Effects of Paprika Xanthophyll Intake on Endurance and Cognitive Function in College Students: A Crossover Randomized Controlled Trial
Highlights
- Paprika xanthophyll (PX) intake improved endurance indicators like exercise efficiency without increasing maximum oxygen uptake.
- The PX group demonstrated significant improvements in cognitive tests, suggesting the potential for PX to enhance executive function.
- The study suggests that these effects are due to a physiological mechanism that enhances oxygen delivery quality by optimizing microcirculation, rather than increasing the total quantity of oxygen.
- This research presents a new nutritional strategy that improves both physical endurance and cognitive function, a key difference from traditional training-based approaches.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Cognitive Task
2.4. Data Analysis and Statistical Processing
3. Results
3.1. Incremental Load Test
3.2. Constant Load Test
3.3. Cognitive Function Test
4. Discussion
4.1. Mechanisms of Endurance Performance Enhancement by PX Intake
4.2. Effects on Cognitive Function and Quality of DO2
4.3. Novelty of This Study
4.4. Limitations and Strengths
4.5. Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DO2 | Oxygen delivery |
VO2 max | Maximal oxygen uptake |
AT | Anaerobic threshold |
EE | Exercise efficiency |
RBC | Red blood cell |
PX | Paprika xanthophyll |
VT | Ventilatory threshold |
CON | Control |
TMT-B | Trail Making Test Type B |
ST | New Stroop test Ⅱ |
ST IR Ⅰ | Stroop test interference rate I |
ST IR Ⅱ | Stroop test interference rate Ⅱ |
VO2 | Oxygen uptake |
VCO2 | Carbon dioxide output |
RER | Respiratory exchange ratio |
HR | Heart rate |
VE | Minute ventilation |
PETCO2 | End-tidal pressure of carbon dioxide |
PETO2 | End-tidal pressure of oxygen |
GE | Gross efficiency |
SD | Standard deviation |
ERO2 | Oxygen extraction ratio |
VO2 peak | Peak oxygen uptake |
SV | Stroke volume |
CaO2 | Arterial blood oxygen content |
CO | Cardiac output |
DLPFC | Dorsolateral prefrontal cortex |
References
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Carter, H. The Effect of Endurance Training on Parameters of Aerobic Fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
- Corrons, J.L.V.; Casafont, L.B.; Frasnedo, E.F. Concise review: How do red blood cells born, live, and die? Ann. Hematol. 2021, 100, 2425–2433. [Google Scholar] [CrossRef]
- Mohandas, N.; Gallagher, P.G. Red cell membrane: Past, present, and future. Blood 2008, 112, 3939–3948. [Google Scholar] [CrossRef]
- Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef]
- Arunkumar, R.; Gorusupudi, A.; Bernstein, P.S. The macular carotenoids: A biochemical overview. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158617. [Google Scholar] [CrossRef] [PubMed]
- Donoso, A.; González-Durán, J.; Muñoz, A.A.; González, P.A.; Agurto-Muñoz, C. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacol. Res. 2021, 166, 105479. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Hornero-Mendez, D. Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. J. Agric. Food Chem. 1993, 41, 1616–1620. [Google Scholar] [CrossRef]
- Nishino, A.; Yasui, H.; Maoka, T. Reaction of Paprika Carotenoids, Capsanthin and Capsorubin, with Reactive Oxygen Species. J. Agric. Food Chem. 2016, 64, 4786–4792. [Google Scholar] [CrossRef] [PubMed]
- Nishino, A.; Ichihara, T.; Takaha, T.; Kuriki, T.; Nihei, H.; Kawamoto, K.; Yasui, H.; Maoka, T. Accumulation of Paprika Carotenoids in Human Plasma and Erythrocytes. J. Oleo Sci. 2015, 64, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Matsuda, T.; Ichihara, T.; Sakamaki-Sunaga, M.M. Effects of orally ingested paprika xanthophylls on respiratory metabolism during endurance exercise: Study protocol for an interventional randomised controlled trial. Health Sci. J. 2020, 14, 1–5. [Google Scholar] [CrossRef]
- Ichihara, T.; Nishino, A.; Takaha, T.; Kuriki, T.; Nihei, H.; Yasui, H.; Maoka, T.; Kawamoto, K. Effect of paprika xanthophyll supplementation on oxygen uptake in athletes: A randomized, double-blind, placebo-controlled study. J. Phys. Fit. Sports Med. 2018, 7, 247–252. [Google Scholar] [CrossRef]
- Niendam, T.A.; Laird, A.R.; Ray, K.L.; Dean, Y.M.; Glahn, D.C.; Carter, C.S. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. Behav. Neurosci. 2012, 12, 241–268. [Google Scholar] [CrossRef] [PubMed]
- Ochi, G.; Kanazawa, Y.; Hyodo, K.; Suwabe, K.; Shimizu, T.; Fukuie, T.; Byun, K.; Soya, H. Hypoxia-induced lowered executive function depends on arterial oxygen desaturation. J. Physiol. Sci. 2018, 68, 847–853. [Google Scholar] [CrossRef]
- Turner, C.E.; Barker-Collo, S.L.; Connell, C.J.; Gant, N. Acute hypoxic gas breathing severely impairs cognition and task learning in humans. Physiol. Behav. 2015, 142, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.; Bloomfield, P.M.; Gant, N. The effect of acute normobaric hyperoxia on cognition: A systematic review, meta-analysis and meta-regression. Physiol. Behav. 2023, 267, 114208. [Google Scholar] [CrossRef]
- Kujawski, S.; Słomko, J.; Morten, K.; Murovska, M.; Buszko, K.; Newton, J.; Zalewski, P. Autonomic and Cognitive Function Response to Normobaric Hyperoxia Exposure in Healthy Subjects. Prelim. Study. Med. 2020, 56, 172. [Google Scholar] [CrossRef]
- Gottfried, I.; Schottlender, N.; Ashery, U. Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement. Biomolecules 2021, 11. [Google Scholar] [CrossRef]
- Shirai, A.; Wadazumi, T. Effect of Paprika Xanthophyll Supplementation on Cognitive Improvement in a Multitasking Exercise: A Pilot Study for Middle-Aged and Older Adults. Healthcare 2022, 10, 81. [Google Scholar] [CrossRef]
- Kim, K.J.; Rivas, E.; Prejean, B.; Frisco, D.; Young, M.; Downs, M. Novel Computerized Method for Automated Determination of Ventilatory Threshold and Respiratory Compensation Point. Front. Physiol. 2021, 12, 782167. [Google Scholar] [CrossRef]
- Song, Y.; Hakoda, Y. An fMRI study of the functional mechanisms of Stroop/reverse-Stroop effects. Behav. Brain Res. 2015, 290, 187–196. [Google Scholar] [CrossRef]
- Sanchez-Cubillo, I.; Perianez, J.A.; Adrover-Roig, D.; Rodriguez-Sanchez, J.M.; Rios-Lago, M.; Tirapu, J.; Barcelo, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef]
- Anselmi, F.; Cavigli, L.; Pagliaro, A.; Valente, S.; Valentini, F.; Cameli, M.; Focardi, M.; Mochi, N.; Dendale, P.; Hansen, D.; et al. The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. Scand. J. Med. Sci. Sports 2021, 31, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Hopker, J.; Coleman, D.; Passfield, L. Changes in Cycling Efficiency during a Competitive Season. Med. Sci. Sports Exerc. 2009, 41, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Wagner, P.D. Determinants of maximal oxygen transport and utilization. Annu. Rev. Physiol. 1996, 58, 21–50. [Google Scholar] [CrossRef]
- Pittman, R.N. Oxygen gradients in the microcirculation. Acta Physiol. 2011, 202, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Damato, E.G.; Flak, T.A.; Mayes, R.S.; Strohl, K.P.; Ziganti, A.M.; Abdollahifar, A.; Flask, C.A.; LaManna, J.C.; Decker, M.J. Neurovascular and cortical responses to hyperoxia: Enhanced cognition and electroencephalographic activity despite reduced perfusion. J. Physiol. 2020, 598, 3941–3956. [Google Scholar] [CrossRef]
- SALTIN, B. Physiological effects of physical conditioning. Med. Sci. Sports Exerc. 1969, 1, 50–56. [Google Scholar] [CrossRef]
- Pittman, R.N. Oxygen Transport in the Microcirculation and Its Regulation. Microcirculation 2013, 20, 117–137. [Google Scholar] [CrossRef]
- Faulhaber, M.; Gröbner, K.; Rausch, L.; Gatterer, H.; Menz, V. Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 7573. [Google Scholar] [CrossRef]
- Roth, G.; Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 2005, 9, 250–257. [Google Scholar] [CrossRef]
- Mehagnoul-Schipper, D.J.; Van Der Kallen, B.F.W.; Colier, W.N.J.M.; Van Der Sluijs, M.C.; Van Erning, L.J.T.O.; Thijssen, H.O.M.; Oeseburg, B.; Hoefnagels, W.H.L.; Jansen, R.W.M.M. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Human Brain Mapp. 2002, 16, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Shibuya-Tayoshi, S.; Sumitani, S.; Kikuchi, K.; Tanaka, T.; Tayoshi, S.; Ueno, S.; Ohmori, T. Activation of the prefrontal cortex during the Trail-Making Test detected with multichannel near-infrared spectroscopy. Psychiatry Clin. Neurosci. 2007, 61, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Nouchi, R.; Suiko, T.; Kimura, E.; Takenaka, H.; Murakoshi, M.; Uchiyama, A.; Aono, M.; Kawashima, R. Effects of Lutein and Astaxanthin Intake on the Improvement of Cognitive Functions among Healthy Adults: A Systematic Review of Randomized Controlled Trials. Nutrients 2020, 12, 617. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Grove, P.M. Use of Stroop Test for Sports Psychology Study: Cross-Over Design Research. Front. Psychol. 2020, 11, 614038. [Google Scholar] [CrossRef]
- Hu, M.; Zeng, N.; Gu, Z.; Zheng, Y.; Xu, K.; Xue, L.; Leng, L.; Lu, X.; Shen, Y.; Huang, J. Short-Term High-Intensity Interval Exercise Promotes Motor Cortex Plasticity and Executive Function in Sedentary Females. Front. Hum. Neurosci. 2021, 15, 620958. [Google Scholar] [CrossRef]
- Watanabe, M.; Hakoda, Y.; Matsumoto, A. Group Version of the Stroop and Reverse-Stroop Test: An Asymmetric developmental trait in two kinds of interference. Kyusyu Univ. Psychol. Res. 2011, 12, 41–50. [Google Scholar] [CrossRef]
- Ishihara, T.; Drollette, E.S.; Ludyga, S.; Hillman, C.H.; Kamijo, K. The effects of acute aerobic exercise on executive function: A systematic review and meta-analysis of individual participant data. Neurosci. Biobehav. Rev. 2021, 128, 258–269. [Google Scholar] [CrossRef]
Age (Years) | Height (cm) | Weight (kg) | BMI | |
---|---|---|---|---|
Male (n = 18) | 20.7 ± 0.6 | 172.1 ± 7.4 | 66.5 ± 10.0 | 22.3 ± 2.9 |
Female (n = 3) | 20.3 ± 0.5 | 163.0 ± 6.0 | 47.9 ± 1.0 | 18.2 ± 1.3 |
Total (n = 21) | 20.7 ± 0.6 | 169.0 ± 7.2 | 62.7 ± 9.0 | 21.9 ± 2.7 |
Incremental Load Test (Range) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | PX | Main Effect: Group | Main Effect: Time | Interaction: Group × Time | |||||||||||
Mean ± SD | Mean ± SD | F | df | p | η2 | F | df | p | η2 | F | df | p | η2 | ||
VO2 (mL/kg/min) | R1 | 525.8 ± 66.6 | 518.8 ± 57.0 | 0.860 | 1, 20 | 0.365 | 0.041 | 213.226 | 1.023, 20.460 | 0.000 *** | 0.914 | 0.150 | 1.212, 24.249 | 0.750 | 0.007 |
R2 | 925.5 ± 191.6 | 909.9 ± 161.0 | |||||||||||||
R3 | 1911.5 ± 494.2 | 1894.6 ± 476.0 | |||||||||||||
VCO2 (mL/kg/min) | R1 | 443.6 ± 60.3 | 442.0 ± 50.9 | 0.367 | 1, 20 | 0.551 | 0.018 | 234.058 | 1.021, 20.413 | 0.000 *** | 0.921 | 0.749 | 1.238, 24.766 | 0.423 | 0.036 |
R2 | 834.2 ± 173.5 | 835.1 ± 156.2 | |||||||||||||
R3 | 2195.7 ± 579.6 | 2223.5 ± 568.3 | |||||||||||||
RER | R1 | 0.85 ± 0.06 | 0.85 ± 0.06 | 1.539 | 1, 20 | 0.229 | 0.071 | 286.683 | 1, 20 | 0.000 *** | 0.935 | 0.830 | 1, 20 | 0.443 | 0.040 |
R2 | 0.89 ± 0.06 | 0.91 ± 0.06 | |||||||||||||
R3 | 1.14 ± 0.09 | 1.16 ± 0.08 | |||||||||||||
HR (beat/min) | R1 | 88.5 ± 11.5 | 86.2 ± 9.3 | 1.408 | 1, 20 | 0.249 | 0.066 | 769.597 | 1.250, 25.010 | 0.000 *** | 0.975 | 1.633 | 1.468, 29.358 | 0.215 | 0.075 |
R2 | 108.7 ± 10.3 | 107.3 ± 10.3 | |||||||||||||
R3 | 159.0 ± 11.6 | 159.0 ± 11.9 | |||||||||||||
GE (%) | R1 | 11.8 ± 1.6 | 11.7 ± 1.6 | 4.738 | 1, 20 | 0.042 * | 0.192 | 828.067 | 1.404, 24.080 | 0.000 *** | 0.976 | 7.645 | 1.493, 29.866 | 0.004 ** | 0.277 |
R2 | 24.0 ± 1.7 a | 24.5 ± 1.7 | |||||||||||||
R3 | 26.9 ± 1.7 a | 27.7 ± 1.4 |
Incremental Load Test (Point) | ||||||||
---|---|---|---|---|---|---|---|---|
VT Watt | ||||||||
CON | PX | Paired t-Test | ||||||
Mean | SD (±) | Mean | SD (±) | t | df | p | Cohen’s d | |
VO2 (mL/kg/min) | 1314.6 | 334.4 | 1377.3 | 316.0 | −2.179 | 20 | 0.041 * | −0.475 |
VCO2 (mL/kg/min) | 1258.8 | 321.1 | 1382 | 355.5 | −3.493 | 20 | 0.002 ** | −0.762 |
RER | 0.96 | 0.09 | 1.00 | 0.08 | −1.561 | 20 | 0.134 | −0.341 |
HR (beat/min) | 127.9 | 11.8 | 130.5 | 12.3 | −1.775 | 20 | 0.091 | −0.387 |
GE (%) | 26.8 | 2.2 | 27.5 | 2.0 | −1.508 | 20 | 0.147 | −0.329 |
Load (watt) | 124.1 | 34.8 | 134.6 | 34.7 | −5.911 | 20 | 0.000 *** | −1.290 |
VT watt (Data with the same watt based on PX’s VT) | ||||||||
CON | PX | Paired t-test | ||||||
Mean | SD (±) | Mean | SD (±) | t | df | p | cohen’s d | |
VO2 (mL/kg/min) | 1388.2 | 377.0 | 1377.3 | 316.0 | 0.321 | 20 | 0.751 | 0.07 |
VCO2 (mL/kg/min) | 1377.2 | 377.6 | 1382.0 | 355.5 | −0.132 | 20 | 0.896 | −0.029 |
RER | 0.99 | 0.08 | 1.00 | 0.08 | −0.133 | 20 | 0.896 | −0.029 |
HR (beat/min) | 133.6 | 13.0 | 130.5 | 12.3 | 2.298 | 20 | 0.032 * | 0.502 |
GE (%) | 27.6 | 2.2 | 27.5 | 2.0 | 0.181 | 20 | 0.858 | 0.04 |
Load (watt) | 134.5 | 34.7 | 134.6 | 34.7 | NA | |||
Peak | ||||||||
CON | PX | Paired t-test | ||||||
Mean | SD (±) | Mean | SD (±) | t | df | p | cohen’s d | |
VO2 (mL/kg/min) | 2404.4 | 633.4 | 2345.7 | 637 | 1.011 | 20 | 0.324 | 0.221 |
VCO2 (mL/kg/min) | 3101.9 | 823.9 | 3048.2 | 850.4 | 0.860 | 20 | 0.400 | 0.188 |
RER | 1.29 | 0.12 | 1.29 | 0.10 | −0.177 | 20 | 0.861 | −0.039 |
HR (beat/min) | 177.1 | 13.5 | 178.5 | 12.9 | −1.191 | 20 | 0.248 | −0.260 |
GE (%) | 25.9 | 2.2 | 27.6 | 1.90 | −2.793 | 20 | 0.011 * | −0.685 |
Load (watt) | 233.5 | 57.2 | 243.1 | 60.9 | −3.137 | 20 | 0.005 ** | −0.610 |
Constant Load Test | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (min) | CON | PX | Main Effect: Group | Main Effect: Time | Interaction: Group × Time | ||||||||||
Mean ± SD | Mean ± SD | F | df | p | η2 | F | df | p | η2 | F | df | p | η2 | ||
VO2 (mL/kg/min) | 5 | 1138.9 ± 275.0 a | 1104.5 ± 268.6 | 2.905 | 1, 20 | 0.104 | 0.127 | 86.073 | 1.58, 31.55 | 0.001 *** | 0.811 | 3.304 | 2.89, 57.88 | 0.028 * | 0.142 |
10 | 1243.5 ± 313.6 a | 1201.9 ± 300.7 | |||||||||||||
15 | 1246.4 ± 305.1 a | 1208.9 ± 301.4 | |||||||||||||
20 | 1248.2 ± 306.4 | 1222.4 ± 306.2 | |||||||||||||
25 | 1255.1 ± 310.4 | 1233.9 ± 312.7 | |||||||||||||
30 | 1260.5 ± 310.3 | 1245.1 ± 308.8 | |||||||||||||
VCO2 (mL/kg/min) | 5 | 1089.8 ± 270.1 a | 1049.6 ± 258.8 | 3.202 | 1, 20 | 0.089 | 0.138 | 88.452 | 1.62, 32.39 | 0.001 *** | 0.816 | 3.020 | 5, 100 | 0.014 * | 0.131 |
10 | 1246.7 ± 321.7 a | 1197.2 ± 305.7 | |||||||||||||
15 | 1228.4 ± 312.6 a | 1187.2 ± 302.6 | |||||||||||||
20 | 1217.6 ± 312.6 | 1185.6 ± 307.4 | |||||||||||||
25 | 1217.3 ± 315.1 | 1193.9 ± 315.3 | |||||||||||||
30 | 1206.9 ± 309.5 | 1194.7 ± 314.2 | |||||||||||||
RER | 5 | 0.95 ± 0.05 | 0.94 ± 0.04 | 0.059 | 1, 20 | 0.810 | 0.003 | 42.627 | 1.80, 36.09 | 0.001 *** | 0.681 | 0.549 | 3.14, 62.77 | 0.658 | 0.027 |
10 | 1.00 ± 0.04 | 1.00 ± 0.04 | |||||||||||||
15 | 0.98 ± 0.04 | 0.98 ± 0.03 | |||||||||||||
20 | 0.97 ± 0.04 | 0.97 ± 0.03 | |||||||||||||
25 | 0.97 ± 0.04 | 0.97 ± 0.04 | |||||||||||||
30 | 0.95 ± 0.04 | 0.96 ± 0.04 | |||||||||||||
HR (beat/min) | 5 | 119.1 ± 10.8 a | 115.7 ± 9.3 | 6.382 | 1, 20 | 0.020 * | .242 | 134.169 | 1.30, 25.94 | 0.001 *** | 0.870 | 1.586 | 2.34, 46.83 | 0.213 | 0.073 |
10 | 128.4 ± 13.2 a | 123.2 ± 10.4 | |||||||||||||
15 | 131.7 ± 14.3 a | 126.8 ± 11.2 | |||||||||||||
20 | 133.9 ± 15.1 a | 128.3 ± 11.8 | |||||||||||||
25 | 135.6 ± 15.7 a | 130.3 ± 12.4 | |||||||||||||
30 | 137.1 ± 15.9 a | 132.0 ± 12.7 | |||||||||||||
GE (%) | 5 | 22.7 ± 1.9 a | 23.4 ± 1.5 | 5.463 | 1, 20 | 0.030 * | 0.215 | 6.086 | 1.39, 27.86 | 0.012 * | 0.233 | 2.286 | 2.81, 56.24 | 0.092 | 0.103 |
10 | 21.8 ± 1.6 a | 22.5 ± 1.4 | |||||||||||||
15 | 21.8 ± 1.8 a | 22.5 ± 1.5 | |||||||||||||
20 | 21.8 ± 1.8 | 22.3 ± 1.6 | |||||||||||||
25 | 21.7 ± 1.8 | 22.2 ± 1.4 | |||||||||||||
30 | 21.8 ± 2.0 | 22.1 ± 2.0 | |||||||||||||
Cognitive test | |||||||||||||||
Time | CON | PX | Main Effect: Group | Main Effect: Time | Interaction: Group x Time | ||||||||||
Mean ± SD | Mean ± SD | F | df | p | η2 | F | df | p | η2 | F | df | p | η2 | ||
TMT-B (s) | Pre | 31.1 ± 7.7 | 29.7 ± 4.7 b | 2.336 | 1, 20 | 0.142 | 0.105 | 3.879 | 1, 20 | 0.063 | 0.162 | 0.025 | 1, 20 | 0.877 | 0.001 |
Post | 30.1 ± 5.3 | 28.6 ± 3.7 | |||||||||||||
ST IR I | Pre | 12.6 ± 7.9 | 13 ± 7.1 b | 0.056 | 1, 20 | 0.816 | 0.003 | 6.615 | 1, 20 | 0.018 * | 0.249 | 0.483 | 1, 20 | 0.495 | 0.024 |
Post | 9.6 ± 4.4 | 8.7 ± 6.8 | |||||||||||||
ST IR II | Pre | 7.8 ± 6.4 | 7.7 ± 8.8 | 1.120 | 1, 20 | 0.303 | 0.053 | 0.307 | 1, 20 | 0.585 | 0.015 | 0.315 | 1, 20 | 0.581 | 0.016 |
Post | 6.0 ± 6.7 | 8.3 ± 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Wadazumi, T. Effects of Paprika Xanthophyll Intake on Endurance and Cognitive Function in College Students: A Crossover Randomized Controlled Trial. Nutrients 2025, 17, 2780. https://doi.org/10.3390/nu17172780
Kim D, Wadazumi T. Effects of Paprika Xanthophyll Intake on Endurance and Cognitive Function in College Students: A Crossover Randomized Controlled Trial. Nutrients. 2025; 17(17):2780. https://doi.org/10.3390/nu17172780
Chicago/Turabian StyleKim, Donghyun, and Tsuyoshi Wadazumi. 2025. "Effects of Paprika Xanthophyll Intake on Endurance and Cognitive Function in College Students: A Crossover Randomized Controlled Trial" Nutrients 17, no. 17: 2780. https://doi.org/10.3390/nu17172780
APA StyleKim, D., & Wadazumi, T. (2025). Effects of Paprika Xanthophyll Intake on Endurance and Cognitive Function in College Students: A Crossover Randomized Controlled Trial. Nutrients, 17(17), 2780. https://doi.org/10.3390/nu17172780