Association Between Dietary Polyphenol Intake and Semen Quality: Insights from the FERTINUTS Study
Highlights
- This study examined associations between dietary polyphenol subclasses and semen quality parameters in healthy young men.
- Higher intake of total polyphenols, flavonoids, and lignans was linked to fewer sperm head abnormalities, while it was also associated with more abnormalities in the sperm tail, though motility and vitality were unaffected.
- The results underscore the need for future studies with clinical reproductive outcomes to clarify implications for fertility.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Nutritional Data
2.3. Semen Quality Assessment
2.4. Blood Analysis and Anthropometric Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
BMI | Body Mass Index |
IQR | Interquartile Range |
LDL | Low-Density Lipoprotein |
VLDL | Very Low-Density Lipoprotein |
HDL | High-Density Lipoprotein |
E | Energy |
FE | Fat Energy |
TPI | Total Polyphenols Intake |
PA | Phenolic Acids |
OPP | Other Polyphenols |
DASH | Dietary Approaches to Stop Hypertension |
EGFR | Epidermal Growth Factor Receptor |
References
- World Health Organization. Infertility Prevalence Estimates; World Health Organization: Geneva, Switzerland, 2021; ISBN 9789240068315. [Google Scholar]
- Caroppo, E.; Colpi, G.M. Male Infertility: A Review of Key Papers Appearing in the Reproductive Medicine and Andrology Section of the Journal of Clinical Medicine. J. Clin. Med. 2023, 12, 2366. [Google Scholar] [CrossRef]
- Balawender, K.; Orkisz, S. The Impact of Selected Modifiable Lifestyle Factors on Male Fertility in the Modern World. Cent. Eur. J. Urol. 2020, 73, 563–568. [Google Scholar] [CrossRef]
- Kamiński, P.; Baszyński, J.; Jerzak, I.; Kavanagh, B.P.; Nowacka-Chiari, E.; Polanin, M.; Szymański, M.; Woźniak, A.; Kozera, W. External and Genetic Conditions Determining Male Infertility. Int. J. Mol. Sci. 2020, 21, 5274. [Google Scholar] [CrossRef]
- Tesarik, J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int. J. Mol. Sci. 2025, 26, 2797. [Google Scholar] [CrossRef]
- Cao, L.L.; Chang, J.J.; Wang, S.J.; Li, Y.H.; Yuan, M.Y.; Wang, G.F.; Su, P.Y. The Effect of Healthy Dietary Patterns on Male Semen Quality: A Systematic Review and Meta-Analysis. Asian J. Androl. 2022, 24, 549–557. [Google Scholar] [CrossRef]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Douka, L.; Mastrominas, M.; Yiannakouris, N. Association Between Adherence to the Mediterranean Diet and Semen Quality Parameters in Male Partners of Couples Attempting Fertility. Hum. Reprod. 2017, 32, 215–222. [Google Scholar] [CrossRef]
- Petre, G.C.; Francini-Pesenti, F.; Di Nisio, A.; De Toni, L.; Grande, G.; Mingardi, A.; Cusmano, A.; Spinella, P.; Ferlin, A.; Garolla, A. Observational Cross-Sectional Study on Mediterranean Diet and Sperm Parameters. Nutrients 2023, 15, 4989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, Z.; Granato, D. Polyphenols in Foods: Classification, Methods of Identification, and Nutritional Aspects in Human Health, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 98, ISBN 9780128225066. [Google Scholar]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern Vision of the Mediterranean Diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [CrossRef] [PubMed]
- Kiyimba, T.; Yiga, P.; Bamuwamye, M.; Ogwok, P.; Van der Schueren, B.; Matthys, C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Castellana, F.; Lisco, G.; Corbo, F.; Crupi, P.; Sardone, R.; Panza, F.; Lozupone, M.; Rondanelli, M.; Clodoveo, M.L. Dietary Intake of Polyphenols and All-Cause Mortality: A Systematic Review with Meta-Analysis. Metabolites 2024, 14, 404. [Google Scholar] [CrossRef]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef]
- Zubair, M.; Partyka, A.; Martyniuk, C.J. Polyphenols as a Strategy for Improving Male Reproductive System. Mol. Biol. Rep. 2025, 52, 132. [Google Scholar] [CrossRef]
- Biagi, M.; Noto, D.; Corsini, M.; Baini, G.; Cerretani, D.; Cappellucci, G.; Moretti, E. Antioxidant Effect of the Castanea Sativa Mill. Leaf Extract on Oxidative Stress Induced upon Human Spermatozoa. Oxid. Med. Cell. Longev. 2019, 2019, 8926075. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Fratezzi, I.; Kellow, N.J. Nut Consumption and Fertility: A Systematic Review and Meta-Analysis. Adv. Nutr. 2024, 15, 100153. [Google Scholar] [CrossRef]
- Ferramosca, A.; Zara, V. Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. Int. J. Mol. Sci. 2022, 23, 2542. [Google Scholar] [CrossRef] [PubMed]
- Ranawat, P.; Pathak, C.M.; Khanduja, K.L. A New Perspective on the Quercetin Paradox in Male Reproductive Dysfunction. Phytother. Res. 2013, 27, 802–810. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Williamson, G. Bioavailability of Food Polyphenols: Current State of Knowledge. Annu. Rev. Food Sci. Technol. 2025, 16, 315–332. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Moraleda, R.; Giardina, S.; Anton, E.; Blanco, J.; Salas-Salvadó, J.; Bulló, M. Effect of Nut Consumption on Semen Quality and Functionality in Healthy Men Consuming a Western-Style Diet: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2018, 108, 953–962. [Google Scholar] [CrossRef]
- Mataix, J. Tabla de Composición de Alimentos 4a Edición Corregida y Aumentada, 4th ed.; Editorial Universidad de Granada: Granada, Spain, 2003; ISBN 8433830503. [Google Scholar]
- WHO World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Bucci, D.; Spinaci, M.; Mislei, B.; Gadani, B.; Rizzato, G.; Love, C.C.; Tamanini, C.; Galeati, G.; Mari, G. Epigallocatechin-3-Gallate (EGCG) and Green Tea Polyphenols Do Not Improve Stallion Semen Parameters during Cooling at 4 °C. Reprod. Domest. Anim. 2017, 52, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Akomolafe, S.F.; Oyeleye, S.I.; Oboh, G. Effect of Cashew (Anacardium occidentale L.) Nut-Supplemented Diet on Steroidogenic Enzymes, Hormonal and Oxidative Imbalances, and Sperm Parameters in Cisplatin-Induced Reproductive Toxicity in Male Rats. J. Food Biochem. 2022, 46, e14100. [Google Scholar] [CrossRef] [PubMed]
- Vizzari, F.; Massányi, M.; Knížatová, N.; Corino, C.; Rossi, R.; Ondruška, Ľ.; Tirpák, F.; Halo, M.; Massányi, P. Effects of Dietary Plant Polyphenols and Seaweed Extract Mixture on Male-Rabbit Semen: Quality Traits and Antioxidant Markers. Saudi J. Biol. Sci. 2021, 28, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Illiano, E.; Trama, F.; Zucchi, A.; Iannitti, R.G.; Fioretti, B.; Costantini, E. Resveratrol-Based Multivitamin Supplement Increases Sperm Concentration and Motility in Idiopathic Male Infertility: A Pilot Clinical Study. J. Clin. Med. 2020, 9, 4017. [Google Scholar] [CrossRef]
- Robbins, W.; Kim, H.; Houman, J.; Lee, G.-W. Randomized Clinical Trial: Effect of Walnuts on Semen Parameters and Male Fertility (P18-042-19). Curr. Dev. Nutr. 2019, 3, nzz039.P18-042-19. [Google Scholar] [CrossRef]
- Yuan, G.; Liu, Y.; Liu, G.; Wei, L.; Wen, Y.; Huang, S.; Guo, Y.; Zou, F.; Cheng, J. Associations between Semen Phytoestrogens Concentrations and Semen Quality in Chinese Men. Environ. Int. 2019, 129, 136–144. [Google Scholar] [CrossRef]
- Mongioì, L.M.; Perelli, S.; Condorelli, R.A.; Barbagallo, F.; Crafa, A.; Cannarella, R.; La Vignera, S.; Calogero, A.E. The Role of Resveratrol in Human Male Fertility. Molecules 2021, 26, 2495. [Google Scholar] [CrossRef]
- Cannarella, R.; Mehta, P.; Garofalo, V.; Kaiyal, R.S.; Kuroda, S.; Calogero, A.E.; Rajender, S. Resveratrol and Male Infertility: A Systematic Review of the Literature. Minerva Endocrinol. 2024, 4, 1122. [Google Scholar] [CrossRef]
- Mitra, S.; Bhattacharyya, S.; Ray, S.; Saha, R.; Ghosh, P.; Rauth, S.; Mandal, S.; Banerjee, S.; Murmu, N. Resveratrol Alleviates Cadmium-Induced Damage and Overexpression of Epidermal Growth Factor Receptor and Its Downstream Signaling Proteins in the Reproductive System of Male Swiss Albino Mice. J. Environ. Pathol. Toxicol. Oncol. Off. Organ. Int. Soc. Environ. Toxicol. Cancer 2016, 35, 73–90. [Google Scholar] [CrossRef]
Variables | Participants (n = 106) |
---|---|
General characteristics | |
Age (years) | 24.7 (4.7) |
Weight (kg) | 75.0 (10.7) |
BMI (kg/m2) | 23.8 (3.1) |
Waist circumference (cm) | 81.4 (8.1) |
Systolic blood pressure (mmHg) | 127.7 (11.6) |
Diastolic blood pressure (mmHg) | 72.4 (8.1) |
Dietary polyphenol intake | |
Total polyphenols intake (mg/day) | 404.7 [296.0–529.2] |
Flavonoids (mg/day) | 244.6 [149.2–356.0] |
Phenolic Acids (mg/day) | 93.0 [69.1–140.4] |
Stilbenes (mg/day) | 0.02 [0.0–0.2] |
Lignans (mg/day) | 0.3 [0.2–0.6] |
Other Polyphenols (mg/day) | 47.0 [25.0–75.5] |
Biochemical variables | |
Fasting plasma glucose (mg/dL) | 86 [82.3–92.8] |
Total cholesterol (mg/dL) | 168 [150.0–187.8] |
HDL-c (mg/dL) | 56 [50.0–64.8] |
LDL-c (mg/dL) | 95 [77.0–106.0] |
VLDL-c (mg/dL) | 13 [11.0–18.0] |
Triglycerides (mg/dL) | 66 [55.3–89.5] |
Fasting plasma insulin (mcUI/mL) | 5.5 [2.9–7.7] |
C-reactive protein (mg/dL) | 0.2 [0.2–0.2] |
Sperm parameters | |
pH | 8 [8.0–8.5] |
Volume (mL) | 3 [2.0–4.5] |
Total sperm (×106) | 72.1 [27.2–122.5] |
Sperm concentration (×106/mL) | 24.1 [10.9–42.0] |
Vitality (%) | 79.3 [72.70–84.7] |
Total motility (%) | 66.5 [48.2–74.8] |
Progressive motility (%) | 47.3 [29.2–57.5] |
Non-progressive motility (%) | 11.8 [8.2–15.5] |
Immotility (%) | 33.6 [25.2–50.9] |
Normal form (%) | 6.4 [5.2–7.9] |
Abnormality in the sperm head (%) | 53.8 [42.3–66.3] |
Abnormality in the mid-piece (%) | 11.4 [8.1–15.0] |
Abnormality in the principal piece (%) | 12.7 [5.0–29.1] |
Combined abnormality (%) | 8.2 [6.5–13.39] |
Nutrients intake | |
Total energy intake (kcal/d) | 2495.1 (613.6) |
Carbohydrate intake (% E) | 43.6 (6.5) |
Protein intake (% E) | 17.2 (3.4) |
Fat intake (% E) | 36.9 (6.2) |
Monounsaturated fatty acids (% FE) | 39.6 (6.8) |
Polyunsaturated fatty acids (% FE) | 12.2 (4.0) |
Saturated fatty acids (% FE) | 31.5 (6.2) |
Dietary fiber intake (g/d) | 21.5 (9.4) |
Alcohol intake (g/d) | 9.5 (15.1) |
Sperm Parameters | Total Polyphenols Intake | |||||
---|---|---|---|---|---|---|
Tertile 1 (n = 35) | Tertile 2 (n = 35) | Tertile 3 (n = 36) | P-trend | β coefficient (95% CI) | p-value | |
Total polyphenol intake (mg/day) | 260.82 [186.61–292.48] | 404.75 [356.19–449.33] | 671.75 [535.86–783.21] | |||
pH | Ref. | −0.001 (−0.009, 0.006) | 0.003 (−0.005, 0.012) | 0.37 | 0.005 (−0.010, 0.022) | 0.50 |
Volume (mL) | Ref. | −0.024 (−0.170, 0.122) | −0.065 (−0.224, 0.094) | 0.41 | −0.075 (−0.377, 0.226) | 0.62 |
Total sperm (×106) | Ref. | 0.077 (−0.199, 0.354) | 0.049 (−0.252, 0.351) | 0.41 | 0.310 (−0.257, 0.877) | 0.28 |
Sperm concentration (×106/mL) | Ref. | 0.074 (−0.187, 0.336) | 0.060 (−0.224, 0.345) | 0.72 | 0.326 (−0.209, 0.863) | 0.23 |
Vitality (%) | Ref. | 0.035 (−0.013, 0.084) | 0.025 (−0.027, 0.079) | 0.42 | 0.043 (−0.057, 0.145) | 0.40 |
Total motility (%) | Ref. | 0.114 (−0.030, 0.258) | −0.040 (−0.197, 0.117) | 0.45 | 0.002 (−0.302, 0.308) | 0.99 |
Progressive motility (%) | Ref. | 0.791 (−0.065, 1.647) | 0.224 (−0.707, 1.156) | 0.82 | 0.987 (−0.797, 2.772) | 0.28 |
Non-progressive motility (%) | Ref. | −0.154 (−0.718, 0.408) | 0.007 (−0.606, 0.620) | 0.92 | 0.059 (−1.102, 1.221) | 0.92 |
Immotility (%) | Ref. | −0.007 (−0.121 0.106) | 0.075 (−0.047, 0.199) | 0.19 | 0.069 (−0.166, 0.305) | 0.56 |
Normal form (%) | Ref. | 0.001 (−0.086, 0.088) | 0.075 (−0.019, 0.171) | 0.09 | 0.125 (−0.056, 0.306) | 0.18 |
Abnormality in the head (%) | Ref. | −0.047 (−0.111, 0.016) | −0.084 (−0.153, −0.014) | 0.02 | −0.159 (−0.290, −0.027) | 0.02 |
Abnormality in the mid-piece (%) | Ref. | 0.024 (−0.090, 0.140) | 0.054 (−0.070, 0.179) | 0.39 | 0.032 (−0.205, 0.270) | 0.788 |
Abnormality in the principal piece (%) | Ref. | 0.147 (−0.084, 0.379) | 0.375 (0.123, 0.627) | 0.004 | 0.651 (0.170, 1.132) | 0.01 |
Combined abnormality (%) | Ref. | −0.190 (−0.334, −0.047) | −0.088 (−0.244, 0.067) | 0.44 | −0.136 (−0.441, 0.168) | 0.38 |
Sperm parameters | Lignans | |||||
Tertiles | Tertile 1 (n = 37) | Tertile 2 (n = 34) | Tertile 3 (n = 35) | P-trend | β coefficient (95% CI) | p-value |
Lignan intake (mg/day) | 0.11 [0.09–0.16] | 0.31 [0.23–0.40] | 0.84 [0.61–1.12] | |||
pH | Ref. | −0.001 (−0.008, 0.007) | 0.003 (−0.005, 0.012) | 0.36 | 0.001 (−0.005, 0.006) | 0.80 |
Volume (mL) | Ref. | −0.100 (−0.247, 0.046) | −0.158 (−0.319, 0.003) | 0.08 | −0.056 (−0.161, 0.048) | 0.29 |
Total sperm (×106) | Ref. | −0.123 (−0.406, 0.159) | −0.082 (−0.392, 0.227) | 0.77 | −0.073 (−0.272, 0.125) | 0.47 |
Sperm concentration (×106/mL) | Ref. | 0.038 (−0.228, 0.306) | 0.111 (−0.182, 0.405) | 0.44 | 0.004 (−0.183, 0.193) | 0.96 |
Vitality (%) | Ref. | 0.017 (−0.033, 0.067) | 0.010 (−0.044, 0.065) | 0.44 | −0.005 (−0.040, 0.030) | 0.77 |
Total motility (%) | Ref. | 0.085 (−0.064, 0.236) | 0.060 (−0.105, 0.225) | 0.68 | 0.025 (−0.081, 0.132) | 0.63 |
Progressive motility (%) | Ref. | 0.443 (−0.444, 1.330) | 0.298 (−0.676, 1.272) | 0.74 | 0.269 (−0.355, 0.894) | 0.40 |
Non-progressive motility (%) | Ref. | 0.393 (−0.176, 0.963) | 0.413 (−0.211, 1.039) | 0.31 | 0.129 (−0.275, 0.534) | 0.53 |
Immotility (%) | Ref. | 0.010 (−0.106, 0.128) | −0.019 (−0.148, 0.109) | 0.68 | 0.003 (−0.078, 0.086) | 0.93 |
Normal form (%) | Ref. | 0.058 (−0.031, 0.149) | 0.025 (−0.073, 0.124) | 0.91 | −0.008 (−0.072, 0.056) | 0.80 |
Abnormality in the head (%) | Ref. | −0.030 (−0.096, 0.035) | −0.075 (−0.147, −0.003) | 0.04 | −0.042 (−0.088, 0.004) | 0.08 |
Abnormality in the mid-piece (%) | Ref. | −0.054 (−0.172, 0.062) | −0.019 (−0.148, 0.109) | 0.10 | −0.063 (−0.145, 0.018) | 0.13 |
Abnormality in the principal piece (%) | Ref. | 0.116 (−0.125, 0.359) | 0.277 (0.011, 0.543) | 0.04 | 0.162 (−0.008, 0.333) | 0.06 |
Combined abnormality (%) | Ref. | 0.008 (−0.141, 0.159) | 0.107 (−0.057, 0.272) | 0.15 | 0.056 (−0.050, 0.162) | 0.30 |
Sperm parameters | Stilbenes | |||||
Tertile 1 (n = 36) | Tertile 2 (n = 36) | Tertile 3 (n = 34) | P-trend | β coefficient (95% CI) | p-value | |
Stilbene intake (mg/day) | 0 [0–0.00001] | 0.02 [0–0.04] | 0.95 [0.22–2.56] | |||
pH | Ref. | −0.005 (−0.013, 0.001) | 0 (−0.009, 0.008) | 0.43 | −0.001 (−0.001, 0) | 0.18 |
Volume (ml) | Ref. | 0.189 (0.058, 0.321) | −0.004 (−0.156, 0.147) | 0.12 | 0.007 (−0.007, 0.022) | 0.30 |
Total sperm (×106) | Ref. | 0.184 (−0.071, 0.440) | −0.100 (−0.397, 0.195) | 0.12 | 0.003 (−0.024, 0.032) | 0.79 |
Sperm concentration (×106/mL) | Ref. | −0.022 (−0.270, 0.225) | −0.092 (−0.378, 0.194) | 0.52 | −0.004 (−0.031, 0.022) | 0.74 |
Vitality (%) | Ref. | −0.022 (−0.270, 0.225) | −0.092 (−0.378, 0.194) | 0.13 | −0.002 (−0.007, 0.002) | 0.36 |
Total motility (%) | Ref. | −0.036 (−0.175, 0.102) | −0.108 (−0.269, 0.052) | 0.21 | −0.007 (−0.022, 0.007) | 0.31 |
Progressive motility (%) | Ref. | −0.537 (−1.351, 0.276) | −0.717 (−1.659, 0.223) | 0.32 | −0.072 (−0.159, 0.014) | 0.10 |
Non-progressive motility (%) | Ref. | −0.311 (−0.833, 0.209) | 0.283 (−0.319, 0.886) | 0.08 | −0.003 (−0.060, 0.054) | 0.91 |
Immotility (%) | Ref. | −0.015 (−0.123, 0.093) | 0.045 (−0.079, 0.170) | 0.32 | 0.002 (−0.009, 0.013) | 0.72 |
Normal form (%) | Ref. | −0.044 (−0.128, 0.039) | −0.053 (−0.150, 0.042) | 0.50 | −0.006 (−0.015, 0.002) | 0.17 |
Abnormality in the head (%) | Ref. | −0.008 (−0.070, 0.053) | −0.038 (−0.109, 0.033) | 0.28 | −0.003 (−0.010, 0.003) | 0.31 |
Abnormality in the mid-piece (%) | Ref. | 0.004 (−0.103, 0.112) | 0.086 (−0.037, 0.211) | 0.12 | 0.004 (−0.010, 0.003) | 0.50 |
Abnormality in the principal piece (%) | Ref. | −0.019 (−0.248, 0.208) | 0.102 (−0.161, 0.366) | 0.32 | 0.008 (−0.010, 0.003) | 0.50 |
Combined abnormality (%) | Ref. | −0.010 (−0.146, 0.124) | 0.175 (0.018, 0.332) | 0.01 | 0.011 (−0.003, 0.026) | 0.14 |
Sperm parameters | Flavonoids | |||||
Tertile 1 (n = 35) | Tertile 2 (n = 35) | Tertile 3 (n = 36) | P-trend | β coefficient (95% CI) | p-value | |
Flavonoid intake (mg/day) | 124.56 [86.94–147.83] | 244.10 [213.67–283.93] | 412.56 [355.98–570.56] | |||
pH | Ref. | −0.001 (−0.008, 0.007) | 0.003 (−0.005, 0.011) | 0.37 | 0.002 (−0.008, 0.013) | 0.69 |
Volume (ml) | Ref. | 0.018 (−0.122, 0.158) | −0.003 (−0.145, 0.150) | 0.10 | −0.079 (−0.277, 0.117) | 0.42 |
Total sperm (×106) | Ref. | 0.201 (−0.059, 0.463) | 0.160 (−0.115, 0.436) | 0.32 | 0.189 (−0.182, 0.561) | 0.32 |
Sperm concentration (×106) | Ref. | 0.087 (−0.161, 0.337) | 0.084 (−0.179, 0.347) | 0.56 | 0.211 (−0.140, 0.562) | 0.24 |
Vitality (%) | Ref. | 0.023 (−0.023, 0.070) | 0.008 (−0.040, 0.058) | 0.82 | 0.003 (−0.063, 0.070) | 0.92 |
Total motility (%) | Ref. | 0.040 (−0.099, 0.181) | −0.044 (−0.192, 0.103) | 0.47 | −0.062 (−0.261, 0.137) | 0.54 |
Progressive motility (%) | Ref. | 0.619 (−0.204, 1.442) | 0.365 (−0.502, 1.233) | 0.50 | 0.516 (−0.655, 1.688) | 0.38 |
Non-progressive motility (%) | Ref. | −0.175 (−0.711, 0.361) | 0.058 (−0.506, 0.624) | 0.75 | 0 (−0.760, 0.761) | 0.10 |
Immotility (%) | Ref. | −0.001 (−0.109, 0.106) | 0.084 (−0.029, 0.198) | 0.11 | 0.082 (−0.071, 0.236) | 0.29 |
Normal form (%) | Ref. | 0.043 (−0.039, 0.126) | 0.088 (0.0, 0.175) | 0.049 | 0.091 (−0.027, 0.210) | 0.13 |
Abnormality in the head (%) | Ref. | −0.025 (−0.086, 0.034) | −0.078 (−0.142, −0.014) | 0.01 | −0.086 (−0.173, 0.001) | 0.05 |
Abnormality in the mid-piece (%) | Ref. | −0.031 (−0.139, 0.077) | 0.053 (−0.061, 0.168) | 0.28 | 0.007 (−0.147, 0.163) | 0.92 |
Abnormality in the principal piece (%) | Ref. | 0.098 (−0.124, 0.321) | 0.305 (0.069, 0.540) | 0.01 | 0.371 (0.053, 0.689) | 0.02 |
Combined abnormality (%) | Ref. | −0.124 (−0.264, 0.014) | −0.085 (−0.232, 0.062) | 0.34 | −0.129 (−0.328, 0.069) | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, H.; Mateu-Fabregat, J.; Benchohra, A.; Novau-Ferré, N.; Panisello, L.; Bulló, M. Association Between Dietary Polyphenol Intake and Semen Quality: Insights from the FERTINUTS Study. Nutrients 2025, 17, 2785. https://doi.org/10.3390/nu17172785
Mostafa H, Mateu-Fabregat J, Benchohra A, Novau-Ferré N, Panisello L, Bulló M. Association Between Dietary Polyphenol Intake and Semen Quality: Insights from the FERTINUTS Study. Nutrients. 2025; 17(17):2785. https://doi.org/10.3390/nu17172785
Chicago/Turabian StyleMostafa, Hamza, Javier Mateu-Fabregat, Asmae Benchohra, Nil Novau-Ferré, Laura Panisello, and Mònica Bulló. 2025. "Association Between Dietary Polyphenol Intake and Semen Quality: Insights from the FERTINUTS Study" Nutrients 17, no. 17: 2785. https://doi.org/10.3390/nu17172785
APA StyleMostafa, H., Mateu-Fabregat, J., Benchohra, A., Novau-Ferré, N., Panisello, L., & Bulló, M. (2025). Association Between Dietary Polyphenol Intake and Semen Quality: Insights from the FERTINUTS Study. Nutrients, 17(17), 2785. https://doi.org/10.3390/nu17172785