Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications
Abstract
1. Introduction
Objectives
2. Materials and Methods
3. Results
3.1. Chemotherapy-Induced Toxicity per System
3.2. The Role of Micronutrients in Chemotherapy-Induced Toxicity
3.3. Minerals and Trace Elements in Cardiac Injury
4. Discussion
4.1. Magnesium
4.1.1. Protective Role of Magnesium in Chemotherapy-Induced Nephrotoxicity
4.1.2. Protective Role of Magnesium in Chemotherapy-Induced Hepatotoxicity
4.1.3. Protective Role of Magnesium in Chemotherapy-Induced Cardiotoxicity
4.2. Selenium
4.2.1. Protective Role of Selenium in Chemotherapy-Induced Hepatotoxicity
4.2.2. Protective Role of Selenium in Chemotherapy-Induced Cardiotoxicity
4.2.3. Protective Role of Selenium in Chemotherapy-Induced Nephrotoxicity
4.3. Zinc
4.3.1. Protective Role of Zinc in Chemotherapy-Induced Hepatotoxicity
4.3.2. Protective Role of Zinc in Chemotherapy-Induced Cardiotoxicity
4.3.3. Protective Role of Zinc in Chemotherapy-Induced Nephrotoxicity
4.4. Vitamin D
4.4.1. Protective Role of Vitamin D in Chemotherapy-Induced Cardiotoxicity
4.4.2. Protective Role of Vitamin D in Chemotherapy-Induced Nephrotoxicity
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Famurewa, A.C.; George, M.Y.; Ukwubile, C.A.; Kumar, S.; Kamal, M.V.; Belle, V.S.; Othman, E.M.; Pai, S.R.K. Trace elements and metal nanoparticles: Mechanistic approaches to mitigating chemotherapy-induced toxicity—A review of literature evidence. BioMetals 2024, 37, 1325–1378. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Prabhune, N.M.; Prabhu, S. Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: Targeting the underpinning oxidative signaling pathways. J. Pharm. Pharmacol. 2025, 77, 1–17. [Google Scholar] [CrossRef]
- Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 2018, 37, 266. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Emameh, R.Z.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. [Google Scholar] [CrossRef]
- Colarusso, C.; Terlizzi, M.; Di Caprio, S.; Falanga, A.; D’andria, E.; Bianca, R.D.d.V.; Sorrentino, R. Conventional Chemotherapy and Inflammation: What Is the Role of the Inflammasome in the Tumor Microenvironment? Biomedicines 2025, 13, 203. [Google Scholar] [CrossRef]
- Saito, R.d.F.; Rangel, M.C.; Chandler, M.; Beasock, D.; Afonin, K.A.; Chammas, R. Cancer Therapy-Induced Inflammation and Its Consequences. In Biotechnology Applied to Inflammatory Diseases; Springer: Singapore, 2023; pp. 49–75. [Google Scholar]
- Vyas, D.; Laput, G.; Vyas, A. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther. 2014, 7, 1015–1023. [Google Scholar] [CrossRef]
- Ribeiro, M.P.C.; Castro e Santos, A.E.; Custódio, J.B.A. Mitochondrial Dysfunction on the Toxic Effects of Anticancer Agents—From Lab Bench to Bedside. In Toxicology Studies—Cells, Drugs and Environment; InTech: London, UK, 2015. [Google Scholar]
- Canta, A.; Pozzi, E.; Carozzi, V.A. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics 2015, 3, 198–223. [Google Scholar] [CrossRef]
- Doyle, T.M.; Salvemini, D. Mini-Review: Mitochondrial dysfunction and chemotherapy-induced neuropathic pain. Neurosci. Lett. 2021, 760, 136087. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Gielecińska, A.; Kałuzińska-Kołat, Ż.; Yahya, E.; Kontek, R. Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy—Significance for cancer treatment? Biochim. Biophys. Acta (BBA)—Rev. Cancer 2024, 1879, 189124. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Akhigbe, R.E.; George, M.Y.; Adekunle, Y.A.; Oyedokun, P.A.; Akhigbe, T.M.; Fatokun, A.A. Mechanisms of ferroptotic and non-ferroptotic organ toxicity of chemotherapy: Protective and therapeutic effects of ginger, 6-gingerol and zingerone in preclinical studies. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 4747–4778. [Google Scholar] [CrossRef]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef]
- Pai, V.B.; Nahata, M.C. Cardiotoxicity of Chemotherapeutic Agents. Drug Saf. 2000, 22, 263–302. [Google Scholar] [CrossRef]
- Ben Ayed, W.; Ben Said, A.; Hamdi, A.; Mokrani, A.; Masmoudi, Y.; Toukabri, I.; Limayem, I.; Yahyaoui, Y. Toxicity, risk factors and management of cisplatin-induced toxicity: A prospective study. J. Oncol. Pharm. Pract. 2020, 26, 1621–1629. [Google Scholar] [CrossRef]
- Mudd, T.W.; Guddati, A.K. Management of hepatotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res. 2021, 11, 3461–3474. [Google Scholar] [PubMed]
- Gabani, M.; Castaneda, D.; Nguyen, Q.M.; Choi, S.-K.; Chen, C.; Mapara, A.; Kassan, A.; Gonzalez, A.A.; Khataei, T.; Ait-Aissa, K.; et al. Association of Cardiotoxicity with Doxorubicin and Trastuzumab: A Double-Edged Sword in Chemotherapy. Cureus 2021, 13, e18194. [Google Scholar] [CrossRef] [PubMed]
- Hamo, C.E.; Bloom, M.W. Getting to the heart of the matter: An overview of cardiac toxicity related to cancer therapy. Clin. Med. Insights Cardiol. 2015, 9, 47–51. [Google Scholar] [CrossRef]
- Seidman, A.; Hudis, C.; Pierri, M.K.; Shak, S.; Paton, V.; Ashby, M.; Murphy, M.; Stewart, S.J.; Keefe, D. Cardiac Dysfunction in the Trastuzumab Clinical Trials Experience. J. Clin. Oncol. 2002, 20, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Volkova, M.; Russell, R. Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Curr. Cardiol. Rev. 2012, 7, 214–220. [Google Scholar] [CrossRef]
- Riccio, G.; Coppola, C.; Piscopo, G.; Capasso, I.; Maurea, C.; Esposito, E.; De Lorenzo, C.; Maurea, N. Trastuzumab and target-therapy side effects: Is still valid to differentiate anthracycline Type I from Type II cardiomyopathies? Hum. Vaccines Immunother. 2016, 12, 1124–1131. [Google Scholar] [CrossRef]
- Cannizzaro, M.T.; Inserra, M.C.; Passaniti, G.; Celona, A.; D’ANgelo, T.; Romeo, P.; Basile, A. Role of advanced cardiovascular imaging in chemotherapy-induced cardiotoxicity. Heliyon 2023, 9, e15226. [Google Scholar] [CrossRef]
- Magge, R.S.; DeAngelis, L.M. The double-edged sword: Neurotoxicity of chemotherapy. Blood Rev. 2015, 29, 93–100. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Yin, T.; Qin, D.; Chen, Y.; Ma, Q.; Shu, P.; Wang, Y.; Marchetti, C. Neurotoxicity of Tumor Immunotherapy: The Emergence of Clinical Attention. J. Oncol. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Wick, W.; Hertenstein, A.; Platten, M. Neurological sequelae of cancer immunotherapies and targeted therapies. Lancet Oncol. 2016, 17, e529–e541. [Google Scholar] [CrossRef]
- Santos, M.L.C.; de Brito, B.B.; da Silva, F.A.F.; dos Santos Botelho, A.C.; de Melo, F.F. Nephrotoxicity in cancer treatment: An overview. World J. Clin. Oncol. 2020, 11, 190–204. [Google Scholar] [CrossRef]
- Chen, C.; Xie, D.; Gewirtz, D.A.; Li, N. Nephrotoxicity in cancer treatment: An update. Adv. Cancer Res. 2022, 155, 77–129. [Google Scholar]
- Lameire, N.H.; Flombaum, C.D.; Moreau, D.; Ronco, C. Acute renal failure in cancer patients. Ann. Med. 2005, 37, 13–25. [Google Scholar] [CrossRef]
- Kitchlu, A.; McArthur, E.; Amir, E.; Booth, C.M.; Sutradhar, R.; Majeed, H.; Nash, D.M.; Silver, A.S.; Garg, A.X.; Chan, C.T.; et al. Acute Kidney Injury in Patients Receiving Systemic Treatment for Cancer: A Population-Based Cohort Study. JNCI J. Natl. Cancer Inst. 2019, 111, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Małyszko, J.; Kozłowska, K.; Kozłowski, L.; Małyszko, J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant. 2016, 32, 924–936. [Google Scholar] [CrossRef]
- Lyrio, R.M.d.C.; Rocha, B.R.A.; Corrêa, A.L.R.M.; Mascarenhas, M.G.S.; Santos, F.L.; Maia, R.d.H.; Segundo, L.B.; de Almeida, P.A.A.; Moreira, C.M.O.; Sassi, R.H. Chemotherapy-induced acute kidney injury: Epidemiology, pathophysiology, and therapeutic approaches. Front. Nephrol. 2024, 4, 1436896. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mok, H.; Jhaveri, P.; Bonnen, M.D.; Sikora, A.G.; Eissa, N.T.; Komaki, R.U.; Ghebre, Y.T. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev. Anticancer Ther. 2018, 18, 1041–1057. [Google Scholar] [CrossRef] [PubMed]
- Dhamija, E.; Meena, P.; Ramalingam, V.; Sahoo, R.; Rastogi, S.; Thulkar, S. Chemotherapy-induced pulmonary complications in cancer: Significance of clinicoradiological correlation. Indian J. Radiol. Imaging 2020, 30, 20–26. [Google Scholar] [CrossRef]
- Akbarali, H.I.; Muchhala, K.H.; Jessup, D.K.; Cheatham, S. Chemotherapy induced gastrointestinal toxicities. Adv. Cancer Res. 2022, 155, 131–166. [Google Scholar] [PubMed]
- Thatishetty, A.V.; Agresti, N.; O’BRien, C.B. Chemotherapy-Induced Hepatotoxicity. Clin. Liver Dis. 2013, 17, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Vauthey, J.N.; Kawaguchi, Y.; Adam, R. Colorectal Liver Metastasis; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- King, P.D.; Perry, M.C. Hepatotoxicity of Chemotherapy. Oncologist 2001, 6, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Ghabril, M.; Vuppalanchi, R.; Chalasani, N. Drug-Induced Liver Injury in Patients with Chronic Liver Disease. Liver Int. 2025, 45, e70019. [Google Scholar] [CrossRef]
- Zeni, N.; Cristofani, A.; Piano, S.S.; Bolognesi, M.; Romano, A. Pathophysiological Differences and Differential Diagnosis of Autoimmune and Drug-Induced Hepatitis. Livers 2025, 5, 22. [Google Scholar] [CrossRef]
- Kozielewicz, D.M.; Stalke, P.; Skrzypek, J. Drug-induced liver injury. Part I: Classification, diagnosis and treatment. Clin. Exp. Hepatol. 2025, 11, 25–33. [Google Scholar] [CrossRef]
- Brecht, P.; Dring, J.C.; Yanez, F.; Styczeń, A.; Mertowska, P.; Mertowski, S.; Grywalska, E. How Do Minerals, Vitamins, and Intestinal Microbiota Affect the Development and Progression of Heart Disease in Adult and Pediatric Patients? Nutrients 2023, 15, 3264. [Google Scholar] [CrossRef]
- Gröber, U. Antioxidants and Other Micronutrients in Complementary Oncology. Breast Care 2009, 4, 13–20. [Google Scholar] [CrossRef]
- Khairnar, S.I.; Kulkarni, Y.A.; Singh, K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch. Pharmacal Res. 2022, 45, 704–730. [Google Scholar] [CrossRef]
- Pekdemir, B.; Raposo, A.; Saraiva, A.; Lima, M.J.; Alsharari, Z.D.; BinMowyna, M.N.; Karav, S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024, 16, 4368. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Elsharawy, A.F.; Baraka, W.E.A.; Khalifa, A.M.; Abdalla, E.M.; Nafie, M.S.; Shehata, S.A.; Bakhaat, G.A. Tert-butylhydroquinone prevents cyclophosphamide induce lung toxicity in rats via inhibiting oxidative stress and apoptosis: In Vivo and in silico study. Egypt J. Forensic Sci. 2024, 14, 20. [Google Scholar] [CrossRef]
- Danielak, A.; Wallace, J.L.; Brzozowski, T.; Magierowski, M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front. Pharmacol. 2021, 12, 657457. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, S.; Liu, J.; Liu, Y.; Chen, X.; Wang, J. A review: Hepatoprotective compounds and its mechanism of medicine-food homology resources. Agric. Prod. Process. Storage 2025, 1, 5. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yang, K.-L.; Li, Y.; Zhao, Y.; Jiang, K.-W.; Wang, Q.; Liu, X.-N. Can Dietary Nutrients Prevent Cancer Chemotherapy-Induced Cardiotoxicity? An Evidence Mapping of Human Studies and Animal Models. Front. Cardiovasc. Med. 2022, 9, 921609. [Google Scholar] [CrossRef]
- Sah, R.; Ramirez, R.J.; Oudit, G.Y.; Gidrewicz, D.; Trivieri, M.G.; Zobel, C.; Backx, P.H. Regulation of cardiac excitation–contraction coupling by action potential repolarization: Role of the transient outward potassium current (Ito). J. Physiol. 2003, 546, 5–18. [Google Scholar] [CrossRef]
- Houston, M. The Role of Magnesium in Hypertension and Cardiovascular Disease. J. Clin. Hypertens. 2011, 13, 843–847. [Google Scholar] [CrossRef]
- Spadafora, L.; Di Muro, F.M.; Intonti, C.; Massa, L.; Monelli, M.; Pedretti, R.F.E.; Adriano, E.P.; Guarini, P.; Cantiello, G.; Bernardi, M.; et al. Lifestyle and Pharmacological Interventions to Prevent Anthracycline-Related Cardiotoxicity in Cancer Patients. J. Cardiovasc. Dev. Dis. 2025, 12, 212. [Google Scholar] [CrossRef]
- Balaji, S.; Antony, A.K.; Tonchev, H.; Scichilone, G.; Morsy, M.; Deen, H.; Mirza, I.; Ali, M.M.; Mahmoud, A.M. Racial Disparity in Anthracycline-induced Cardiotoxicity in Breast Cancer Patients. Biomedicines 2023, 11, 2286. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Nepovimova, E.; Kuca, K. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Mocchegiani, E.; Malavolta, M. Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Aging and Longevity. In Handbook of Immunosenescence; Springer International Publishing: Cham, Switzerland, 2019; pp. 2539–2573. [Google Scholar]
- Wechselberger, C.; Messner, B.; Bernhard, D. The Role of Trace Elements in Cardiovascular Diseases. Toxics 2023, 11, 956. [Google Scholar] [CrossRef]
- Nardelli, L.; Mohan, A.; Herrmann, S.M. Reinforcing the role of magnesium in preventing cisplatin-induced nephrotoxicity: Real-world evidence and clinical implications. Clin. Kidney J. 2025, 18, sfaf212. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Chen, C.; Zhang, W.; Yue, L.; Liu, T. A systematic review for prevention of cisplatin-induced nephrotoxicity using different hydration protocols and meta-analysis for magnesium hydrate supplementation. Clin. Exp. Nephrol. 2024, 28, 1–12. [Google Scholar] [CrossRef]
- Hadadhania, M.A.; Ghaffari, K.; Absalan, A.; Eghbali, A.; Afzal, R.R.; Ghasemi, A.; Eghbali, A. Magnesium Supplementation May Not Be Protective Against Carboplatin-Induced Nephrotoxicity But May Be Beneficial for Children Suffering Malignancies: A Randomized Clinical Trial. Adv. Biomed. Res. 2023, 12, 11. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Wu, Y.; Zeng, Y.; Xie, S.; Weng, J.; Guo, L.; Fu, J.; Zhou, T.; Zhang, X.; et al. Magnesium Isoglycyrrhizinate Alleviates Alectinib-Induced Hepatotoxicity by Inhibiting Mitochondrial Damage-Mediated Pyroptosis. Drug Des. Dev. Ther. 2025, 2025, 6219–6233. [Google Scholar] [CrossRef]
- Xia, Y.; Shi, H.; Qian, C.; Han, H.; Lu, K.; Tao, R.; Gu, R.; Zhao, Y.; Wei, Z.; Lu, Y. Modulation of Gut Microbiota by Magnesium Isoglycyrrhizinate Mediates Enhancement of Intestinal Barrier Function and Amelioration of Methotrexate-Induced Liver Injury. Front. Immunol. 2022, 13, 874878. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zheng, B.; Liu, P.; Zhang, J.; Chu, X.; Dong, C.; Shi, J.; Liang, Y.; Chu, L.; Liu, Y.; et al. Exploration of the hepatoprotective effect and mechanism of magnesium isoglycyrrhizinate in mice with arsenic trioxide-induced acute liver injury. Mol. Med. Rep. 2021, 23, 438. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shi, H.; Sun, Z.; Wu, J.; Xia, Y.; Wang, Y.; Wu, Y.; Li, X.; Chen, W.; Wang, A.; et al. Protective Effects of Magnesium Glycyrrhizinate on Methotrexate-Induced Hepatotoxicity and Intestinal Toxicity May Be by Reducing COX-2. Front. Pharmacol. 2019, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Yang, Y.; Li, J.; Li, J.; Zuo, S.; Chu, X.; Xu, S.; Ma, D.; Chu, L. Magnesium Isoglycyrrhizinate Alleviates Arsenic Trioxide-Induced Cardiotoxicity: Contribution of Nrf2 and TLR4/NF-κB Signaling Pathway. Drug Des. Dev. Ther. 2021, 2021, 543–556. [Google Scholar] [CrossRef]
- Khalilzadeh, M.; Abdollahi, A.; Abdolahi, F.; Abdolghaffari, A.H.; Dehpour, A.R.; Jazaeri, F. Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sci. 2018, 207, 436–441. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Song, T.; Song, Q.; Zhang, Y.; Zhang, X.; Han, X.; Zhang, J.; Chu, L. Magnesium isoglycyrrhizinate ameliorates doxorubicin-induced acute cardiac and hepatic toxicity via anti-oxidant and anti-apoptotic mechanisms in mice. Exp. Ther. Med. 2017, 15, 1005–1012. [Google Scholar] [CrossRef]
- Pere, A.-K.; Krogerus, L.; Mervaala, E.M.; Karppanen, H.; Ahonen, J.; Lindgren, L. Beneficial effects of dietary magnesium and potassium on cardiac and renal morphologic features in cyclosporin A–induced damage in spontaneously hypertensive rats. Surgery 2000, 128, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, Y.; Dong, P.-Y.; Yan, Y.-M.C.; Liu, J.; Zhang, B.-Q.; Chen, M.-M.; Zhang, S.-E.; Zhang, X.-F. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024, 10, e34975. [Google Scholar] [CrossRef]
- Alrashdi, B.M.; Hussein, M.M.; Mohammed, R.M.; Abdelhamed, N.W.; Asaad, M.E.; Alruwaili, M.; Alrashidi, S.M.; Habotta, O.A.; Moneim, A.E.A.; Ramadan, S.S. Turmeric Extract-loaded Selenium Nanoparticles Counter Doxorubicin-induced Hepatotoxicity in Mice via Repressing Oxidative Stress, Inflammatory Cytokines, and Cell Apoptosis. Anti-Cancer Agents Med. Chem. 2024, 24, 443–453. [Google Scholar] [CrossRef]
- Cengiz, O.; Baran, M.; Balcioglu, E.; Suna, P.A.; Bilgici, P.; Goktepe, O.; Onder, G.O.; Goc, R.; Yay, A. Use of selenium to ameliorate doxorubicin induced hepatotoxicity by targeting pro-inflammatory cytokines. Biotech. Histochem. 2020, 96, 67–75. [Google Scholar] [CrossRef]
- Taskin, E.; Dursun, N. Recovery of adriamycin induced mitochondrial dysfunction in liver by selenium. Cytotechnology 2015, 67, 977–986. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Basu, A.; Ghosh, P.; Biswas, J.; Bhattacharya, S. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J. Biomater. Appl. 2014, 29, 303–317. [Google Scholar] [CrossRef]
- Trbojevic, I.; Ognjanovic, B.; Djordjevic, N.; Markovic, S.; Stajn, A.; Gavric, J.; Saicic, Z. Effects of cisplatin on lipid peroxidation and the glutathione redox status in the liver of male rats: The protective role of selenium. Arch. Biol. Sci. 2010, 62, 75–82. [Google Scholar] [CrossRef]
- Bulucu, F.; Ocal, R.; Karadurmus, N.; Sahin, M.; Kenar, L.; Aydin, A.; Oktenli, C.; Koc, B.; Inal, V.; Yamanel, L.; et al. Effects of N-Acetylcysteine, Deferoxamine and Selenium on Doxorubicin-Induced Hepatotoxicity. Biol. Trace Element Res. 2009, 132, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Albakaa, R.N.; Rizij, F.A.; Ali Hassan, R.M. Potential Role of Selenium to Ameliorate Doxorubicin Induced Cardiotoxicity in Male Rats. J. Med. Chem. Sci. 2023, 6, 1498–1505. [Google Scholar] [CrossRef]
- Yıldızhan, K.; Huyut, Z.; Altındağ, F. Involvement of TRPM2 Channel on Doxorubicin-Induced Experimental Cardiotoxicity Model: Protective Role of Selenium. Biol. Trace Element Res. 2023, 201, 2458–2469. [Google Scholar] [CrossRef] [PubMed]
- İpek, E.; Hesapçıoğlu, M.; Karaboğa, M.; Avcı, H. Selenium protection from DNA damage and regulation of apoptosis signaling following cyclophosphamide induced cardiotoxicity in rats. Biotech. Histochem. 2023, 98, 534–542. [Google Scholar] [CrossRef]
- Yang, H.-B.; Lu, Z.-Y.; Yuan, W.; Li, W.-D.; Mao, S. Selenium Attenuates Doxorubicin-Induced Cardiotoxicity Through Nrf2-NLRP3 Pathway. Biol. Trace Element Res. 2022, 200, 2848–2856. [Google Scholar] [CrossRef]
- Gunes, S.; Sahinturk, V.; Karasati, P.; Sahin, I.K.; Ayhanci, A. Cardioprotective Effect of Selenium Against Cyclophosphamide-Induced Cardiotoxicity in Rats. Biol. Trace Element Res. 2017, 177, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Tacyildiz, N.; Ozyoruk, D.; Kavas, G.O.; Yavuz, G.; Unal, E.; Dincaslan, H.; Atalay, S.; Ucar, T.; Ikinciogullari, A.; Doganay, B.; et al. Selenium in the Prevention of Anthracycline-Induced Cardiac Toxicity in Children with Cancer. J. Oncol. 2012, 2012, 651630. [Google Scholar] [CrossRef]
- Shafaee, M.M.A.; Mohamed, H.S.; Ahmed, S.A.; Kandeil, M.A. Effect of selenium and nano-selenium on cisplatin-induced nephrotoxicity in albino rats. Ukr. Biochem. J. 2019, 91, 86–95. [Google Scholar] [CrossRef]
- Alrashdi, B.M.; Mohamed, R.A.; Mohamed, A.H.; Samoul, F.A.; Mohamed, M.I.; Moussa, M.M.; Alrashidi, S.M.; Dawod, B.; Habotta, O.A.; Moneim, A.E.A.; et al. Therapeutic activity of green synthesized selenium nanoparticles from turmeric against cisplatin-induced oxido-inflammatory stress and cell death in mice kidney. Biosci. Rep. 2023, 43, BSR20231130. [Google Scholar] [CrossRef]
- Hussein, J.; Farouk, H.; El-Khayat, Z. Therapeutic Efficacy of Selenium in Management of Hyperhomocytenemia in Cisplatin-Induced Nephrotoxicity. Biomed. Pharmacol. J. 2022, 15, 1905–1915. [Google Scholar] [CrossRef]
- Gunes, S.; Sahinturk, V.; Uslu, S.; Ayhanci, A.; Kacar, S.; Uyar, R. Protective Effects of Selenium on Cyclophosphamide-Induced Oxidative Stress and Kidney Injury. Biol. Trace Element Res. 2018, 185, 116–123. [Google Scholar] [CrossRef]
- Hemati, S.; Arbab Jolfaie, N.; Gookizadeh, A.; Rafienia, M.; Ghavamnasiri, M.R. The effects of vitamin E and selenium on cisplatin-induced nephrotoxicity in cancer patients treated with cisplatin-based chemotherapy: A randomized, placebo-controlled study. J. Res. Med. Sci. 2012, 17, S49–S58. [Google Scholar]
- Ognjanović, B.I.; Djordjević, N.Z.; Matić, M.M.; Obradović, J.M.; Mladenović, J.M.; Štajn, A.Š.; Saičić, Z.S. Lipid Peroxidative Damage on Cisplatin Exposure and Alterations in Antioxidant Defense System in Rat Kidneys: A Possible Protective Effect of Selenium. Int. J. Mol. Sci. 2012, 13, 1790–1803. [Google Scholar] [CrossRef]
- Famurewa, A.C.; Ekeleme-Egedigwe, C.A.; David, E.E.; Eleazu, C.O.; Folawiyo, A.M.; Obasi, N.A. Zinc abrogates anticancer drug tamoxifen-induced hepatotoxicity by suppressing redox imbalance, NO/iNOS/NF-ĸB signaling, and caspase-3-dependent apoptosis in female rats. Toxicol. Mech. Methods 2020, 30, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mei, X.; Yuan, J.; Lu, W.; Li, B.; Xu, D. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats. Toxicol. Appl. Pharmacol. 2015, 289, 1–11. [Google Scholar] [CrossRef]
- Wu, R.; Mei, X.; Wang, J.; Sun, W.; Xue, T.; Lin, C.; Xu, D. Zn(ii)-Curcumin supplementation alleviates gut dysbiosis and zinc dyshomeostasis during doxorubicin-induced cardiotoxicity in rats. Food Funct. 2019, 10, 5587–5604. [Google Scholar] [CrossRef]
- Jing, L.; Li, L.; Zhao, J.; Zhao, J.; Sun, Z.; Peng, S. Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica 2016, 46, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Shuai, Y.; Guo, J.-B.; Peng, S.-Q.; Zhang, L.-S.; Guo, J.; Han, G.; Dong, Y.-S. Metallothionein protects against doxorubicin-induced cardiomyopathy through inhibition of superoxide generation and related nitrosative impairment. Toxicol. Lett. 2007, 170, 66–74. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, A.; Sun, X.; Li, B. Effect of Zinc and Copper on the Interaction of Daunorubicin with Cardiac Myosin. Biol. Trace Element Res. 2008, 126, 106–114. [Google Scholar] [CrossRef]
- Satoh, M.; Aoki, Y.; Tohyama, C. Protective role of metallothionein in renal toxicity of cisplatinum. Cancer Chemother. Pharmacol. 1997, 40, 358–362. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, S.; Qui, L.; Wu, J.; Xu, C. Effects of Zinc Gluconate on Nephrotoxicity and Glutathione Metabolism Disorder Induced by Cis-Platin in Mice. Drug Metab. Drug Interactions 1997, 14, 41–46. [Google Scholar] [CrossRef]
- Reeves, P. Exposure to excessive parenteral Zn and/or cisplatin affects trace element metabolism and enzyme activities in reproductive tissues and kidney of male rats. J. Nutr. Biochem. 1992, 3, 467–473. [Google Scholar] [CrossRef]
- Rai, V.; Agrawal, D.K. Role of Vitamin D in Cardiovascular Diseases. Endocrinol. Metab. Clin. N. Am. 2017, 46, 1039–1059. [Google Scholar] [CrossRef]
- Agrawal, D.; Yin, K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [CrossRef]
- Kumar, K.; Chhabra, S.; Vishwakarma, V.K.; Yadav, S.; Bhatia, J.; Singh, N.; Yadav, H.N. Unveiling the Link of Vitamin D and Diverse Cardiovascular Disorders: Current Status and Future Prospective. In Lipophilic Vitamins in Health and Disease; Springer International Publishing: Cham, Switzerland, 2024; pp. 355–370. [Google Scholar]
- Koroglu, R.; Koroglu, M.; Aygun, H. Electrocardiographic, biochemical, and scintigraphic evidence for the cardioprotective effect of paricalcitol and vitamin D3 on doxorubicin-induced acute cardiotoxicity in rats. Bratisl. Med. J. 2024, 125, 281–288. [Google Scholar] [CrossRef]
- El-Bassiouny, N.A.; Helmy, M.W.; Hassan, M.A.E.; Khedr, G.A. The Cardioprotective Effect of Vitamin D in Breast Cancer Patients Receiving Adjuvant Doxorubicin Based Chemotherapy. Clin. Breast Cancer 2022, 22, 359–366. [Google Scholar] [CrossRef]
- Lee, K.J.; Wright, G.; Bryant, H.; Wiggins, L.A.; Zotto, V.L.D.; Schuler, M.; Malozzi, C.; Cohen, M.V.; Gassman, N.R. Cytoprotective Effect of Vitamin D on Doxorubicin-Induced Cardiac Toxicity in Triple Negative Breast Cancer. Int. J. Mol. Sci. 2021, 22, 7439. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S.; Khezri, S.; Shabani, M.; Atashbar, S.; Salimi, A. Vitamin D ameliorates celecoxib cardiotoxicity in a doxorubicin heart failure rat model via enhancement of the antioxidant defense and minimizing mitochondrial dysfunction. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 5861–5873. [Google Scholar] [CrossRef]
- Hazem, R.M.; Antar, S.A.; Nafea, Y.K.; Al-Karmalawy, A.A.; Saleh, M.A.; El-Azab, M.F. Pirfenidone and vitamin D mitigate renal fibrosis induced by doxorubicin in mice with Ehrlich solid tumor. Life Sci. 2022, 288, 120185. [Google Scholar] [CrossRef] [PubMed]
- Moneim, L.M.A.; Helmy, M.W.; El-Abhar, H.S. Co-targeting of endothelin-A and vitamin D receptors: A novel strategy to ameliorate cisplatin-induced nephrotoxicity. Pharmacol. Rep. 2019, 71, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Dabak, D.O.; Kuloglu, T.; Ozercan, M.R. Effects of Vitamin D3(Cholecalciferol) on Adriamycin-Induced Nephrotoxicity. Ren. Fail. 2009, 31, 400–405. [Google Scholar] [CrossRef]
Organ-Specific Toxicity | Common Chemotherapy Agents Involved | Mechanisms of Toxicity | Clinical Manifestations | Diagnostic Monitoring Notes |
---|---|---|---|---|
Cardiotoxicity [17,18,19,20,21,22] | Anthracyclines (doxorubicin), trastuzumab, cyclophosphamide, ifosfamide, cisplatin, paclitaxel, etoposide, vinca alkaloids, fluorouracil, cytarabine, etc. | Free radical generation, oxidative stress, myofibrillar disarray (Type I), transient cardiomyocyte dysfunction (Type II), possible overlap in pathogenesis | HF symptoms, ↓ LVEF, arrhythmias, myocardial ischemia, hypertension; acute (<1%), chronic (1.6–5%), asymptomatic LVEF fall, biomarker rises | Defined by LVEF criteria; Type I often permanent, dose-dependent; Type II usually reversible; MRI may show scarring even in Type II |
Neurotoxicity [23,24,25] | Vincristine, methotrexate, cisplatin, cytarabine, brentuximab vedotin, blinatumomab | Direct neurotoxicity, oxidative stress, mitochondrial dysfunction, barrier disruption | Peripheral neuropathy (sensory loss, paresthesia), seizures, encephalopathy, delirium, cerebellar dysfunction | Neurotoxicity is 2nd most common dose-limiting factor after myelosuppression; barriers offer partial protection |
Nephrotoxicity [26,27,28,29,30,31] | Cisplatin, methotrexate, gemcitabine, EGFR inhibitors, immune checkpoint inhibitors | Direct tubular injury, oxidative stress, thrombotic microangiopathy; exacerbated by dehydration, other nephrotoxins, preexisting CKD | AKI, CKD, proteinuria, electrolyte imbalances | Early risk identification essential; preventive strategies (hydration, dose adjustment) important |
Pulmonary Toxicity [32,33] | Anthracyclines, various antitumor antibiotics; doxorubicin noted in angiosarcoma lung fibrosis | ROS generation, pneumocyte/endothelial damage, hypersensitivity reactions (Gell & Coombs I–IV) | Fever, cough, dyspnea; patterns include interstitial pneumonia, alveolar damage, eosinophilic pneumonia, pulmonary hemorrhage | High-resolution CT preferred for evaluation; often compounded by opportunistic infections |
Gastrointestinal Toxicity [34] | Irinotecan, 5-FU, cytarabine, cisplatin, taxanes | Epithelial barrier injury, inflammation, dysbiosis, oxidative stress, altered ion channels and neuronal excitability | Diarrhea (up to 80%), mucositis, malabsorption, villus atrophy | Involves 5-phase mucositis pathobiology; gut microbiome crucial; current treatments mostly palliative |
Hepatotoxicity [35,36,37,38,39,40] | Methotrexate, cyclophosphamide, oxaliplatin, irinotecan, various others | Oxidative stress, mitochondrial dysfunction, immune-mediated inflammation | Transaminase elevations to acute liver failure; steatohepatitis, sinusoidal obstruction syndrome | Often idiosyncratic; higher risk in preexisting liver disease/viral hepatitis; monitor LFTs during therapy |
Toxicity | Protective Agents | Mechanism of Action | Comments |
---|---|---|---|
Cardiotoxicity |
|
| Dexrazoxane approved for anthracycline-induced cardiotoxicity |
Neurotoxicity |
|
| Effective in oxaliplatin and vincristine-induced neuropathy |
Nephrotoxicity |
|
| Critical for cisplatin and methotrexate protocols |
Pulmonary Toxicity |
|
| Used in drug-induced pneumonitis and interstitial lung disease |
Gastrointestinal Toxicity |
|
| Promising in mucositis and chemotherapy-induced diarrhea |
Hepatotoxicity |
|
| Especially relevant for methotrexate, irinotecan and platinum agents |
Model or Population | Magnesium Form and Regimen Used | Key Outcomes | Proposed Mechanisms and Notes |
---|---|---|---|
Nephrotoxicity | |||
Adults receiving first-dose cisplatin (multicenter cohort) [56] | Intravenous magnesium (median 2 g on day of chemotherapy) | Lower AKI or death within 2 weeks (OR 0.80; 95% CI 0.66–0.97); signals of greater benefit in <65 years, women, diabetes, baseline eGFR ≥ 90, and baseline Mg 2.0–2.2 mg/dL; protection persisted to MAKE90; no excess adverse events reported | Mg repletion likely normalizes proximal tubular platinum handling (↓ OCT2-mediated uptake, ↑ MATE1 efflux), stabilizes membranes, supports Na+/K+-ATPase, modulates Ca2+ channels and dampens oxidative/inflammatory cascades; fixed 1–2 g dosing may be suboptimal for some patients, inviting baseline- or weight-guided strategies and timing within hydration protocols |
Meta-analysis of adult studies (11 retrospective studies; n = 1688) [57] | Magnesium co-administration with cisplatin (varied protocols) | Markedly lower risk of cisplatin nephrotoxicity (pooled OR 0.22; 95% CI 0.14–0.35), strongest at cisplatin ≤ 50 mg/m2 but benefit across dosing strata | Supports routine Mg in cisplatin hydration protocols; effect sizes suggest clinically meaningful protection across regimens |
Pediatric oncology, carboplatin (randomized trial) [58] | Oral magnesium oxide 250 mg/day for 2 weeks | No reduction in early nephrotoxicity biomarkers; similar changes in creatinine, BUN and eGFR between arms | Boundary condition: short-course, low-dose oral Mg during carboplatin did not show benefit; findings should not be over-generalized to cisplatin or to IV Mg strategies |
Hepatotoxicity | |||
Alectinib-induced liver injury (mouse model) [59] | MgIG 25 mg/kg/day | Biochemical, molecular and histologic hepatoprotection; restored mitochondrial potential and ETC activity; reduced pyroptosis markers (NLRP3, caspase-1 p20, GSDMD-N) and IL-1β | Mitochondria-first protection: MgIG limits ROS, normalizes Nrf2/HO-1 and NF-κB p65, and blocks mitochondrial damage-mediated inflammasome/pyroptosis; NAC parallels underscore ROS centrality |
Methotrexate liver–gut axis (mouse model) [60] | MgIG 40 mg/kg/day | Improved ALT/AST, cytokines, oxidative indices and histology; restored tight junctions (ZO-1, claudin-1), ↓ permeability and LPS, ↓ hepatic TLR4, immune cell infiltration; shifted macrophages to M2; FMT and Lactobacillus recapitulated benefits | Gut–liver axis: barrier restoration and microbiota remodeling drive hepatic anti-inflammatory effects; consistent with low systemic bioavailability and biliary/intestinal actions |
Arsenic trioxide (ATO) acute liver injury (mouse model) [61] | MgIG 50 and 25 mg/kg/day | ↓ ROS/MDA; ↑ SOD, catalase; ↓ IL-1β, IL-6, TNF-α; anti-apoptotic reprogramming (↓ Bax, caspase-3; ↑ Bcl-2); improved histology | Rebalancing Keap1–Nrf2 (↓ Keap1, ↑ Nrf2) aligns transcriptional cytoprotection with antioxidant recovery |
Methotrexate hepatointestinal injury (rat model) [62] | MgIG 9 and 18 mg/kg/day | ↓ MDA; ↑ GSH, SOD, GPx; ↓ TUNEL, cleaved caspase-3, Bax, cleaved PARP; ↑ Bcl-2; antifibrotic (↓ collagen I, Sirius red); ↓ COX-2; ameliorated diarrhea and hyperpermeability; restored ZO-1 | Dual hepatic–intestinal anti-inflammatory and antifibrotic actions; COX-2 suppression may bridge gut and liver benefits; biliary excretion supports local exposure |
Cardiotoxicity | |||
Arsenic trioxide cardiotoxicity (rodent model) [63] | MgIG 50 and 25 mg/kg/day | Restored antioxidant enzymes (SOD, catalase, GPx); ↓ ROS/MDA and pro-inflammatory cytokines; downregulated TLR4/NF-κB | Nrf2 activation with concurrent TLR4/NF-κB suppression interrupts oxidative–inflammatory feed-forward injury |
Doxorubicin acute cardiotoxicity (rat models) [64] | MgIG 120 mg/kg/day | ↓ Lipid peroxidation; ↑ antioxidant enzymes; anti-apoptotic shift (↓ Bax, caspase-3; ↑ Bcl-2); ↓ NF-κB p65; lower CK/CK-MB/LDH; histologic and functional preservation | Integrates redox containment, inflammatory control and mitochondrial apoptosis restraint into organ-level protection |
Doxorubicin cardiotoxicity (rat model) [65] | MgIG 10 or 20 or 40 mg/kg/day | Corrected QT prolongation; restored papillary muscle excitability and contractile force; replenished cardiac GSH without raising serum Mg | Likely Ca2+ antagonism (↓ L-type current), support of SR Ca2+ cycling, moderated Na+/Ca2+ exchange and ↑ Na+/K+-ATPase stabilize electrophysiology and contraction |
Cyclosporine A cardiotoxicity (rat model) [66] | Dietary magnesium (±potassium) | Attenuated coronary luminal narrowing, intima–media thickening, perivascular fibrosis, LV scarring; prevented systolic BP rise | Magnesium repletion mitigates salt-sensitive vasoconstriction/endothelial dysfunction and microvascular remodeling, reducing hemodynamic stress on myocardium |
Model or Population | Regimen | Key Outcomes | Proposed Mechanisms and Notes |
---|---|---|---|
Hepatotoxicity | |||
Mice, doxorubicin-induced liver injury [69] | Turmeric extract–loaded selenium nanoparticles (Tur-SeNPs) | Lowered lipid peroxidation and nitric oxide; restored SOD, catalase, GPx, GR, GSH; improved transaminases/bilirubin; preserved histology | Activated Nrf2; downregulated NF-κB p65, IL-1β, TNF-α, iNOS; reduced apoptosis; broad antioxidant and anti-inflammatory effects |
Rats, doxorubicin-induced liver injury [70] | Selenium (low dose 0.5–1 mg/kg protective; 2 mg/kg harmful) | Preserved architecture; limited fibrosis; normalized glycogen; suppressed TNF-α, IL-1β, PCNA | U-shaped dose–response; decreased MDA, increased SOD; GSH-Px/catalase not consistently restored |
Rats, adriamycin-induced hepatic mitochondrial dysfunction [71] | Sodium selenite 50 µg/kg/day | Reduced mitochondrial/cytosolic oxidant status; restored mitochondrial membrane potential; increased hepatic mitochondrial ATP; elevated TAS | Recovery of oxidative phosphorylation; augmentation of antioxidant capacity beyond baseline |
Mice, cyclophosphamide injury [72] | Selenium nanoparticles (Nano-Se); oral at 2 mg/kg/day | Lower ROS/lipid peroxidation in liver and bone marrow; restored GSH, GPx, GST, SOD, catalase; normalized transaminases; preserved histology; reduced DNA strand breaks | Pre-emptive redox fortification; enhanced conjugative detoxification (GST) leading to lower genotoxic burden |
Rats, cisplatin-induced liver injury [73] | Selenium pretreatment at 6 mg/kg/day | Lowered lipid peroxidation; restored GSH, lowered GSSG; normalized GSH/GSSG ratio | Rebalanced glutathione redox; likely enhanced selenoenzymes (GPx, TrxR); potential selenol–cisplatin complexation in normal tissue |
Rats, doxorubicin-induced liver injury [74] | Selenium 15 mg/kg/day | Decreased MDA; robust SOD elevation; limited changes in GSH-Px/catalase | Benefit primarily via superoxide handling (SOD) upstream of peroxidase activity |
Cardiotoxicity | |||
Rats, doxorubicin-induced cardiotoxicity [75] | Selenium 1 mg/kg/day | Reduced cardiac injury biomarkers; preserved myocardial architecture | Restored redox homeostasis (GSH, SOD, GPx); reduced lipid peroxidation; anti-apoptotic effects |
Rats, doxorubicin model [76] | Selenium 0.5 mg/kg/day | Lowered ROS and PARP1; reduced TRPM2 expression; decreased caspase-3 | Modulated PARP1–TRPM2–Ca2+ axis; upstream antioxidation limiting Ca2+-dependent apoptosis |
Rats, cyclophosphamide-induced cardiotoxicity [77] | Selenium 1 mg/kg/day | Reduced γH2AX; corrected Bax/Bcl-2; preserved cardiac troponin I; histologic protection | Anti-apoptotic shift; mitigation of DNA damage; membrane/structural stabilization |
Mice, doxorubicin-induced cardiomyopathy [78] | Selenium-enriched diet | Preserved ejection fraction; lowered circulating injury markers | Required Nrf2 activation; dampened inflammatory mediators (e.g., TNF-α, IL-1β/IL-18, ICAM-1); Nrf2 inhibition abrogated benefit |
Rats, cyclophosphamide-induced cardiotoxicity [79] | Selenium 0.5 and 1 mg/kg/day | Lower ischemia-modified albumin and injury enzymes; improved endothelial/microvascular integrity | Antioxidant and anti-inflammatory effects; vascular protection complements myocardial rescue |
Children receiving anthracyclines [80] | Selenium 100 μg/day supplementation in deficient patients | Reduced ProBNP; echocardiographic improvements in several cases | Selenium deficiency clustered with cardiotoxicity; repletion associated with biomarker and functional gains (observational) |
Nephrotoxicity | |||
Rats, repeated-cycle cisplatin [81] | Sodium selenite 0.1 mg/kg/day and nano-selenium 0.1 mg/kg/day; prolonged co-exposure | Worsened creatinine/urea; greater structural injury despite improved antioxidant readouts | Formulation- and schedule-dependent harm; antioxidant markers not reliable surrogates for protection under chronic co-dosing |
Mice, acute cisplatin nephrotoxicity [82] | Turmeric–selenium nanoparticles 0.5 mg/kg/day | Normalized creatinine/urea; lowered KIM-1/NGAL; ameliorated tubular/glomerular lesions | Suppressed NF-κB, TNF-α, IL-6; activated Nrf2–HO-1; shifted Bax/Bcl-2 toward survival; efficacy comparable/superior to NAC in select endpoints |
Rats, cisplatin (post-injury treatment) [83] | Sodium selenite 0.5 mg/kg/day; post-injury dosing | Partial correction of azotemia; improved histology; no harm in healthy rats | Lowered IL-1β, TNF-α, MMP-9; normalized ceramide; reduced homocysteine (candidate mediator/biomarker) |
Rats, cyclophosphamide-induced kidney injury [84] | Selenium 0.5 or 1 mg/kg/day; dose-dependent | Improved redox indices; modest functional improvement; preserved renal architecture | Antioxidant restoration driving structural protection |
Cancer patients on cisplatin-based chemotherapy [85] | Selenium 200 μg/day plus vitamin E 400 IU/day vs. placebo; randomized | Higher GFR across cycles; fewer RIFLE-defined injuries; benefit persisted 1 month; chemotherapy continued | Clinical preservation of renal function with adjunct antioxidants; supports translational potential |
Rats, cisplatin-induced renal oxidative injury [86] | Selenium 6 mg/kg/day | Reduced lipid peroxidation; improved antioxidant defenses in kidneys | Selenium-supported GPx/antioxidant systems limit cisplatin-driven oxidative damage |
Model or Population | Regimen | Key Outcomes | Proposed Mechanisms and Notes |
---|---|---|---|
Hepatotoxicity | |||
Female rats, tamoxifen-induced liver injury [87] | Zinc 100 mg/kg/day | Normalized aminotransferases; restored albumin/total protein; histologic rescue of necrosis, fatty change, hydropic degeneration and inflammation | Antioxidant restoration (↑ GSH, SOD, CAT, GPx; ↓ MDA); inhibition of NO/iNOS/NF-κB; reduced caspase-3-dependent apoptosis |
Cardiotoxicity | |||
Rats, doxorubicin-induced cardiomyopathy [89] | Zn(II)–curcumin 25, 50 and 100 mg/kg/day (dose-responsive) | Preserved ECG/hemodynamics; reduced circulating injury biomarkers; mitigated edema, vacuolization, necrosis, perivascular fibrosis; protected mitochondrial ultrastructure | Restored systemic/myocardial zinc and normalized transporters (ZIP4, ZIP5, ZnT1); dampened IFN-γ/TNF-α/IL-1β/IL-6/MCP-1 and Egr1; corrected gut dysbiosis, tight junctions, endotoxemia; gut–heart–zinc axis highlighted |
Cardiomyocytes and mouse hearts, doxorubicin exposure [90,91] | Zinc 300 μmol/kg/day (MT-competent vs. MT-null) | Reduced apoptosis, DNA damage, lipid peroxidation, ROS; preserved peroxiredoxins; cardioprotection absent in MT-null | Metallothionein-dependent protection; MT overexpression required; limits superoxide/nitrosative damage (↓ 3-nitrotyrosine), maintains Prx2/3/5/6 |
In vitro protein interaction, daunorubicin–cardiac myosin [92] | Physiologic Zn2+/Cu2+ balance | Reduced daunorubicin–myosin binding at physiologic trace metal levels | Suggests trace metal homeostasis can stabilize myofibrillar function; supraphysiologic Zn2+ may have opposite effects |
Cardiotoxicity and Hepatotoxicity | |||
Rats, doxorubicin-induced injury [88] | Taurine–zinc solid dispersion 40 or 80 mg/kg/day (outperformed taurine, physical mix, silymarin) | Attenuated cardiac and hepatic toxicity (enzymes and histology) versus comparators | Induced HO-1 and UGT1A1/UGT2B1; ↑ MKP1, ↓ JNK activation; anti-inflammatory/anti-apoptotic shifts (↓ caspase-3, ↓ Bax, ↑ Bcl-2) |
Nephrotoxicity | |||
Mice, cisplatin [93] | Zinc sulfate 100 μmol/kg/day; MT-null vs. wild-type | ↓ BUN/creatinine in wild-type; no benefit in MT-null | Renoprotection requires metallothionein; MT likely sequesters platinum and limits lipid peroxidation |
Mice, cisplatin [94] | Zinc gluconate 100 or 140 or 180 mg/kg/day (benefit plateau 100–180 mg/kg) | Lowered early creatinine/urea; ↓ blood/renal MDA; partial restoration of circulating GSH | Interrupts lipid peroxidation and stabilizes membranes despite incomplete enzymatic recovery; MT/thiol preservation implicated |
Rats, cisplatin [95] | Zinc 90 mg/kg/day IP | No improvement in urea/creatinine despite ↑ serum Zn and renal MT; enzyme perturbations; ACE increased with zinc alone; trace-metal imbalance | Supra-physiologic zinc may disrupt metal-dependent networks and impose off-target toxicity; MT induction alone insufficient under this context |
Model or Population | Regimen | Key Outcomes | Proposed Mechanisms and Notes |
---|---|---|---|
Cardiotoxicity | |||
Rats with acute doxorubicin exposure [99] | Vitamin D3 5000 IU/kg/day | Improved ECG parameters (bradycardia, QT, QRS, ST), reduced cardiac troponin T, decreased 99mTc-pyrophosphate uptake, lower IL-6 and NO | VDR activation dampened NF-κB/iNOS signaling, stabilizing membranes and electrophysiology |
Breast cancer patients receiving adjuvant anthracycline–cyclophosphamide [100] | Daily vitamin D (0.5 µg/day) during chemotherapy | Blunted rises in troponin T and LDH; reduced IL-6; inverse correlation between vitamin D increase and biomarker changes | Systemic anti-inflammatory and cardioprotective signaling via VDR; biomarker-level benefit during standard cycles |
Triple-negative breast cancer mice on doxorubicin [101] | Dietary vitamin D (1500 IU/kg/day) raising 25(OH)D ~2× | Preserved EF/FS/SV; reduced oxidative lipid peroxidation; decreased cleaved caspase-3 | Mitochondrial preservation (stabilized membrane potential; DRP1 phosphorylation shifted anti-fission); antitumor efficacy preserved |
Doxorubicin + celecoxib heart failure rat model [102] | Single high-dose vitamin D bolus (60,000 U/kg/day) | Restored mitochondrial potential and complex II (SDH) activity; lowered ROS/MDA; replenished GSH; improved survival | Mitochondria-centric rescue under compounded stress; antioxidant defense enhancement |
Nephrotoxicity | |||
Doxorubicin in tumor-bearing mice [103] | Vitamin D 0.5 μg/kg/day IP | Lower serum creatinine/BUN; reduced kidney weight; ameliorated interstitial collagen and cellular infiltration | Repressed NF-κB and MCP-1; antifibrotic TGF-β/Smad3 restraint with Smad7 restoration; JNK1 suppression; in silico MCP-1 binding; antitumor effect maintained |
Cisplatin nephrotoxicity in rats [104] | Alfacalcidol (active VDR agonist; 50 ng/kg/day), with/without ETAR blockade | Improved creatinine/urea and histology at 96 h and 14 d; greater benefit with ETAR blockade | Restored VDR; decreased ET-1/ETAR; increased ETBR (NO/prostacyclin tone); suppressed pSer536-NF-κB, TNF-α, TGF-β1; breaks VDR–endothelin inflammatory loop |
Adriamycin nephropathy in rats (3-week model) [105] | Cholecalciferol (vitamin D3; 200 IU/day) | Improved tubulointerstitial lesions; proteinuria unchanged | Early tubulocentric cytoprotection without short-term glomerular effect; suggests ligand–timing dependence and need for active analogs or longer duration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinidis, I.; Tsokkou, S.; Gavriilaki, E.; Delis, G.; Papamitsou, T. Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications. Nutrients 2025, 17, 2838. https://doi.org/10.3390/nu17172838
Konstantinidis I, Tsokkou S, Gavriilaki E, Delis G, Papamitsou T. Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications. Nutrients. 2025; 17(17):2838. https://doi.org/10.3390/nu17172838
Chicago/Turabian StyleKonstantinidis, Ioannis, Sophia Tsokkou, Eleni Gavriilaki, Georgios Delis, and Theodora Papamitsou. 2025. "Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications" Nutrients 17, no. 17: 2838. https://doi.org/10.3390/nu17172838
APA StyleKonstantinidis, I., Tsokkou, S., Gavriilaki, E., Delis, G., & Papamitsou, T. (2025). Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications. Nutrients, 17(17), 2838. https://doi.org/10.3390/nu17172838