. Nutr. 2023, 10, 1284800. [Google Scholar] [CrossRef]
- Henry, C.J.; Kaur, B.; Quek, R. Chrononutrition in the management of diabetes. Nutr. Diabetes 2020, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Lu, B.; Zhai, F. Understanding the nutrition transition: Measuring rapid dietary changes in transitional countries. Public Health Nutr. 2002, 5, 947–953. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15 (Suppl. S1), 2–7. [Google Scholar] [CrossRef]
- Zhuang, P.; Mao, L.; Wu, F.; Wang, J.; Jiao, J.; Zhang, Y. Cooking Oil Consumption Is Positively Associated with Risk of Type 2 Diabetes in a Chinese Nationwide Cohort Study. J. Nutr. 2020, 150, 1799–1807. [Google Scholar] [CrossRef]
- Chinese Center For Disease Control And Prevention. Food Nutrient Components Table; People’s Medical Publishing House: Beijing, China, 1991.
- Institute of Nutrition and Food Safety of Chinese Center for Disease Control and Prevention. China Food Composition 2002; Peking University Medical Press: Beijing, China, 2002.
- Institute of Nutrition and Food Safety of Chinese Center for Disease Control and Prevention. China Food Composition 2004; Peking University Medical Press: Beijing, China, 2004.
- Ren, X.; Gao, J.; Han, T.; Sun, C. Association between risk of type 2 diabetes and changes in energy intake at breakfast and dinner over 14 years: A latent class trajectory analysis from the China health and nutrition Survey, 1997–2011. BMJ Open. 2021, 11, e46183. [Google Scholar] [CrossRef]
- Wang, H.; Gou, W.; Su, C.; Du, W.; Zhang, J.; Miao, Z.; Xiao, C.; Jiang, Z.; Wang, Z.; Fu, Y.; et al. Association of gut microbiota with glycaemic traits and incident type 2 diabetes, and modulation by habitual diet: A population-based longitudinal cohort study in Chinese adults. Diabetologia 2022, 65, 1145–1156. [Google Scholar] [CrossRef]
- Li, W.; Jiao, Y.; Wang, L.; Wang, S.; Hao, L.; Wang, Z.; Wang, H.; Zhang, B.; Ding, G.; Jiang, H. Association of Serum Magnesium with Insulin Resistance and Type 2 Diabetes among Adults in China. Nutrients 2022, 14, 1799. [Google Scholar] [CrossRef] [PubMed]
- O’Hearn, M.; Lara-Castor, L.; Cudhea, F.; Miller, V.; Reedy, J.; Shi, P.; Zhang, J.; Wong, J.B.; Economos, C.D.; Micha, R.; et al. Incident type 2 diabetes attributable to suboptimal diet in 184 countries. Nat. Med. 2023, 29, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, N.; Naidoo, N.; Koh, W.P.; Yuan, J.M.; van Dam, R.M. The Alternative Healthy Eating Index Is Associated with a Lower Risk of Fatal and Nonfatal Acute Myocardial Infarction in a Chinese Adult Population. J. Nutr. 2016, 146, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Gao, J.; Zhang, Y.; Hou, W.; Han, T.; Sun, C. The Association of Dietary Fiber Intake in Three Meals with All-Cause and Disease-Specific Mortality among Adults: The, U.S. National Health and Nutrition Examination Survey, 2003–2014. Nutrients 2022, 14, 2521. [Google Scholar] [CrossRef]
- Zeitler, P.; Galindo, R.J.; Davies, M.J.; Bergman, B.K.; Thieu, V.T.; Nicolay, C.; Allen, S.; Heine, R.J.; Lee, C.J. Early-Onset Type 2 Diabetes and Tirzepatide Treatment: A Post Hoc Analysis From the SURPASS Clinical Trial Program. Diabetes Care 2024, 47, 1056–1064. [Google Scholar] [CrossRef]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic Effects of Monounsaturated Fatty Acid-Enriched Diets Compared with Carbohydrate or Polyunsaturated Fatty Acid-Enriched Diets in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of monounsaturated fatty acids on glycaemic control in patients with abnormal glucose metabolism: A systematic review and meta-analysis. Ann. Nutr. Metab. 2011, 58, 290–296. [Google Scholar] [CrossRef]
- Carrasquilla, G.D.; Jakupovic, H.; Kilpelainen, T.O. Dietary Fat and the Genetic Risk of Type 2 Diabetes. Curr. Diab Rep. 2019, 19, 109. [Google Scholar] [CrossRef]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. S1), 16–26. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, Y.; Wang, W.; Zhuang, P.; Wu, F.; Jiao, J. Plant-sourced and animal-sourced monounsaturated fatty acid intakes in relation to mortality: A prospective nationwide cohort study. Eur. J. Nutr. 2020, 59, 1989–1998. [Google Scholar] [CrossRef]
- Bowman, L.; Mafham, M.; Wallendszus, K.; Stevens, W.; Buck, G.; Barton, J.; Murphy, K.; Aung, T.; Haynes, R.; Cox, J.; et al. Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N. Engl. J. Med. 2018, 379, 1540–1550. [Google Scholar] [PubMed]
- Wanders, A.J.; Blom, W.; Zock, P.L.; Geleijnse, J.M.; Brouwer, I.A.; Alssema, M. Plant-derived polyunsaturated fatty acids and markers of glucose metabolism and insulin resistance: A meta-analysis of randomized controlled feeding trials. BMJ Open Diabetes Res. Care 2019, 7, e585. [Google Scholar] [CrossRef] [PubMed]
- Mone, P.; Varzideh, F.; Kansakar, U.; Infante, C.; Lombardi, A.; de Donato, A.; Frullone, S.; Santulli, G. Omega-3 fatty acids coordinate glucose and lipid metabolism in diabetic patients. Lipids Health Dis. 2022, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Konishi, T.; Hashimoto, C.; Yamamoto, S.; Takahashi, Y.; Shiina, Y. Dietary fish oil differentially ameliorates high-fructose diet-induced hepatic steatosis and hyperlipidemia in mice depending on time of feeding. J. Nutr. Biochem. 2018, 52, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Checa-Ros, A.; D’Marco, L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int. J. Mol. Sci. 2022, 23, 12162. [Google Scholar] [CrossRef]
- Im, D.S. Maresin-1 resolution with RORalpha and LGR6. Prog. Lipid Res. 2020, 78, 101034. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Gao, L. Circadian rhythm, glucose metabolism and diabetic complications: The role of glucokinase and the enlightenment on future treatment. Front. Physiol. 2025, 16, 1537231. [Google Scholar] [CrossRef]
- Greco, J.A.; Oosterman, J.E.; Belsham, D.D. Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1049–R1060. [Google Scholar] [CrossRef]
- Shibata, S.; Furutani, A. Chrono-nutrition and n-3 polyunsaturated fatty acid. Folia Pharmacol. Japonica. 2018, 151, 34–40. [Google Scholar] [CrossRef]
Characteristics | Quintiles of n-3 PUFAs Between Dinner and Breakfast | p Value | ||||
---|---|---|---|---|---|---|
Q1 ‡ | Q2 | Q3 | Q4 | Q5 | ||
Δ § n-3 PUFAs (% en) | −1.64 ± 0.678 | −0.04 ± 0.001 | 0.12 ± 0.001 | 0.30 ± 0.001 | 0.77 ± 0.010 | <0.001 |
n | 2903 | 2904 | 2904 | 2904 | 2903 | |
Age (years) | 43.1 ± 0.3 | 43.3 ± 0.3 | 43.7 ± 0.3 | 43.3 ± 0.3 | 45.4 ± 0.3 | <0.001 |
Male (%) | 47.1 | 47.8 | 46.9 | 48.1 | 45.2 | 0.212 |
Han (%) | 91.8 | 90.4 | 87.5 | 85.4 | 88.4 | <0.001 |
Body mass index (kg/m2) | 23.5 ± 0.1 | 22.9 ± 0.1 | 22.8 ± 0.1 | 22.5 ± 0.1 | 23.0 ± 0.1 | <0.001 |
Household income (yuan/yr) | 34,277.3 ± 708.4 | 24,899.6 ± 592.9 | 26,407.3 ± 619.3 | 27,732.5 ± 654.4 | 35,058.3 ± 842.6 | 0.045 |
Urbanization index | 68.0 ± 0.4 | 54.9 ± 0.4 | 57.5 ± 0.4 | 59.5 ± 0.4 | 66.9 ± 0.4 | 0.060 |
Married (%) | 85.7 | 84.6 | 85.0 | 85.1 | 84.2 | 0.589 |
≥middle school (%) | 36.5 | 22.5 | 22.0 | 23.3 | 28.8 | <0.001 |
Vigorous activity (%) | 22.6 | 41.3 | 40.3 | 39.2 | 27.4 | <0.001 |
Current smoker (%) | 29.1 | 30.4 | 29.6 | 30.2 | 28.8 | 0.054 |
Alcohol drinker (%) | 37.2 | 34.5 | 33.0 | 35.3 | 35.0 | 0.060 |
History of hypertension (%) | 14.5 | 15.7 | 13.4 | 12.6 | 15.2 | 0.003 |
Dietary intake | ||||||
Total energy (kcal/day) | 2048.1 ± 10.3 | 2169 ± 10.2 | 2161.1 ± 9.9 | 2151.0 ± 9.2 | 2068.6 ± 10.3 | 0.468 |
Δ Energy | 230.4 ± 5.5 | 174.6 ± 4.7 | 258.1 ± 4.9 | 322.3 ± 5 | 302.7 ± 5.6 | <0.001 |
Total carbohydrates (% en) | 55.0 ± 0.2 | 61.1 ± 0.2 | 59.5 ± 0.2 | 57.6 ± 0.2 | 52.3 ± 0.2 | <0.001 |
Δ Carbohydrates (% en) | 0.3 ± 0.3 | −3.5 ± 0.2 | −8.3 ± 0.2 | −14.6 ± 0.2 | −19.1 ± 0.3 | <0.001 |
Total protein (% en) | 13.4 ± 0.1 | 12.7 ± 0 | 12.8 ± 0 | 13.3 ± 0.1 | 14.0 ± 0.1 | <0.001 |
Δ Protein (% en) | 1.9 ± 0.1 | 1.3 ± 0.1 | 2.2 ± 0.1 | 3.5 ± 0.1 | 4.7 ± 0.1 | <0.001 |
Total fat (% en) | 31.6 ± 0.2 | 26.3 ± 0.2 | 27.6 ± 0.2 | 29.1 ± 0.2 | 33.7 ± 0.2 | <0.001 |
Δ Fat (% en) | −2.4 ± 0.3 | 2.6 ± 0.2 | 7.2 ± 0.2 | 12.6 ± 0.2 | 16.4 ± 0.3 | <0.001 |
Total cereal (mg/day) | 375.0 ± 2.5 | 430.9 ± 2.7 | 411.7 ± 2.4 | 398 ± 2.4 | 355.8 ± 2.3 | <0.001 |
Total cholesterol (mg/day) | 0.3 ± 0.004 | 0.3 ± 0.005 | 0.3 ± 0.004 | 0.3 ± 0.004 | 0.3 ± 0.004 | 0.329 |
Total n-3 PUFAs (% en) | 1.2 ± 0.01 | 0.8 ± 0.01 | 0.7 ± 0.01 | 0.8 ± 0.01 | 1.3 ± 0.01 | <0.001 |
Total n-6 PUFAs (% en) | 8.9 ± 0.1 | 7.4 ± 0.1 | 7.3 ± 0.1 | 7.0 ± 0.1 | 8.0 ± 0.1 | <0.001 |
Total SFAs (% en) | 8.1 ± 0.1 | 7.0 ± 0.1 | 7.8 ± 0.1 | 8.5 ± 0.1 | 9.7 ± 0.1 | <0.001 |
Total MUFAs (% en) | 13.4 ± 0.1 | 11.0 ± 0.1 | 12.1 ± 0.1 | 13.0 ± 0.1 | 15.7 ± 0.1 | <0.001 |
AHEI ¶ | 39.5 ± 0.1 | 41.1 ± 0.1 | 39.7 ± 0.1 | 38.6 ± 0.1 | 37.8 ± 0.1 | <0.001 |
Quintiles of Dietary Intake of Fatty Acids | p Trend | |||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | ||
Δ n-3 PUFAs intake between dinner and breakfast | ||||||
Δ, range (% en) | <−0.15 | −0.15–0.04 | 0.04–0.20 | 0.20–0.41 | >0.41 | |
Cases/n | 233/2903 | 242/2904 | 188/2904 | 206/2904 | 179/2903 | |
Person-years | 25,522 | 30,762 | 32,012 | 31,772 | 26,304 | |
Model 1 | 1.00 | 0.79 (0.66–0.95) | 0.58 (0.48–0.70) | 0.64 (0.53–0.77) | 0.67 (0.55–0.81) | <0.001 |
Model 2 | 1.00 | 0.91 (0.76–1.10) | 0.70 (0.57–0.85) | 0.82 (0.68–0.997) | 0.74 (0.61–0.90) | 0.002 |
Model 3 | 1.00 | 0.94 (0.78–1.13) | 0.72 (0.59–0.88) | 0.88 (0.72–1.07) | 0.81 (0.66–1.01) | 0.032 |
Δ n-6 PUFAs intake between dinner and breakfast | ||||||
Δ, range (% en) | <−0.65 | −0.65–0.70 | 0.70–1.95 | 1.95–3.48 | >3.48 | |
Cases/n | 222/2903 | 215/2904 | 208/2904 | 207/2904 | 196/2903 | |
Person-years | 25,857 | 31,032 | 32,375 | 31,761 | 25,347 | |
Model 1 | 1.00 | 0.78 (0.65–0.94) | 0.71 (0.59–0.86) | 0.72 (0.60–0.87) | 0.86 (0.71–1.04) | 0.064 |
Model 2 | 1.00 | 0.85 (0.71–1.03) | 0.80 (0.66–0.97) | 0.82 (0.68–0.995) | 0.91 (0.75–1.10) | 0.248 |
Model 3 | 1.00 | 0.85 (0.70–1.03) | 0.80 (0.66–0.97) | 0.84 (0.69–1.03) | 0.90 (0.74–1.10) | 0.288 |
Δ n-6/n-3 PUFAs intake between dinner and breakfast | ||||||
Δ, range (% en) | <−2.91 | −2.91–−0.18 | −0.18–0.68 | 0.68–2.41 | >2.41 | |
Cases/n | 153/2903 | 227/2904 | 221/2904 | 227/2904 | 220/2903 | |
Person-years | 28,781 | 29,545 | 31,269 | 30,514 | 26,263 | |
Model 1 | 1.00 | 1.42 (1.16–1.75) | 1.35 (1.10–1.66) | 1.45 (1.18–1.78) | 1.73 (1.41–2.13) | <0.001 |
Model 2 | 1.00 | 1.24 (1.01–1.52) | 1.17 (0.95–1.44) | 1.27 (1.04–1.57) | 1.38 (1.12–1.71) | 0.005 |
Model 3 | 1.00 | 1.36 (1.07–1.73) | 1.31 (1.02–1.68) | 1.41 (1.11–1.79) | 1.38 (1.12–1.71) | 0.009 |
Δ P-MUFAs intake between dinner and breakfast | ||||||
Δ, range (% en) | <−2.21 | −2.21–−0.26 | −0.26–0.68 | 0.68–2.24 | >2.24 | |
Cases/n | 230/2903 | 224/2904 | 206/2904 | 210/2904 | 178/2903 | |
Person-years | 24,200 | 30,454 | 31,312 | 31,944 | 28,462 | |
Model 1 | 1.00 | 0.71 (0.59–0.85) | 0.63 (0.52–0.76) | 0.62 (0.52–0.75) | 0.57 (0.47–0.70) | <0.001 |
Model 2 | 1.00 | 0.84 (0.69–1.01) | 0.82 (0.67–0.998) | 0.79 (0.65–0.95) | 0.71 (0.58–0.87) | 0.001 |
Model 3 | 1.00 | 0.85 (0.70–1.03) | 0.85 (0.70–1.05) | 0.79 (0.65–0.97) | 0.71 (0.57–0.88) | 0.002 |
Δ A-MUFAs intake between dinner and breakfast | ||||||
Δ, range (% en) | <0.00 | 0.00–1.12 | 1.12–4.25 | 4.25–8.29 | >8.29 | |
Cases/n | 165/2366 | 275/3441 | 218/2904 | 219/2904 | 171/2903 | |
Person-years | 21,454 | 37,475 | 31,095 | 31,560 | 24,788 | |
Model 1 | 1.00 | 0.96 (0.79–1.16) | 0.91 (0.75–1.12) | 0.90 (0.73–1.10) | 0.94 (0.76–1.16) | 0.394 |
Model 2 | 1.00 | 1.06 (0.87–1.29) | 0.96 (0.78–1.18) | 0.91 (0.74–1.12) | 1.02 (0.82–1.27) | 0.540 |
Model 3 | 1.00 | 1.06 (0.86–1.31) | 0.96 (0.78–1.19) | 0.95 (0.77–1.18) | 1.09 (0.86–1.39) | 0.918 |
HR (95% CI) | p Value | |
---|---|---|
Substitution per SD dietary MUFAs in forenoon with | ||
each per SD dietary MUFAs in evening | 0.80 (0.69–0.93) | 0.004 |
each per SD dietary SFAs in evening | 0.89 (0.78–1.01) | 0.080 |
each per SD dietary PUFAs in evening | 1.00 (0.89–1.13) | 0.983 |
Substitution per SD dietary plant-sourced MUFAs in forenoon with | ||
each per SD dietary plant-sourced MUFAs in evening | 0.91 (0.82–1.02) | 0.099 |
each per SD dietary animal-sourced MUFAs in evening | 0.95 (0.84–1.07) | 0.392 |
Substitution per SD dietary n-3 PUFAs in forenoon with | ||
each per SD dietary n-3 PUFAs in evening | 0.78 (0.65–0.94) | 0.009 |
each per SD dietary n-6 PUFAs in evening | 1.04 (0.91–1.20) | 0.532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Wu, Y.; Zhuang, P.; Liu, X.; Ao, Y.; Li, Y.; Yao, J.; Liu, H.; Yang, Z.; Zhang, Y.; et al. Timing of Dietary Fatty Acids to Optimize Reduced Risk of Type 2 Diabetes Mellitus: Findings from China Health and Nutrition Survey. Nutrients 2025, 17, 2089. https://doi.org/10.3390/nu17132089
Ye H, Wu Y, Zhuang P, Liu X, Ao Y, Li Y, Yao J, Liu H, Yang Z, Zhang Y, et al. Timing of Dietary Fatty Acids to Optimize Reduced Risk of Type 2 Diabetes Mellitus: Findings from China Health and Nutrition Survey. Nutrients. 2025; 17(13):2089. https://doi.org/10.3390/nu17132089
Chicago/Turabian StyleYe, Hao, Yuqi Wu, Pan Zhuang, Xiaohui Liu, Yang Ao, Yin Li, Jianxin Yao, Haoyin Liu, Zongmei Yang, Yu Zhang, and et al. 2025. "Timing of Dietary Fatty Acids to Optimize Reduced Risk of Type 2 Diabetes Mellitus: Findings from China Health and Nutrition Survey" Nutrients 17, no. 13: 2089. https://doi.org/10.3390/nu17132089
APA StyleYe, H., Wu, Y., Zhuang, P., Liu, X., Ao, Y., Li, Y., Yao, J., Liu, H., Yang, Z., Zhang, Y., & Jiao, J. (2025). Timing of Dietary Fatty Acids to Optimize Reduced Risk of Type 2 Diabetes Mellitus: Findings from China Health and Nutrition Survey. Nutrients, 17(13), 2089. https://doi.org/10.3390/nu17132089