Systemic Inflammation Indices, Chemokines, and Metabolic Markers in Perimenopausal Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Recruitment Process
2.2. Research Project
2.3. Blood Collection and Biochemical Analysis
2.4. Inflammatory Marker Determination: IL-1α, IL-6, IL-1β, TNF-α, and IFN-γ
- IL-1α: sensitivity 1.1 pg/mL; intra-assay CV < 5.4%, inter-assay CV < 10%
- IL-6: sensitivity 2 pg/mL; intra-assay CV 4.2%, inter-assay CV 4.4%
- IL-1β: sensitivity 0.35 pg/mL; intra-assay CV 2.3%, inter-assay CV 4.9%
- IFN-γ: sensitivity 0.03 IU/mL; intra-assay CV 3.2%, inter-assay CV 5.8%
- TNF-α: sensitivity 0.7 pg/mL
- CXCL1 (GROα): EH0005; range 15.625–1000 pg/mL; sensitivity 9.375 pg/mL
- CXCL3 (GROβ): EH3178; range 15.625–1000 pg/mL; sensitivity 9.375 pg/mL
- CXCL2 (GROγ): EH3179; range 7.813–500 pg/mL; sensitivity 4.688 pg/mL
- CXCL5 (ENA-78): EH0106; range 31.25–2000 pg/mL; sensitivity 18.75 pg/mL
- CXCL9 (MIG): EH0008; range 31.25–2000 pg/mL; sensitivity 18.75 pg/mL
2.5. Calculation of Inflammatory Indices: SII and SIRI
- SIRI = (Neutrophil Count × Monocyte Count)/Lymphocyte Count
- Reference values were adopted from the literature [24]:
- Low SII: 1.52 ≤ SII < 314.93
- Moderate SII: 314.93 ≤ SII < 626.51
- High SII: 626.51 ≤ SII < 8486
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Inflammatory Markers
3.3. Chemokine Levels and Correlations
4. Discussion
4.1. Comparison with Previous Studies
4.2. Novel Contributions
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The menopause transition: Signs, symptoms, and management options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Honour, J.W. Biochemistry of the menopause. Ann. Clin. Biochem. 2018, 55, 18–33. [Google Scholar] [CrossRef]
- Assmann, G.; Guerra, R.; Fox, G.; Cullen, P.; Schulte, H.; Willett, D.; Grundy, S.M. Harmonizing the definition of the metabolic syndrome: Comparison of the criteria of the Adult Treatment Panel III and the International Diabetes Federation in United States American and European populations. Am. J. Cardiol. 2007, 99, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Subramani, S.K.; Mahajan, S.; Chauhan, P.; Yadav, D.; Mishra, M.; Pakkirisamy, U.; Prasad, G.J.D.; Research, M.S.C. Prevalence of metabolic syndrome in Gwalior region of Central India: A comparative study using NCEP ATP III, IDF and Harmonized criteria. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 816–821. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Rossi, J.L.S.; Barbalho, S.M.; de Araujo, R.R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2021, 38, e3502. [Google Scholar] [CrossRef]
- De Oliveira Dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, myokines, and hepatokines: Crosstalk and metabolic repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Barbalho, S.M.; Bechara, M.D.; Quesada, K.; Gabaldi, M.R.; Goulart, R.d.A.; Tofano, R.J.; Gasparini, R.G. Síndrome metabólica, aterosclerose e inflamação: Tríade indissociável? J. Vasc. Bras. 2015, 14, 319–327. [Google Scholar] [CrossRef]
- Tofano, R.J.; Pescinni-Salzedas, L.M.; Chagas, E.F.B.; Detregiachi, C.R.P.; Guiguer, E.L.; Araujo, A.C.; Bechara, M.D.; Rubira, C.J.; Barbalho, S.M.J.D.; Targets, O.; et al. Association of metabolic syndrome and hyperferritinemia in patients at cardiovascular risk. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3239. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Zhang, Y.; Hu, H.; Hu, W.; Li, L.; Pang, Y.; Ma, S.; Niu, Y.; Zhang, R. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. Sci. Total Environ. 2021, 782, 146855. [Google Scholar] [CrossRef] [PubMed]
- Fathi Dizaji, B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab. Syndr. 2018, 12, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, Y.; Funahashi, T.; Nakamura, T. The concept of metabolic syndrome: Contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011, 18, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, J.; Li, Y.Y.; Li, K.-P.; Zhang, Q. The association between systemic immune-inflammation index and rheumatoid arthritis: Evidence from NHANES 1999–2018. Arthritis Res. Ther. 2023, 25, 34. [Google Scholar] [CrossRef]
- Mahemuti, N.; Jing, X.; Zhang, N.; Liu, C.; Li, C.; Cui, Z.; Liu, Y.; Chen, J. Association between systemic immunity-inflammation index and hyperlipidemia: A population-based study from the NHANES (2015–2020). Nutrients 2023, 15, 1177. [Google Scholar] [CrossRef]
- Chao, B.; Ju, X.; Zhang, L.; Xu, X.; Zhao, Y. A novel prognostic marker systemic inflammation response index (SIRI) for operable cervical cancer patients. Front. Oncol. 2020, 10, 766. [Google Scholar] [CrossRef]
- Xu, Y.; He, H.; Zang, Y.; Yu, Z.; Hu, H.; Cui, J.; Wang, W.; Gao, Y.; Wei, H.; Wang, Z. Systemic inflammation response index (SIRI) as a novel biomarker in patients with rheumatoid arthritis: A multi-center retrospective study. Clin. Rheumatol. 2022, 41, 1989–2000. [Google Scholar] [CrossRef]
- Song, Y.; Guo, W.; Li, Z.; Guo, D.; Li, Z.; Li, Y. Systemic immune-inflammation index is associated with hepatic steatosis: Evidence from NHANES 2015–2018. Front. Immunol. 2022, 13, 1058779. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Y.; Shu, Y.; Zhang, L.; Cheng, W.; Wang, L.; Shu, M.; Xue, B.; Wang, R.; Feng, Z.; et al. Combination model of neutrophil to high-density lipoprotein ratio and systemic inflammation response index is more valuable for predicting peripheral arterial disease in type 2 diabetic patients: A cross-sectional study. Front. Endocrinol. 2023, 14, 1100453. [Google Scholar] [CrossRef]
- Dang, H.; Mao, W.; Wang, S.; Sha, J.; Lu, M.; Cong, L.; Meng, X.; Li, H. Systemic inflammation response index as a prognostic predictor in patients with acute ischemic stroke: A propensity score matching analysis. Front. Neurol. 2023, 13, 1049241. [Google Scholar] [CrossRef]
- Nicoară, D.M.; Munteanu, A.I.; Scutca, A.C.; Mang, N.; Juganaru, I.; Brad, G.F.; Mărginean, O. Assessing the relationship between systemic immune-inflammation index and metabolic syndrome in children with obesity. Int. J. Mol. Sci. 2023, 24, 8414. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, W.; Zhu, Q.; Zhang, R.; Sun, T.; Wang, B.; Hu, X. Association between systemic immune-inflammation index and metabolic syndrome and its components: Results from the National Health and Nutrition Examination Survey 2011–2016. J. Transl. Med. 2023, 21, 691. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.E.; Lu, W.; Maheshwari, A.; Christensen, R.D.; Calhoun, D.A. The effects and comparative differences of neutrophil specific chemokines on neutrophil chemotaxis of the neonate. Cytokine 2005, 29, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J.S.; Lee, H.K.; Kim, H.S.; Park, E.J.; Choi, J.E.; Choi, Y.J.; Shin, B.R.; Kim, E.Y.; Hong, J.T.; et al. CXCR3-deficient natural killer cells fail to migrate to B16F10 melanoma cells. Int. Immunopharmacol. 2018, 63, 66–73. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Di Mitri, D.; Mirenda, M.; Vasilevska, J.; Calcinotto, A.; Delaleu, N.; Revandkar, A.; Gil, V.; Boysen, G.; Losa, M.; Mosole, S.; et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer. Cell Rep. 2019, 28, 2156–2168.e5. [Google Scholar] [CrossRef]
- Addison, C.L.; Daniel, T.O.; Burdick, M.D.; Liu, H.; Ehlert, J.E.; Xue, Y.Y.; Buechi, L.; Walz, A.; Richmond, A.; Strieter, R.M. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J. Immunol. 2000, 165, 5269–5277. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, R.; Zecevic, N. The effect of CXCL1 on human fetal oligodendrocyte progenitor cells. Glia 2008, 56, 1–15. [Google Scholar] [CrossRef]
- Karlsson, C.; Baudet, A.; Miharada, N.; Soneji, S.; Gupta, R.; Magnusson, M.; Enver, T.; Karlsson, G.; Larsson, J. Identification of the chemokine CCL28 as a growth and survival factor for human hematopoietic stem and progenitor cells. Blood 2013, 121, 3838–3842. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.K.; Murphy, P.M. The CXC chemokines growth-regulated oncogene (GRO) alpha, GRO beta, GRO gamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J. Biol. Chem. 1996, 271, 20545–20550. [Google Scholar] [CrossRef]
- Geiser, T.; Dewald, B.; Ehrengruber, M.U.; Clark-Lewis, I.; Baggiolini, M. The interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes. J. Biol. Chem. 1993, 268, 15419–15424. [Google Scholar] [CrossRef]
- Sorgdrager, F.J.H.; Naudé, P.J.W.; Kema, I.P.; Nollen, E.A.; Deyn, P.P. Tryptophan metabolism in inflammaging: From biomarker to therapeutic target. Front. Immunol. 2019, 10, 2565. [Google Scholar] [CrossRef]
- Marriott, H.M.; Gascoyne, K.A.; Gowda, R.; Geary, I.; Nicklin, M.J.; Iannelli, F.; Pozzi, G.; Mitchell, T.J.; Whyte, M.K.; Sabroe, I.; et al. Interleukin-1β regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intercellular cooperation between pulmonary epithelial cells and macrophages. Infect. Immun. 2012, 80, 1140–1149. [Google Scholar] [CrossRef]
- Ayoub, C.G.; Aminoshariae, A.; Bakkar, M.; Ghosh, S.; Bonfield, T.; Demko, C.; Montagnese, T.A.; Mickel, A.K. Comparison of IL-1β, TNF-α, hBD-2, and hBD-3 expression in the dental pulp of smokers versus nonsmokers. J. Endod. 2017, 43, 2009–2013. [Google Scholar] [CrossRef]
- Sznejder-Pachołek, A.; Joniec-Maciejak, I.; Wawer, A.; Ciesielska, A.; Mirowska-Guzel, D. The effect of α-synuclein on gliosis and IL-1α, TNFα, IFNγ, TGFβ expression in murine brain. Pharmacol. Rep. 2017, 69, 242–251. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. The diagnostic role of the systemic inflammation index in patients with immunological diseases: A systematic review and meta-analysis. Clin. Exp. Med. 2024, 24, 27. [Google Scholar] [CrossRef] [PubMed]
- Kolben, Y.; Weksler-Zangen, S.; Ilan, Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes. Rev. 2021, 22, e13108. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Kolahdouz-Mohammadi, R.; Aydin, S.; Yosaee, S.; Clark, C.C.T.; Abdollahi, S. Circulating levels of adropin and overweight/obesity: A systematic review and meta-analysis of observational studies. Hormones 2022, 21, 15–22. [Google Scholar] [CrossRef]
- Vu, C.B.; Peng, B.; Kumaravel, G.; Smits, G.; Jin, X.; Phadke, D.; Engber, T.; Huang, C.; Reilly, J.; Tam, S.; et al. Piperazine derivatives of [1,2,4]triazolo [1,5-a][1,3,5]triazine as potent and selective adenosine A2a receptor antagonists. J. Med. Chem. 2004, 47, 4291–4299. [Google Scholar] [CrossRef]
- Kensara, O.A.; Wooton, S.A.; Phillips, D.I.; Patel, M.; Hoffman, D.J.; Jackson, A.A.; Elia, M.; Hertfordshire Study Group. Substrate-energy metabolism and metabolic risk factors for cardiovascular disease in relation to fetal growth and adult body composition. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E365–E371. [Google Scholar] [CrossRef]
- Russo, S.; Kwiatkowski, M.; Govorukhina, N.; Bischoff, R.; Melgert, B.N. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: The importance of metabolites. Front. Immunol. 2021, 12, 746151. [Google Scholar] [CrossRef]
- Abu-Taha, M.; Rius, C.; Hermenegildo, C.; Noguera, I.; Cerda-Nicolas, J.M.; Issekutz, A.C.; Jose, P.J.; Cortijo, J.; Morcillo, E.J.; Sanz, M.J. Menopause and ovariectomy cause a low grade of systemic inflammation that may be prevented by chronic treatment with low doses of estrogen or losartan. J. Immunol. 2009, 183, 1393–1402. [Google Scholar] [CrossRef]
- Zeng, P.; Jiang, C.; Liu, A.; Yang, X.; Lin, F.; Cheng, L. Association of systemic immunity-inflammation index with metabolic syndrome in U.S. adults: A cross-sectional study. BMC Geriatr. 2024, 24, 61. [Google Scholar] [CrossRef] [PubMed]
- Welty, F.K.; Alfaddagh, A.; Elajami, T.K. Targeting inflammation in metabolic syndrome. Transl. Res. 2016, 167, 257–280. [Google Scholar] [CrossRef]
- Hadad, N.; Burgazliev, O.; Elgazar-Carmon, V.; Solomonov, Y.; Wueest, S.; Item, F.; Konrad, D.; Rudich, A.; Levy, R. Induction of cytosolic phospholipase A2α is required for adipose neutrophil infiltration and hepatic insulin resistance early in the course of high-fat feeding. Diabetes 2013, 62, 3053–3063. [Google Scholar] [CrossRef] [PubMed]
- Horrillo, R.; González-Périz, A.; Martínez-Clemente, M.; López-Parra, M.; Ferré, N.; Titos, E.; Morán-Salvador, E.; Deulofeu, R.; Arroyo, V.; Clària, J. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J. Immunol. 2010, 184, 3978–3987. [Google Scholar] [CrossRef]
- Kasama, T.; Miwa, Y.; Isozaki, T.; Odai, T.; Adachi, M.; Kunkel, S.L. Neutrophil-derived cytokines: Potential therapeutic targets in inflammation. Curr. Drug Targets Inflamm. Allergy 2005, 4, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 2000, 192, 1197–1204. [Google Scholar] [CrossRef]
- Foks, A.C.; Frodermann, V.; ter Borg, M.; Habets, K.L.; Bot, I.; Zhao, Y.; van Eck, M.; van Berkel, T.; Kuiper, J.; van Puijvelde, G. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 2011, 218, 53–60. [Google Scholar] [CrossRef]
- Winer, D.A.; Winer, S.; Shen, L.; Wadia, P.P.; Yantha, J.; Paltser, G.; Tsui, H.; Wu, P.; Davidson, M.G.; Alonso, M.N.; et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 2011, 17, 610–617. [Google Scholar] [CrossRef]
- Sorci-Thomas, M.G.; Thomas, M.J. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2561–2565. [Google Scholar] [CrossRef]
- Carr, M.E. Diabetes mellitus: A hypercoagulable state. J. Diabetes Complicat. 2001, 15, 44–54. [Google Scholar] [CrossRef]
- Zarbock, A.; Polanowska-Grabowska, R.K.; Ley, K. Platelet-neutrophil interactions: Linking hemostasis and inflammation. Blood Rev. 2007, 21, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Akboga, M.K.; Canpolat, U.; Yuksel, M.; Yayla, C.; Yilmaz, S.; Turak, O.; Ozeke, O.; Topaloglu, S.; Aras, D. Platelet to lymphocyte ratio as a novel indicator of inflammation is correlated with the severity of metabolic syndrome: A single center large-scale study. Platelets 2016, 27, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Ko, H.J.; Liu, W.S.; Hung, C.L.; Hu, K.C.; Yu, L.Y.; Shih, S.-C. Neutrophil-to-lymphocyte ratio as a predictive marker of metabolic syndrome. Medicine 2019, 98, e17537. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey. JAMA 2002, 287, 356–359. [Google Scholar] [CrossRef]
- Elbeyli, A.; Kurtul, B.E.; Ozcan, S.C.; Ozarslan Ozcan, D. The diagnostic value of systemic immune-inflammation index in diabetic macular oedema. Clin. Exp. Optom. 2022, 105, 831–835. [Google Scholar] [CrossRef]
- Guo, W.; Song, Y.; Sun, Y.; Du, H.; Cai, Y.; You, Q.; Fu, H.; Shao, L. Systemic immune-inflammation index is associated with diabetic kidney disease in type 2 diabetes mellitus patients: Evidence from NHANES 2011–2018. Front. Endocrinol. 2022, 13, 1071465. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, D.; Dai, Z.; Li, X. Association Between Systemic Immune-Inflammation Index and Diabetic Depression. Clin. Interv. Aging 2021, 16, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Jaitin, D.A.; Adlung, L.; Thaiss, C.A.; Weiner, A.; Li, B.; Descamps, H.; Lundgren, P.; Bleriot, C.; Liu, Z.; Deczkowska, A.; et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 2019, 178, 686–698. [Google Scholar] [CrossRef]
- Brestoff, J.R.; Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 2015, 161, 146–160. [Google Scholar] [CrossRef]
- Purdy, J.C.; Shatzel, J.J. The hematologic consequences of obesity. Eur. J. Haematol. 2021, 106, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Mukaida, N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L566–L577. [Google Scholar] [CrossRef]
- Adışen, E.; Uzun, S.; Erduran, F.; Gürer, M.A. Prevalence of smoking, alcohol consumption and metabolic syndrome in patients with psoriasis. An. Bras. Dermatol. 2018, 93, 205–211. [Google Scholar] [CrossRef]
- Bishehsari, F.; Voigt, R.M.; Keshavarzian, A. Circadian rhythms and the gut microbiota: From the metabolic syndrome to cancer. Nat. Rev. Endocrinol. 2020, 16, 731–739. [Google Scholar] [CrossRef]
- Yang, X.; Xue, Q.; Wen, Y.; Huang, Y.; Wang, Y.; Mahai, G.; Yan, T.; Liu, Y.; Rong, T.; Wang, Y.; et al. Environmental polycyclic aromatic hydrocarbon exposure in relation to metabolic syndrome in US adults. Sci. Total Environ. 2022, 840, 156673. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wu, T.; Zhang, A.; Li, Y. Association between obesity and systemic immune inflammation index, systemic inflammation response index among US adults: A population-based analysis. Lipids Health Dis. 2024, 23, 245. [Google Scholar] [CrossRef]
- Ahmadi, S.; Eshraghian, M.R.; Hedayati, M.; Pishva, H. Relationship between estrogen and body composition, energy, and endocrine factors in obese women with normal and low REE. Steroids 2018, 130, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Naeem, M.; Bahls, M.; Dörr, M.; Friedrich, N.; Nauck, M.; Bülow, R.; Völzke, H.; Markus, M.R.P.; Ittermann, T. Body composition markers from classic anthropometry, bioelectrical impedance analysis, and magnetic resonance imaging are associated with inflammatory markers in the general population. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Carr, M.C.; Murdoch, S.J.; Mitchell, E.; Woods, N.F.; Wener, M.H.; Chandler, W.L.; Boyko, E.J.; Brunzell, J.D. Adipokines, inflammation, and visceral adiposity across the menopausal transition: A prospective study. J. Clin. Endocrinol. Metab. 2009, 94, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Sieminska, L.; Wojciechowska, C.; Niedziolka, D.; Marek, B.; Kos-Kudla, B.; Kajdaniuk, D.; Nowak, M. Effect of postmenopause and hormone replacement therapy on serum adiponectin levels. Metabolism 2005, 54, 1610–1614. [Google Scholar] [CrossRef]
- Yasui, T.; Maegawa, M.; Tomita, J.; Miyatani, Y.; Yamada, M.; Uemura, H.; Matsuzaki, T.; Kuwahara, A.; Kamada, M.; Tsuchiya, N.; et al. Changes in serum cytokine concentrations during the menopausal transition. Maturitas 2007, 56, 396–403. [Google Scholar] [CrossRef]
- Park, K.M.; Park, S.C.; Kang, S. Effects of resistance exercise on adipokine factors and body composition in pre- and postmenopausal women. J. Exerc. Rehabil. 2019, 15, 676–682. [Google Scholar] [CrossRef]
- Fenton, A. Weight, shape, and body composition changes at menopause. J. Life Health 2021, 12, 187–194. [Google Scholar] [CrossRef]
- Ambikairajah, A.; Walsh, E.; Tabatabaei-Jafari, H.; Cherbuin, N. Fat mass changes during menopause: A meta-analysis. Am. J. Obstet. Gynecol. 2019, 221, 393–409.e50. [Google Scholar] [CrossRef]
- Pernoud, M.; Dumesnil, C.; Meresse, I.; Delaunay, J.; Blacher, J.; El Fatouhi, D.; Cohen-Wolkowiez, M. Impact of Menopause on Anthropometric, Metabolic, and Inflammatory Markers: A Systematic Review and Meta-Analysis. Menopause 2024, 31, 146–158. [Google Scholar] [CrossRef]
- Vella, C.A.; Nelson, M.C. A simple estimate of visceral fat area by multifrequency bioimpedance analysis is associated with multiple biomarkers of inflammation and cardiometabolic disease: A pilot study. Obesities 2023, 3, 1–11. [Google Scholar] [CrossRef]
Parameter | BMI < 25 (n = 101) | BMI ≥ 25 (n = 129) | Brunner-Munzel Test | df | p | ||||
---|---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | Min–Max | M ± SD | Me (IQR) | Min–Max | ||||
Hemoglobin [g/dL] | 13.25 ± 0.88 | 13.30 (0.90) | 9.70–15.00 | 13.69 ± 1.00 | 13.70 (1.10) | 9.50–16.40 | 4.287 | 226.6 | <0.001 |
MCV [fL] | 85.95 ± 4.37 | 86.30 (4.80) | 65.10–94.10 | 85.76 ± 3.92 | 86.60 (3.70) | 67.20–94.50 | −0.375 | 200.1 | 0.708 |
MCH [pg] | 29.72 ± 1.87 | 29.90 (1.90) | 20.50–32.60 | 29.67 ± 1.78 | 30.00 (1.60) | 21.30–32.90 | −0.335 | 211.5 | 0.738 |
RBC [million/µL] | 4.47 ± 0.26 | 4.45 (0.42) | 3.97–5.08 | 4.62 ± 0.28 | 4.60 (0.38) | 3.98–5.58 | 4.275 | 221.6 | <0.001 |
Hematocrit [%] | 38.33 ± 2.20 | 38.20 (2.60) | 30.80–43.00 | 39.63 ± 2.62 | 39.70 (3.00) | 30.50–47.00 | 4.538 | 227.2 | <0.001 |
MCHC [g/dL] | 34.55 ± 0.82 | 34.70 (0.90) | 30.80–36.20 | 34.58 ± 0.85 | 34.60 (1.10) | 31.10–36.50 | 0.097 | 227.5 | 0.923 |
RDW-CV [%] | 13.46 ± 0.98 | 13.30 (0.90) | 12.10–18.30 | 13.51 ± 0.90 | 13.40 (1.00) | 12.00–17.90 | 0.704 | 218.4 | 0.482 |
WBC [thousand/µL] | 5.65 ± 1.39 | 5.53 (1.60) | 3.22–11.98 | 6.18 ± 1.71 | 5.91 (2.15) | 3.46–11.15 | 2.24 | 225.5 | 0.026 |
Monocytes [thousand/µL] | 0.45 ± 0.13 | 0.44 (0.16) | 0.22–0.89 | 0.47 ± 0.12 | 0.47 (0.14) | 0.18–0.83 | 1.415 | 202.8 | 0.159 |
Monocytes [%] | 8.08 ± 1.76 | 7.80 (2.30) | 4.80–14.30 | 7.80 ± 1.72 | 7.80 (2.40) | 3.70–12.70 | −0.948 | 218.2 | 0.344 |
Basophils [thousand/µL] | 0.03 ± 0.02 | 0.03 (0.02) | 0.01–0.09 | 0.03 ± 0.02 | 0.03 (0.02) | 0.00–0.11 | −0.552 | 223.8 | 0.581 |
Basophils [%] | 0.55 ± 0.27 | 0.50 (0.30) | 0.10–1.40 | 0.52 ± 0.31 | 0.50 (0.30) | 0.00–1.70 | −1.645 | 221.5 | 0.101 |
Eosinophils [thousand/µL] | 0.14 ± 0.10 | 0.12 (0.08) | 0.01–0.75 | 0.16 ± 0.10 | 0.13 (0.11) | 0.02–0.65 | 1.607 | 216.2 | 0.11 |
Eosinophils [%] | 2.45 ± 1.34 | 2.30 (1.50) | 0.10–6.70 | 2.64 ± 1.51 | 2.30 (1.80) | 0.50–9.30 | 0.76 | 213.8 | 0.448 |
Lymphocytes [thousand/µL] | 1.93 ± 0.60 | 1.83 (0.66) | 1.03–4.20 | 2.09 ± 0.60 | 2.07 (0.89) | 1.01–4.06 | 2.165 | 219 | 0.031 |
Lymphocytes [%] | 34.55 ± 8.17 | 33.10 (10.80) | 19.10–56.40 | 34.24 ± 6.48 | 33.90 (8.90) | 18.80–50.80 | 0.132 | 185 | 0.895 |
Neutrophils [thousand/µL] | 3.09 ± 1.03 | 2.90 (1.19) | 1.59–6.92 | 3.42 ± 1.21 | 3.20 (1.44) | 1.59–8.04 | 2.154 | 219.9 | 0.032 |
Neutrophils [%] | 54.19 ± 8.59 | 55.50 (10.60) | 31.90–72.80 | 54.64 ± 7.19 | 55.00 (9.70) | 32.20–72.10 | 0.104 | 193 | 0.917 |
PLT [thousand/µL] | 251.69 ± 50.21 | 249.00 (67.00) | 164.00–428.00 | 257.27 ± 56.83 | 249.00 (82.00) | 104.00–394.00 | 0.658 | 224.5 | 0.511 |
MPV [fL] | 10.83 ± 0.84 | 10.80 (1.40) | 8.90–12.70 | 10.79 ± 0.84 | 10.70 (1.10) | 9.00–13.60 | −0.437 | 211 | 0.663 |
PDW [fL] | 12.56 ± 1.70 | 12.40 (2.50) | 9.00–16.90 | 12.54 ± 1.74 | 12.30 (2.20) | 9.00–18.20 | −0.189 | 211.8 | 0.851 |
P-LCR [%] | 31.49 ± 7.15 | 31.30 (12.30) | 15.50–46.50 | 31.18 ± 7.28 | 30.60 (9.90) | 15.30–52.90 | −0.333 | 212.7 | 0.74 |
PCT [%] | 0.27 ± 0.05 | 0.27 (0.06) | 0.17–0.40 | 0.28 ± 0.06 | 0.27 (0.08) | 0.13–0.41 | 0.507 | 219.6 | 0.612 |
Parameter | BMI < 25 (n = 101) | BMI ≥ 25 (n = 129) | Brunner-Munzel Test | df | p | ||||
---|---|---|---|---|---|---|---|---|---|
M ± SD | Me (IQR) | Min–Max | M ± SD | Me (IQR) | Min–Max | ||||
Glucose [mg/dL] | 83.14 ± 9.47 | 82.50 (12.40) | 62.8–105.5 | 87.29 ± 9.65 | 86.20 (12.70) | 65.6–121.5 | 3.036 | 202 | 0.003 |
HbA1c [%] | 5.33 ± 0.27 | 5.31 (0.32) | 4.55–6.05 | 5.49 ± 0.34 | 5.41 (0.42) | 4.78–7.04 | 3.699 | 221.5 | <0.001 |
Insulin [µIU/mL] | 7.32 ± 3.07 | 7.10 (3.40) | 1.80–19.00 | 11.78 ± 6.57 | 9.80 (6.50) | 3.20–35.80 | 7.418 | 227.9 | <0.001 |
HOMA-IR | 1.52 ± 0.71 | 1.47 (0.73) | 0.30–4.01 | 2.58 ± 1.55 | 2.16 (1.58) | 0.60–8.17 | 7.65 | 228 | <0.001 |
QUICKI | 0.37 ± 0.03 | 0.36 (0.03) | 0.31–0.48 | 0.34 ± 0.03 | 0.34 (0.03) | 0.28–0.42 | −7.65 | 228 | <0.001 |
TCh [mg/dL] | 205.38 ± 36.13 | 205.20 (39.70) | 124.7–346.3 | 209.76 ± 34.31 | 207.30 (51.50) | 134.3–297.4 | 1.031 | 221.7 | 0.304 |
HDL [mg/dL] | 70.98 ± 16.94 | 71.30 (23.60) | 28.50–114.20 | 61.64 ± 14.66 | 61.40 (21.20) | 32.70–106.60 | −4.623 | 210.1 | <0.001 |
LDL [mg/dL] | 115.59 ± 29.61 | 115.24 (33.74) | 44.46–211.16 | 123.56 ± 30.37 | 120.44 (40.84) | 59.24–203.08 | 1.749 | 221.1 | 0.082 |
TG [mg/dL] | 90.68 ± 43.19 | 84.50 (29.30) | 37.80–378.40 | 121.51 ± 61.11 | 106.00 (58.30) | 48.70–353.80 | 4.933 | 227.9 | <0.001 |
Cortisol [µg/dL] | 16.21 ± 7.60 | 15.02 (9.57) | 5.39–45.80 | 14.62 ± 6.20 | 13.31 (6.28) | 5.14–46.83 | −1.513 | 191.8 | 0.132 |
Adropin [pg/mL] | 709.92 ± 779.38 | 387.40 (642.90) | 22.50–3898.67 | 810.92 ± 812.95 | 504.00 (756.70) | 65.60–3876.00 | 1.727 | 198.8 | 0.086 |
Adiponectin [ng/mL] | 12,717.30 ± 7184.87 | 11,746.30 (8630.40) | 729.58–35,349.80 | 10,738.36 ± 5564.16 | 9723.30 (7061.80) | 2389.20–26,768.50 | −1.952 | 194.5 | 0.052 |
IDO [ng/mL] | 29.64 ± 21.27 | 20.52 (31.20) | 1.58–88.35 | 35.51 ± 23.50 | 27.08 (41.72) | 6.03–89.98 | 2.077 | 214.8 | 0.039 |
Tryptophan [µg/mL] | 13.10 ± 4.72 | 13.21 (5.44) | 2.61–32.55 | 12.73 ± 4.97 | 12.56 (4.78) | 4.31–34.64 | −1.183 | 211.6 | 0.238 |
Kynurenine [ng/mL] | 605.09 ± 154.23 | 607.81 (201.80) | 248.22–1033.00 | 656.18 ± 195.62 | 619.70 (222.10) | 177.40–1373.00 | 1.993 | 218.8 | 0.048 |
Serotonin [ng/mL] | 195.60 ± 112.58 | 162.30 (127.40) | 15.87–575.10 | 188.38 ± 113.07 | 171.51 (128.50) | 6.13–765.80 | −0.262 | 218.1 | 0.794 |
Visfatin [ng/mL] | 4.89 ± 3.72 | 3.13 (4.54) | 0.20–16.21 | 5.87 ± 4.02 | 4.71 (5.97) | 0.66–16.48 | 1.934 | 218.9 | 0.054 |
Marker | BMI < 25 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CXCL1 | CXCL2 | CXCL3 | CXCL5 | CXCL9 | |||||||||||
r | df | p | r | df | p | r | df | p | r | df | p | r | df | p | |
Adropin [pg/mL] | 0.007 | 99 | 0.947 | −0.06 | 68 | 0.621 | 0.259 | 95 | 0.010 * | −0.046 | 68 | 0.705 | −0.037 | 49 | 0.797 |
Adiponectin [ng/mL] | −0.052 | 99 | 0.609 | −0.27 | 68 | 0.024 * | −0.216 | 95 | 0.033 * | −0.15 | 68 | 0.215 | −0.229 | 49 | 0.107 |
IDO [ng/mL] | 0.011 | 99 | 0.913 | 0.022 | 68 | 0.856 | 0.121 | 95 | 0.238 | −0.079 | 68 | 0.518 | 0.022 | 49 | 0.877 |
Tryptophan [µg/mL] | −0.026 | 99 | 0.798 | −0.014 | 68 | 0.909 | −0.121 | 95 | 0.237 | 0.007 | 68 | 0.956 | −0.116 | 49 | 0.419 |
Kynurenine [ng/mL] | 0.122 | 99 | 0.226 | 0.022 | 68 | 0.855 | 0.236 | 95 | 0.020* | −0.013 | 68 | 0.917 | −0.032 | 49 | 0.824 |
Serotonin [ng/mL] | −0.049 | 99 | 0.623 | −0.08 | 68 | 0.511 | −0.167 | 95 | 0.103 | 0.03 | 68 | 0.803 | 0.045 | 49 | 0.755 |
Visfatin [ng/mL] | 0.034 | 99 | 0.736 | 0.049 | 68 | 0.690 | 0.03 | 95 | 0.768 | −0.114 | 68 | 0.345 | 0.052 | 49 | 0.715 |
Marker | BMI ≥ 25 | ||||||||||||||
CXCL1 | CXCL2 | CXCL3 | CXCL5 | CXCL9 | |||||||||||
r | df | p | r | df | p | r | df | p | r | df | p | r | df | p | |
Adropin [pg/mL] | 0.147 | 125 | 0.098 | 0.052 | 73 | 0.658 | 0.138 | 122 | 0.125 | −0.092 | 66 | 0.455 | −0.129 | 70 | 0.279 |
Adiponectin [ng/mL] | 0.016 | 125 | 0.859 | 0.224 | 73 | 0.054 | −0.015 | 122 | 0.866 | 0.08 | 66 | 0.517 | −0.051 | 70 | 0.668 |
IDO [ng/mL] | 0 | 125 | 0.997 | 0.042 | 73 | 0.723 | −0.031 | 122 | 0.736 | −0.066 | 66 | 0.594 | −0.25 | 70 | 0.034 * |
Tryptophan [µg/mL] | −0.016 | 125 | 0.858 | 0.25 | 73 | 0.030 * | −0.07 | 122 | 0.442 | 0.195 | 66 | 0.111 | −0.127 | 70 | 0.288 |
Kynurenine [ng/mL] | −0.032 | 123 | 0.721 | 0.049 | 71 | 0.682 | −0.009 | 120 | 0.922 | 0.014 | 64 | 0.911 | −0.042 | 69 | 0.728 |
Serotonin [ng/mL] | −0.101 | 125 | 0.259 | −0.099 | 73 | 0.399 | −0.133 | 122 | 0.140 | −0.138 | 66 | 0.261 | −0.088 | 70 | 0.461 |
Visfatin [ng/mL] | −0.092 | 125 | 0.304 | 0.007 | 73 | 0.952 | −0.094 | 122 | 0.297 | −0.041 | 66 | 0.740 | −0.243 | 70 | 0.040 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cybulska, A.M.; Rachubińska, K.; Grochans, E.; Bosiacki, M.; Simińska, D.; Korbecki, J.; Lubkowska, A.; Panczyk, M.; Kuczyńska, M.; Schneider-Matyka, D. Systemic Inflammation Indices, Chemokines, and Metabolic Markers in Perimenopausal Women. Nutrients 2025, 17, 2885. https://doi.org/10.3390/nu17172885
Cybulska AM, Rachubińska K, Grochans E, Bosiacki M, Simińska D, Korbecki J, Lubkowska A, Panczyk M, Kuczyńska M, Schneider-Matyka D. Systemic Inflammation Indices, Chemokines, and Metabolic Markers in Perimenopausal Women. Nutrients. 2025; 17(17):2885. https://doi.org/10.3390/nu17172885
Chicago/Turabian StyleCybulska, Anna Maria, Kamila Rachubińska, Elżbieta Grochans, Mateusz Bosiacki, Donata Simińska, Jan Korbecki, Anna Lubkowska, Mariusz Panczyk, Magdalena Kuczyńska, and Daria Schneider-Matyka. 2025. "Systemic Inflammation Indices, Chemokines, and Metabolic Markers in Perimenopausal Women" Nutrients 17, no. 17: 2885. https://doi.org/10.3390/nu17172885
APA StyleCybulska, A. M., Rachubińska, K., Grochans, E., Bosiacki, M., Simińska, D., Korbecki, J., Lubkowska, A., Panczyk, M., Kuczyńska, M., & Schneider-Matyka, D. (2025). Systemic Inflammation Indices, Chemokines, and Metabolic Markers in Perimenopausal Women. Nutrients, 17(17), 2885. https://doi.org/10.3390/nu17172885