Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytical Strategy
2.2. Proportional Odds Logistic Regression (POLR): Concept and Interpretation
- Y is the ordinal response variable (e.g., level of agreement);
- j indexes the cutpoints between categories;
- θj represents the threshold parameters for each category;
- k is the number of predictors in the model;
- Xi is the predictor variable (e.g., another belief or respondent characteristic);
- βi is the regression coefficient.
2.3. Variable Overview
- q_saltcauseht: belief that salt causes hypertension;
- q_saltcauseendoth: belief that salt causes endothelial damage;
- q_saltcauseinflam: belief that salt induces inflammation;
- q_saltcausefatdysf: belief that salt causes adipose tissue dysfunction;
- q_saltcausenone: belief that salt causes none of the above.
- q_educat: belief in need for public education on salt;
- q_infoverif: belief in need to verify existing information;
- q_legisl: belief in need for legislative action on salt;
- q_noaction: belief that no action (education, verification, legislation) is needed.
- q_ht: hypertension;
- q_af: atrial fibrillation;
- q_osteo: osteoporosis;
- q_obes: obesity;
- q_t2dm: type 2 diabetes;
- q_lipid: dyslipidemia;
- q_hf: heart failure;
- q_stroke: stroke;
- q_depr: depression;
- q_cogn: cognitive decline/dementia;
- q_ckd: chronic kidney disease;
- q_stomcanc: stomach cancer;
- q_kidnsto: kidney stones;
- q_athero: atherosclerosis;
- q_hemat: hematologic disorders;
- q_rheum: rheumatoid arthritis;
- q_brcan: breast cancer progression.
- q_death: belief that excessive salt increases risk of death (with no neutral midpoint, intentionally designed to prompt a directional stance and avoid central tendency bias). This design choice was made because mortality-related judgments may elicit socially desirable or ambivalent responses; forcing a directional choice reduces the tendency for respondents to opt for a midpoint as an “easy” answer. The item originated from an earlier questionnaire module developed before the final harmonization of scales; we retained its four-point structure to preserve comparability with preliminary datasets and to avoid rewording effects. While this decision was deliberate for the mortality item, other disease-specific items retained the standard five-point scale to maintain consistency within that domain. This inconsistency is acknowledged as a limitation in the Discussion (Section 4).
2.3.1. Covariates Used in Adjusted Models
- lat_needforaction: general perceived need for public health interventions based on questions described in B. above.
- chlat_selfawar: self-awareness of personal cardiovascular and metabolic metrics (SBP, DBP, LDL, triglycerides, glucose, combined). Internal consistency, plausibility, and value coherence were additionally assessed as opposed to just taking the respondents’ claims for granted (for example, a person who claimed to know his/her SBP, but stated 2 mmHg was deemed not aware).
- ch_agec2: age category (ordinal), centered at midlife (41–50 years, coded as 0), with the following scale:−2 → 21–30 years;−1 → 31–40 years;0 → 41–50 years;1 → 51–60 years;2 → 61–70 years;3 → 71–80 years;4 → 81–90 years;5 → 91–100 years.
- ch_sexmale: sex (1 = male, 0 = female).
- ch_domicile: rural vs. urban residence (1 = rural, 0 = urban).
- ch_occupassocmed: degree of occupational affiliation with the medical field (ordinal, 0—non-medical occupation, 1—medical occupation apart from medical doctors [MDs], 2—MDs).
- ch_riskfactcount: number of declared personal health risk factors listed in the survey [range: 0–6; the risk factors included in the survey comprised: obesity, arterial hypertension, dyslipidemia, type 2 diabetes, current smoking, and a history of cardiovascular events (e.g., myocardial infarction or stroke)].
2.4. Factor Analysis
- Conservative rule—An item was assigned to a factor only if its primary loading was ≥0.35 and at least 0.15 higher than the next strongest loading. Items not meeting these criteria were left unassigned. This yields very “clean” factors but can leave some domains with only one item, preventing reliability estimation.
- Pragmatic rule—Each item was assigned to the factor on which it loaded most strongly, even if it showed some cross-loading. This approach better reflects how instruments are typically used in practice, ensures that each factor retains at least two items, and permits the calculation of internal consistency (Cronbach’s α).
3. Results
3.1. Population Sample Characteristics
3.2. Patterns of Association Among Salt-Related Beliefs
- Stomach cancer and breast cancer progression involve different temporal and mechanistic domains (incidence vs. dynamics), making them less comparable with each other.
- Hematological disorders, while potentially related to salt through cardiovascular pathways, could not be meaningfully grouped with other belief domains analyzed in this study.
3.2.1. Cardiovascular Beliefs
- Beliefs about heart failure were conditionally associated with beliefs about hypertension, but the reverse was not significant.
- Beliefs about atrial fibrillation and stroke were not significantly associated in either direction.
- Beliefs about atherosclerosis did not increase with beliefs about hypertension or atrial fibrillation, nor vice versa.
- Conditional associations were observed from atrial fibrillation to atherosclerosis, but not in the reverse direction.
- Beliefs about atherosclerosis and stroke were bidirectionally associated, suggesting consistent co-endorsement patterns among respondents.
3.2.2. Metabolic Related Beliefs
3.2.3. Renal Beliefs
- Beliefs about hematological disorders were positively associated with stronger beliefs about both renal-related topics.
- The association with osteoporosis-related beliefs showed opposing directions: positive with kidney stones, but negative with chronic kidney disease beliefs.
3.2.4. Neurocognitive and Psychiatric Beliefs
- Both depression and cognitive disorder/dementia beliefs increased the stronger beliefs about osteoporosis.
- Beliefs about type 2 diabetes showed diverging associations: co-occurrence with depression beliefs was positive, while association with beliefs about cognitive disorders/dementia were inverse.
3.2.5. Rheumatologic Beliefs
3.2.6. Mortality Beliefs
3.2.7. Differences in Beliefs by Covariates
3.3. How the Beliefs Cluster Together—Insights from the Exploratory/Confirmatory Factor Analysis (EFA/CFA)
4. Discussion
4.1. Practical Implications
- Factor-analytic clustering indicates that public reasoning operates in broader domains (e.g., cardiovascular vs. metabolic). Educational tools should therefore not only target isolated beliefs but explicitly frame them within these broader domains to reinforce internal coherence.
- Health education should emphasize the interdependencies between disease risks, not just isolated facts about salt intake.
- Public health campaigns may benefit from addressing ‘gateway beliefs’ like mortality or hypertension to reinforce broader belief networks.
- Cognitive fragmentation (e.g., separating heart failure from hypertension) should be targeted with tailored messaging.
- The asymmetry in belief associations suggests people update knowledge selectively—interventions should account for directional learning.
- Digital tools or infographics can visualize these belief networks for patient education or health professional training.
4.2. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVD | Cardiovascular disease |
ASCVD | Atherosclerotic Cardiovascular Disease |
AHA | American Heart Association |
PoLA | Polish Lipid Association |
ILEP | International Lipid Expert Panel |
CAWI | Computer Assisted Web Interview |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
LDL | Low-density lipoprotein |
MDs | Medical doctors |
POLR | Proportional odds logistic regression |
SD | Standard deviation |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.Z.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Chong, B.; Jayabaskaran, J.; Jauhari, S.M.; Chan, S.P.; Goh, R.; Kueh, M.T.W.; Li, H.; Chin, Y.H.; Kong, G.; Anand, V.V.; et al. Global burden of cardiovascular diseases: Projections from 2025 to 2050. Eur. J. Prev. Cardiol. 2024, zwae281. [Google Scholar] [CrossRef]
- Wang, K.; Jin, Y.; Wang, M.; Liu, J.; Bu, X.; Mu, J.; Lu, J. Global cardiovascular diseases burden attributable to high sodium intake from 1990 to 2019. J. Clin. Hypertens. 2023, 25, 868–879. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Szyndler, A.; Narkiewicz, K. Salt and arterial hypertension—Epidemiological, pathophysiological and preventive aspects. Arter. Hypertens. 2020, 24, 148–158. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Rybicka, I.; Nunes, M.L. Benefit and risk assessment of replacing of sodium chloride by other salt/substances in industrial seafood products. EFSA J. 2022, 20 (Suppl. S1), e200420. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Marques-Vidal, P.; Tsampasian, V.; Cassidy, A.; Biondi-Zoccai, G.; Chrysohoou, C.; Koskinas, K.; Verschuren, W.M.M.; Czapla, M.; Kavousi, M.; Kouvari, M.; et al. Diet and nutrition in cardiovascular disease prevention: A scientific statement of the European Association of Preventive Cardiology and the Association of Cardiovascular Nursing & Allied Professions of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2025, zwaf310. [Google Scholar] [CrossRef]
- Surma, S.; Romańczyk, M.; Bańkowski, E. The role of limiting sodium intake in the diet—From theory to practice. Folia Cardiol. 2020, 15, 227–235. [Google Scholar] [CrossRef]
- Banach, M.; Surma, S. Dietary salt intake and atherosclerosis: An area not fully explored. Eur. Heart J. Open 2023, 3, oead025. [Google Scholar] [CrossRef]
- Ma, H.; Wang, X.; Li, X.; Heianza, Y.; Qi, L. Adding salt to foods and risk of cardiovascular disease. J. Am. Coll. Cardiol. 2022, 80, 2157–2167. [Google Scholar] [CrossRef]
- Hendriksen, M.A.; van Raaij, J.M.; Geleijnse, J.M.; Breda, J.; Boshuizen, H.C. Health gain by salt reduction in Europe: A modelling study. PLoS ONE 2015, 10, e0118873. [Google Scholar] [CrossRef]
- Taylor, M.K.; Sullivan, D.K.; Ellerbeck, E.F.; Gajewski, B.J.; Gibbs, H.D. Nutrition literacy predicts adherence to healthy/unhealthy diet patterns in adults with a nutrition-related chronic condition. Public Health Nutr. 2019, 22, 2157–2169. [Google Scholar] [CrossRef]
- Zhang, B.; Pu, L.; Zhao, T.; Wang, L.; Shu, C.; Xu, S.; Sun, J.; Zhang, R.; Han, L. Global burden of cardiovascular disease from 1990 to 2019 attributable to dietary factors. J. Nutr. 2023, 153, 1730–1741. [Google Scholar] [CrossRef]
- Schmidt-Trucksäss, A.; Lichtenstein, A.H.; von Känel, R. Lifestyle factors as determinants of atherosclerotic cardiovascular health. Atherosclerosis 2024, 395, 117577. [Google Scholar] [CrossRef]
- Rodríguez-Monforte, M.; Flores-Mateo, G.; Sánchez, E. Dietary patterns and CVD: A systematic review and meta-analysis. Br. J. Nutr. 2015, 114, 1341–1359. [Google Scholar] [CrossRef]
- Cheikh Ismail, L.; Hashim, M.; Jarrar, A.H.; Mohamad, M.N.; Al Daour, R.; Al Rajaby, R.; AlWatani, S.; AlAhmed, A.; Qarata, S.; Maidan, F.; et al. Impact of a nutrition education intervention on salt/sodium related knowledge, attitude, and practice of university students. Front. Nutr. 2022, 9, 830262. [Google Scholar] [CrossRef]
- Pajares, F. Teachers’ beliefs and educational research: Cleaning up a messy construct. Rev. Educ. Res. 1992, 62, 307–332. [Google Scholar] [CrossRef]
- Rosenstock, I.M. Historical origins of the Health Belief Model. Health Educ. Monogr. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Becker, M.H. The Health Belief Model and Personal Health Behavior. Health Educ. Monogr. 1974, 2, 324–508. [Google Scholar] [CrossRef]
- Turner-Zwinkels, F.M.; Brandt, M.J. Belief system networks can be used to predict where to expect dynamic constraint. J. Exp. Soc. Psychol. 2022, 100, 104279. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer: New York, NY, USA, 2015. [Google Scholar]
- Valenta, Z.; Pitha, J.; Poledne, R. Proportional odds logistic regression—Effective means of dealing with limited uncertainty in dichotomizing clinical outcomes. Stat. Med. 2006, 25, 4227–4234. [Google Scholar] [CrossRef]
- Surma, S.; Lewek, J.; Sobierajski, T.; Banach, M. The importance of dietary salt in the process of atherosclerosis: The results of the international survey. Circulation 2024, 150 (Suppl. S1), A4145926. [Google Scholar] [CrossRef]
- Banach, M. The International Lipid Expert Panel (ILEP)-the role of ‘optimal’ collaboration in the effective diagnosis and treatment of lipid disorders. Eur. Heart J. 2021, 42, 3817–3820. [Google Scholar] [CrossRef]
- Bethlehem, J. Selection bias in web surveys. Int. Stat. Rev. 2010, 78, 161–188. [Google Scholar] [CrossRef]
- Kelley, K.; Clark, B.; Brown, V.; Sitzia, J. Good practice in the conduct and reporting of survey research. Int. J. Qual. Health Care 2003, 15, 261–266. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, International Compilation of Human Research Standards. 2021. Available online: https://www.hhs.gov/sites/default/files/ohrp-international-compilation-2021.pdf (accessed on 14 July 2025).
- Morgan, S.L.; Winship, C. Counterfactuals and Causal Inference; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Embretson, S.E.; Reise, S.P. Item Response Theory for Psychologists; Lawrence Erlbaum: Mahwah, NJ, USA, 2000. [Google Scholar]
- Sarmugam, R.; Ball, K. Salt knowledge and beliefs: Relationship to intake and discretionary salt use in a sample of Australian adults. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 25. [Google Scholar] [CrossRef]
- Morowatisharifabad, M.A.; Movahed, E.; Shaghaghi, A.; Fallahzadeh, H.; Hossain, S.Z.; Nadrian, H. Salt consumption and salt-reduction practices among a population from south of Iran: Application of the theory of planned behavior. J. Nutr. Metab. 2019, 2019, 8163545. [Google Scholar]
- Cappuccio, F.P. Sodium and health: Old myths and a controversy based on denial. Curr. Nutr. Rep. 2022, 11, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.; Whelton, P.K.; Orias, M.; Williams, M.; Cappuccio, F.P. The science of salt: A regularly updated systematic review of salt and health outcomes (2022 update). J. Hum. Hypertens. 2022, 36, 512–525. [Google Scholar]
- Markkanen, M.L. Comparison of Three Ordinal Logistic Regression Methods for Predicting Person’s Self-Assessed Health Status with Functional, Haemodynamic Covariates. Master’s Thesis, University of Jyväskylä, Jyväskylä, Finland, 2023. [Google Scholar]
- Velardo, S. The nuances of health literacy, nutrition literacy, and food literacy. J. Nutr. Educ. Behav. 2015, 47, 385–389. [Google Scholar] [CrossRef]
- Gréa Krause, C.; Beer-Borst, S.; Sommerhalder, K.; Hayoz, S.; Abel, T. A short food literacy questionnaire (SFLQ) for adults: Findings from a Swiss validation study. Appetite 2018, 120, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Sarmugam, R.; Worsley, A.; Flood, V. Development and validation of a salt knowledge questionnaire. Public Health Nutr. 2014, 17, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- van der Linden, S. Determinants and Measurement of Climate Change Risk Perception, Worry, and Concern. In The Oxford Encyclopedia of Climate Change Communication; Nisbet, M.C., Schäfer, M., Markowitz, E., Ho, S., O’Neill, S., Thaker, J., Eds.; Oxford University Press: Oxford, UK, 2017; SSRN Scholarly Paper ID 2953631; Available online: https://ssrn.com/abstract=2953631 (accessed on 10 July 2025).
- Schwarz, N.; Jalbert, M. Central nodes in belief networks: Targeting health interventions for maximal diffusion. Health Psychol. Rev. 2022, 16, 439–453. [Google Scholar]
- Slovic, P.; Peters, E.; Finucane, M.L.; MacGregor, D.G. Affect, risk, and decision making. Health Psychol. 2007, 26, 35–43. [Google Scholar] [CrossRef]
- Ahn, W.K.; Kalish, C.W.; Medin, D.L.; Gelman, S.A. The role of covariation versus mechanism information in causal attribution. Cognition 1995, 54, 299–352. [Google Scholar] [CrossRef]
- Tomkinson, K. Jerome Bruner. In Theories of Learning; Huff, T., Ed.; ISU Rebus Community: Pocatello, ID, USA, 2021; Chapter 4; Available online: https://isu.pressbooks.pub/thuff/chapter/jerome-bruner-kim-tomkinson (accessed on 10 July 2025).
- Ford, E.S.; Jones, D.H. Cardiovascular health knowledge in the United States: Findings from the National Health Interview Survey, 1985. Prev. Med. 1991, 20, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.S.; Oh, A.; Klein, W.M.P. Addressing health-related misinformation on social media. JAMA 2018, 320, 2417–2418. [Google Scholar] [CrossRef]
Feature | MDs (N = 321) | Medical, Not MDs (N = 157) | Non-Medical (N = 190) | Levene p | p | |||
---|---|---|---|---|---|---|---|---|
µ | SD | µ | SD | µ | SD | |||
q_saltcauseht | 0.97 | 0.17 | 0.90 | 0.30 | 0.85 | 0.36 | <0.001 | <0.001 |
q_saltcauseendoth | 0.68 | 0.47 | 0.50 | 0.50 | 0.23 | 0.42 | <0.001 | <0.001 |
q_saltcauseinflam | 0.58 | 0.49 | 0.49 | 0.50 | 0.21 | 0.40 | <0.001 | <0.001 |
q_saltcausefatdysf | 0.38 | 0.49 | 0.35 | 0.48 | 0.26 | 0.44 | <0.001 | 0.024 |
q_saltcausenone | 0.02 | 0.15 | 0.05 | 0.22 | 0.19 | 0.40 | <0.001 | <0.001 |
q_educat | 0.97 | 0.17 | 0.98 | 0.14 | 0.97 | 0.18 | 0.339 | 0.765 |
q_infoverif | 0.41 | 0.49 | 0.50 | 0.50 | 0.38 | 0.49 | 0.016 | 0.065 |
q_noaction | 0.03 | 0.17 | 0.04 | 0.19 | 0.02 | 0.12 | 0.030 | 0.339 |
q_legisl | 0.49 | 0.50 | 0.50 | 0.50 | 0.36 | 0.48 | <0.001 | 0.005 |
q_ht | 1.82 | 0.56 | 1.73 | 0.70 | 1.53 | 0.72 | <0.001 | <0.001 |
q_af | 0.97 | 0.95 | 0.83 | 1.10 | 0.65 | 0.99 | 0.007 | 0.002 |
q_osteo | 0.33 | 1.11 | 0.43 | 1.19 | 0.27 | 1.02 | 0.024 | 0.396 |
q_obes | 0.88 | 1.13 | 1.01 | 1.14 | 0.91 | 1.04 | 0.331 | 0.523 |
q_t2dm | 0.47 | 1.17 | 0.57 | 1.26 | 0.45 | 1.07 | 0.008 | 0.597 |
q_lipid | 0.47 | 1.11 | 0.80 | 1.15 | 0.67 | 0.98 | 0.016 | 0.006 |
q_hf | 1.51 | 0.75 | 1.35 | 0.93 | 1.07 | 0.91 | 0.098 | <0.001 |
q_stroke | 1.51 | 0.75 | 1.27 | 0.97 | 0.79 | 0.97 | 0.001 | <0.001 |
q_depr | 0.02 | 0.99 | 0.02 | 1.03 | −0.12 | 1.02 | 0.343 | 0.273 |
q_cogn | 0.53 | 1.11 | 0.35 | 1.13 | 0.21 | 1.04 | 0.156 | 0.005 |
q_ckd | 1.42 | 0.81 | 1.43 | 0.93 | 1.27 | 0.85 | 0.695 | 0.125 |
q_stomcanc | 0.65 | 1.12 | 0.69 | 1.16 | 0.55 | 1.02 | 0.060 | 0.431 |
q_kidnsto | 0.79 | 1.03 | 1.03 | 1.05 | 0.93 | 0.96 | 0.190 | 0.051 |
q_athero | 1.24 | 0.91 | 1.18 | 1.01 | 0.92 | 1.00 | 0.334 | 0.001 |
q_hemat | −0.06 | 0.99 | 0.29 | 1.07 | 0.41 | 0.95 | 0.008 | <0.001 |
q_rheum | 0.12 | 1.03 | 0.52 | 1.09 | 0.32 | 0.94 | 0.033 | 0.001 |
q_brcan | −0.05 | 0.96 | 0.13 | 1.06 | −0.09 | 0.88 | 0.009 | 0.099 |
q_death | 1.55 | 0.69 | 1.44 | 0.84 | 0.99 | 0.99 | 0.216 | <0.001 |
Feature | q_ht | q_af | q_osteo | q_obes | q_t2dm | q_lipid | q_hf | q_stroke | q_depr | q_cogn | q_ckd | q_stomcanc | q_kidnsto | q_athero | q_hemat | q_rheum | q_brcan | q_death |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q_ht | −0.49 | 0.02 | −0.10 | −0.09 | −0.02 | −0.25 | −0.42 | −0.07 | 0.17 | −0.29 | −0.14 | 0.02 | 0.05 | 0.11 | 0.07 | −0.09 | −0.62 | |
q_af | −0.57 | −0.66 | −0.05 | −0.10 | −0.03 | −0.46 | −0.13 | −0.16 | 0.04 | −0.09 | −0.16 | 0.03 | −0.31 | −0.27 | 0.06 | 0.03 | −0.23 | |
q_osteo | 0.06 | −0.65 | −0.11 | −0.20 | 0.03 | −0.06 | 0.01 | −0.34 | −0.25 | 0.24 | −0.16 | −0.56 | −0.05 | 0.09 | −0.01 | −0.30 | 0.11 | |
q_obes | −0.23 | −0.02 | −0.07 | −0.86 | −0.33 | −0.23 | −0.03 | −0.18 | 0.11 | −0.12 | 0.09 | −0.45 | −0.34 | 0.02 | 0.17 | 0.19 | −0.09 | |
q_t2dm | 0.07 | −0.12 | −0.22 | −0.94 | −1.14 | −0.09 | −0.21 | −0.24 | 0.25 | −0.17 | −0.17 | 0.16 | 0.06 | −0.12 | −0.30 | −0.01 | 0.18 | |
q_lipid | −0.08 | 0.05 | 0.05 | −0.37 | −1.17 | −0.23 | 0.09 | 0.07 | −0.42 | 0.09 | 0.16 | −0.02 | −0.36 | −0.38 | 0.15 | −0.18 | −0.28 | |
q_hf | −0.39 | −0.58 | −0.11 | −0.37 | −0.10 | −0.21 | −1.07 | −0.12 | 0.23 | −0.61 | −0.06 | 0.01 | 0.04 | 0.08 | −0.12 | −0.03 | −0.12 | |
q_stroke | −0.39 | −0.23 | −0.02 | −0.01 | −0.27 | 0.03 | −1.07 | −0.09 | −0.49 | −0.09 | −0.34 | 0.03 | −0.37 | 0.20 | 0.06 | 0.14 | −0.47 | |
q_depr | −0.13 | −0.23 | −0.42 | −0.25 | −0.19 | 0.05 | −0.04 | −0.03 | −1.32 | 0.24 | 0.04 | 0.25 | 0.23 | −0.45 | −0.16 | −0.49 | −0.02 | |
q_cogn | 0.20 | 0.07 | −0.26 | 0.04 | 0.29 | −0.42 | 0.17 | −0.54 | −1.20 | −0.60 | −0.28 | −0.04 | −0.41 | −0.06 | −0.02 | −0.13 | 0.02 | |
q_ckd | −0.40 | −0.06 | 0.22 | −0.06 | −0.19 | 0.04 | −0.62 | −0.14 | 0.24 | −0.61 | −0.19 | −0.82 | −0.12 | −0.23 | 0.07 | 0.05 | −0.24 | |
q_stomcanc | −0.13 | −0.14 | −0.17 | 0.06 | −0.14 | 0.12 | −0.02 | −0.20 | 0.03 | −0.30 | −0.16 | −0.51 | −0.05 | −0.13 | 0.03 | −0.50 | −0.11 | |
q_kidnsto | 0.01 | 0.06 | −0.59 | −0.52 | 0.18 | −0.05 | 0.06 | −0.01 | 0.17 | 0.01 | −0.74 | −0.65 | −0.21 | −0.25 | −0.45 | 0.05 | 0.02 | |
q_athero | −0.11 | −0.20 | −0.13 | −0.33 | 0.14 | −0.26 | 0.06 | −0.33 | 0.20 | −0.32 | −0.11 | 0.00 | −0.16 | −0.15 | −0.37 | −0.03 | −0.55 | |
q_hemat | 0.36 | −0.28 | 0.09 | −0.01 | −0.18 | −0.40 | 0.10 | 0.18 | −0.43 | −0.10 | −0.29 | −0.15 | −0.27 | −0.17 | −1.00 | −0.26 | 0.23 | |
q_rheum | 0.19 | 0.11 | 0.00 | 0.21 | −0.33 | 0.15 | −0.07 | 0.10 | −0.18 | −0.05 | 0.13 | 0.14 | −0.57 | −0.31 | −1.14 | −1.29 | −0.01 | |
q_brcan | −0.05 | −0.02 | −0.48 | 0.28 | −0.11 | −0.27 | −0.05 | 0.00 | −0.58 | −0.15 | 0.09 | −0.64 | −0.02 | −0.03 | −0.25 | −1.25 | −0.33 | |
q_death | −0.70 | −0.08 | 0.07 | −0.09 | 0.21 | −0.19 | −0.16 | −0.37 | 0.06 | 0.13 | −0.32 | −0.11 | 0.16 | −0.50 | 0.17 | −0.05 | −0.21 | |
lat_needforaction | −0.33 | −0.49 | 0.31 | 0.06 | −0.25 | 0.45 | 0.44 | 0.02 | 0.03 | −0.36 | 0.18 | −0.10 | −0.19 | −0.03 | 0.28 | 0.35 | −0.79 | −0.53 |
ch_riskfactcount | 0.01 | −0.09 | 0.07 | −0.07 | −0.02 | 0.00 | −0.01 | −0.03 | 0.00 | −0.07 | −0.08 | 0.04 | 0.09 | 0.02 | 0.06 | −0.06 | 0.03 | 0.05 |
chlat_selfawar | −1.36 | 0.20 | −0.03 | −0.38 | 0.06 | 1.33 | −0.33 | 0.01 | 0.08 | −0.03 | −0.72 | 0.13 | 0.39 | 0.31 | 0.47 | −1.02 | 0.13 | −0.24 |
ch_agec2 | −0.12 | 0.07 | −0.03 | 0.08 | −0.10 | 0.22 | 0.07 | −0.24 | 0.01 | 0.00 | 0.00 | 0.19 | 0.07 | −0.01 | −0.16 | 0.00 | −0.01 | 0.15 |
ch_occupassocmed: none | 0.07 | 0.21 | −0.25 | −0.41 | 0.39 | −0.31 | 0.43 | 1.08 | 0.14 | 0.40 | −0.21 | −0.20 | −0.20 | 0.52 | −0.96 | −0.53 | 0.18 | 0.69 |
ch_occupassocmed: partial | −0.26 | 0.33 | −0.27 | −0.21 | 0.35 | −0.52 | 0.25 | 0.16 | 0.08 | 0.73 | −0.45 | 0.01 | −0.06 | 0.14 | −0.39 | −0.63 | 0.06 | 0.16 |
ch_domicile: village | 0.01 | 0.04 | 0.11 | −0.30 | 0.09 | −0.02 | 0.20 | 0.03 | −0.02 | −0.25 | 0.55 | 0.22 | −0.48 | 0.22 | 0.01 | −0.26 | 0.09 | −0.34 |
ch_sexmale | −0.40 | 0.00 | −0.01 | −0.53 | −0.02 | −0.10 | 0.16 | 0.25 | 0.23 | −0.15 | −0.51 | −0.03 | −0.27 | 0.52 | 0.50 | −0.80 | 0.16 | 0.27 |
Feature | q_ht | q_af | q_osteo | q_obes | q_t2dm | q_lipid | q_hf | q_stroke | q_depr | q_cogn | q_ckd | q_stomcanc | q_kidnsto | q_athero | q_hemat | q_rheum | q_brcan | q_death |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q_ht | 0.002 | 0.922 | 0.522 | 0.575 | 0.909 | 0.116 | 0.009 | 0.673 | 0.294 | 0.074 | 0.378 | 0.875 | 0.730 | 0.495 | 0.661 | 0.586 | <0.001 | |
q_af | <0.001 | <0.001 | 0.657 | 0.331 | 0.739 | <0.001 | 0.244 | 0.122 | 0.669 | 0.435 | 0.108 | 0.770 | 0.004 | 0.011 | 0.560 | 0.753 | 0.048 | |
q_osteo | 0.678 | <0.001 | 0.256 | 0.044 | 0.752 | 0.571 | 0.921 | <0.001 | 0.010 | 0.039 | 0.092 | <0.001 | 0.647 | 0.345 | 0.917 | 0.002 | 0.332 | |
q_obes | 0.101 | 0.840 | 0.491 | <0.001 | 0.001 | 0.030 | 0.747 | 0.074 | 0.260 | 0.256 | 0.338 | <0.001 | 0.001 | 0.842 | 0.096 | 0.071 | 0.406 | |
q_t2dm | 0.659 | 0.245 | 0.027 | <0.001 | <0.001 | 0.450 | 0.062 | 0.020 | 0.014 | 0.136 | 0.099 | 0.119 | 0.601 | 0.241 | 0.004 | 0.919 | 0.116 | |
q_lipid | 0.623 | 0.640 | 0.664 | 0.001 | <0.001 | 0.057 | 0.436 | 0.550 | <0.001 | 0.456 | 0.118 | 0.878 | 0.001 | 0.001 | 0.159 | 0.112 | 0.019 | |
q_hf | 0.015 | <0.001 | 0.390 | 0.004 | 0.434 | 0.103 | <0.001 | 0.370 | 0.073 | <0.001 | 0.622 | 0.962 | 0.761 | 0.542 | 0.343 | 0.819 | 0.388 | |
q_stroke | 0.017 | 0.067 | 0.881 | 0.951 | 0.034 | 0.795 | <0.001 | 0.501 | <0.001 | 0.517 | 0.005 | 0.811 | 0.003 | 0.126 | 0.657 | 0.289 | 0.001 | |
q_depr | 0.446 | 0.047 | <0.001 | 0.037 | 0.090 | 0.690 | 0.768 | 0.815 | <0.001 | 0.081 | 0.727 | 0.033 | 0.054 | <0.001 | 0.174 | <0.001 | 0.901 | |
q_cogn | 0.234 | 0.482 | 0.011 | 0.732 | 0.005 | <0.001 | 0.151 | <0.001 | <0.001 | <0.001 | 0.006 | 0.731 | <0.001 | 0.553 | 0.847 | 0.226 | 0.875 | |
q_ckd | 0.015 | 0.653 | 0.074 | 0.616 | 0.125 | 0.770 | <0.001 | 0.298 | 0.062 | <0.001 | 0.123 | <0.001 | 0.329 | 0.080 | 0.591 | 0.704 | 0.079 | |
q_stomcanc | 0.370 | 0.114 | 0.064 | 0.497 | 0.129 | 0.209 | 0.848 | 0.054 | 0.785 | 0.001 | 0.126 | <0.001 | 0.619 | 0.166 | 0.737 | <0.001 | 0.284 | |
q_kidnsto | 0.959 | 0.604 | <0.001 | <0.001 | 0.108 | 0.634 | 0.643 | 0.902 | 0.131 | 0.942 | <0.001 | <0.001 | 0.052 | 0.024 | <0.001 | 0.644 | 0.900 | |
q_athero | 0.475 | 0.071 | 0.240 | 0.003 | 0.212 | 0.019 | 0.617 | 0.005 | 0.072 | 0.004 | 0.382 | 0.997 | 0.162 | 0.196 | 0.001 | 0.814 | <0.001 | |
q_hemat | 0.028 | 0.012 | 0.398 | 0.927 | 0.110 | <0.001 | 0.433 | 0.145 | <0.001 | 0.376 | 0.022 | 0.176 | 0.019 | 0.152 | <0.001 | 0.021 | 0.074 | |
q_rheum | 0.290 | 0.353 | 0.984 | 0.089 | 0.005 | 0.219 | 0.623 | 0.445 | 0.133 | 0.657 | 0.327 | 0.215 | <0.001 | 0.012 | <0.001 | <0.001 | 0.951 | |
q_brcan | 0.773 | 0.841 | <0.001 | 0.027 | 0.363 | 0.029 | 0.745 | 0.977 | <0.001 | 0.228 | 0.510 | <0.001 | 0.860 | 0.831 | 0.040 | <0.001 | 0.018 | |
q_death | <0.001 | 0.501 | 0.566 | 0.448 | 0.085 | 0.105 | 0.190 | 0.002 | 0.644 | 0.280 | 0.013 | 0.348 | 0.194 | <0.001 | 0.167 | 0.705 | 0.088 | |
lat_needforaction | 0.460 | 0.093 | 0.273 | 0.845 | 0.391 | 0.130 | 0.184 | 0.940 | 0.921 | 0.215 | 0.587 | 0.723 | 0.536 | 0.920 | 0.346 | 0.242 | 0.008 | 0.109 |
ch_riskfactcount | 0.913 | 0.055 | 0.167 | 0.158 | 0.738 | 0.942 | 0.923 | 0.580 | 0.952 | 0.176 | 0.161 | 0.343 | 0.082 | 0.765 | 0.186 | 0.239 | 0.535 | 0.410 |
chlat_selfawar | 0.004 | 0.509 | 0.917 | 0.222 | 0.847 | <0.001 | 0.351 | 0.972 | 0.800 | 0.921 | 0.042 | 0.661 | 0.219 | 0.344 | 0.130 | 0.001 | 0.683 | 0.495 |
ch_agec2 | 0.215 | 0.282 | 0.586 | 0.229 | 0.115 | 0.001 | 0.377 | 0.001 | 0.904 | 0.978 | 0.973 | 0.002 | 0.286 | 0.911 | 0.011 | 0.963 | 0.925 | 0.046 |
ch_occupassocmed: none | 0.825 | 0.384 | 0.283 | 0.094 | 0.103 | 0.196 | 0.107 | <0.001 | 0.560 | 0.100 | 0.444 | 0.380 | 0.418 | 0.039 | <0.001 | 0.031 | 0.454 | 0.010 |
ch_occupassocmed: partial | 0.453 | 0.128 | 0.198 | 0.358 | 0.109 | 0.019 | 0.325 | 0.518 | 0.724 | 0.001 | 0.082 | 0.964 | 0.788 | 0.540 | 0.072 | 0.005 | 0.788 | 0.511 |
ch_domicilevillage | 0.973 | 0.859 | 0.656 | 0.219 | 0.704 | 0.940 | 0.473 | 0.908 | 0.937 | 0.295 | 0.056 | 0.364 | 0.051 | 0.394 | 0.952 | 0.286 | 0.716 | 0.207 |
ch_sexmale | 0.112 | 0.987 | 0.969 | 0.003 | 0.923 | 0.571 | 0.407 | 0.203 | 0.184 | 0.371 | 0.010 | 0.841 | 0.122 | 0.004 | 0.004 | <0.001 | 0.370 | 0.174 |
Factor Loadings | |||||
---|---|---|---|---|---|
Item (Variable) | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 |
q_ht | 0.866 | ||||
q_af | 0.522 | ||||
q_hf | 0.700 | ||||
q_stroke | 0.738 | ||||
q_death | 0.724 | ||||
q_obes | 0.720 | ||||
q_t2dm | 0.863 | ||||
q_lipid | 0.743 | ||||
q_hemat | 0.504 | ||||
q_rheum | 0.691 | ||||
q_brcan | 0.773 | ||||
q_cogn | 0.986 | ||||
q_kidnsto | 0.961 | ||||
q_osteo | |||||
q_depr | 0.356 | 0.452 | |||
q_ckd | 0.400 | 0.359 | |||
q_stomcanc | 0.304 | ||||
q_athero | 0.372 | ||||
Internal consistency—according to the conservative approach | |||||
Factor | Items | Number of items | Cronbach’s α | ||
1 | q_ht, q_af, q_hf, q_stroke, q_athero, q_death | 6 | 0.841 | ||
2 | q_obes, q_t2dm, q_lipid | 3 | 0.829 | ||
3 | q_hemat, q_rheum, q_brcan | 3 | 0.824 | ||
4 | q_cogn | 1 | - | ||
5 | q_kidnsto | 1 | - | ||
Internal consistency—according to the pragmatic approach | |||||
Factor | Items | Number of items | Cronbach’s α | ||
1 | q_th, q_af, q_hf, q_stroke, q_ckd, q_stomcanc, q_athero, q_death | 8 | 0.862 | ||
2 | q_obes, q_t2dm, q_lipid | 3 | 0.829 | ||
3 | q_osteo, q_hemat, q_rheum, q_brcan | 4 | 0.819 | ||
4 | q_depr, q_cogn | 2 | 0.792 | ||
5 | q_kidnsto | 1 | - | ||
Diagnostics | |||||
TLI = 0.9063, RMSEA: 0.0867 (95% CI: 0.0791–0.0947, confidence = 0.900) | |||||
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | |
SS loadings | 3.086 | 2.055 | 1.702 | 1.327 | 1.243 |
Proportion variance | 0.171 | 0.114 | 0.095 | 0.074 | 0.069 |
Cumulative variance | 0.171 | 0.286 | 0.380 | 0.454 | 0.523 |
Factorization According to the ‘Pragmatic Approach’ (See Section 2.4 and/or Table 4) | |||||||
Factor 1: q_ht + q_af + q_hf + q_stroke + q_ckd + q_stomcanc + q_athero + q_death | |||||||
Factor 2: q_obes + q_t2dm + q_lipid | |||||||
Factor 3: q_osteo + q_hemat + q_rheum + q_brcan | |||||||
Factor 4: q_depr + q_cogn | |||||||
Diagnostics | |||||||
CFI | TLI | RMSEA | SRMR | χ2 | df | p | |
0.990 | 0.988 | 0.076 | 0.060 | 545.53 | 113 | <0.001 | |
Standardized loadings (λ) | |||||||
Factor | Item | λ | λ SE | z | p | λ −95% CI | λ 95% CI |
1 | q_ht | 0.720 | 0.032 | 22.50 | <0.001 | 0.658 | 0.783 |
1 | q_af | 0.751 | 0.021 | 35.20 | <0.001 | 0.709 | 0.793 |
1 | q_hf | 0.772 | 0.020 | 37.80 | <0.001 | 0.732 | 0.812 |
1 | q_stroke | 0.783 | 0.019 | 42.00 | <0.001 | 0.747 | 0.820 |
1 | q_ckd | 0.747 | 0.023 | 32.20 | <0.001 | 0.702 | 0.793 |
1 | q_stomcanc | 0.718 | 0.020 | 36.60 | <0.001 | 0.679 | 0.756 |
1 | q_athero | 0.792 | 0.020 | 39.20 | <0.001 | 0.753 | 0.832 |
1 | q_death | 0.695 | 0.027 | 25.80 | <0.001 | 0.642 | 0.748 |
2 | q_obes | 0.798 | 0.019 | 41.70 | <0.001 | 0.760 | 0.835 |
2 | q_t2dm | 0.877 | 0.013 | 66.10 | <0.001 | 0.851 | 0.903 |
2 | q_lipid | 0.830 | 0.017 | 48.90 | <0.001 | 0.797 | 0.863 |
3 | q_osteo | 0.776 | 0.020 | 38.80 | <0.001 | 0.737 | 0.815 |
3 | q_hemat | 0.742 | 0.020 | 36.80 | <0.001 | 0.703 | 0.782 |
3 | q_rheum | 0.798 | 0.015 | 53.80 | <0.001 | 0.769 | 0.827 |
3 | q_brcan | 0.824 | 0.014 | 57.70 | <0.001 | 0.796 | 0.851 |
4 | q_depr | 0.849 | 0.015 | 56.10 | <0.001 | 0.820 | 0.879 |
4 | q_cogn | 0.849 | 0.015 | 56.10 | <0.001 | 0.819 | 0.878 |
Ten largest modification indices (Mis) | |||||||
lhs | op | rhs | MI | SEPC | |||
F3 | =~ | q_stomcanc | 90.70 | −0.498 | |||
F1 | =~ | q_osteo | 85.17 | −0.507 | |||
F4 | =~ | q_stomcanc | 63.36 | −0.505 | |||
q_af | ~~ | q_osteo | 48.44 | −0.469 | |||
F4 | =~ | q_osteo | 47.73 | −0.667 | |||
F3 | =~ | q_ht | 45.65 | 0.492 | |||
q_hemat | ~~ | q_rheum | 44.28 | −0.395 | |||
F4 | =~ | q_ht | 39.18 | 0.558 | |||
q_hf | ~~ | q_stroke | 38.72 | −0.418 | |||
q_stomcanc | ~~ | q_brcan | 36.75 | −0.419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surma, S.; Lewandowski, Ł.; Momot, K.; Sobierajski, T.; Lewek, J.; Okopień, B.; Banach, M. Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks. Nutrients 2025, 17, 2728. https://doi.org/10.3390/nu17172728
Surma S, Lewandowski Ł, Momot K, Sobierajski T, Lewek J, Okopień B, Banach M. Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks. Nutrients. 2025; 17(17):2728. https://doi.org/10.3390/nu17172728
Chicago/Turabian StyleSurma, Stanisław, Łukasz Lewandowski, Karol Momot, Tomasz Sobierajski, Joanna Lewek, Bogusław Okopień, and Maciej Banach. 2025. "Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks" Nutrients 17, no. 17: 2728. https://doi.org/10.3390/nu17172728
APA StyleSurma, S., Lewandowski, Ł., Momot, K., Sobierajski, T., Lewek, J., Okopień, B., & Banach, M. (2025). Mapping the Cognitive Architecture of Health Beliefs: A Multivariate Conditional Network of Perceived Salt-Related Disease Risks. Nutrients, 17(17), 2728. https://doi.org/10.3390/nu17172728