Disrupted Rhythms, Disrupted Microbes: A Systematic Review of Shift Work and Gut Microbiota Alterations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
Search Strategy Justification
2.3. Eligibility Criteria
2.4. Study Selection Process
2.5. Data Extraction
2.6. Data Synthesis and Analysis
2.7. Assessment of Methodological Quality and Risk of Bias
3. Results
3.1. Search and Study Selection
3.2. Methodological Quality Assessment and Risk of Bias Assessment
3.3. Characteristics of Included Studies
3.4. Synthesis of Results
4. Discussion
4.1. Summary of Main Findings
4.2. Mechanistic Insights
4.3. Role of Diet and Behavioral Factors
4.4. Clinical and Occupational Implication
4.5. Strengths and Limitations of the Review
4.6. Research Gaps and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Working Time Developments in the 21st-Century: Work Duration and Its Regulation in the EU. Available online: https://www.eurofound.europa.eu/en/publications/all/working-time-developments-21st-century-work-duration-and-its-regulation-eu#overview (accessed on 1 September 2025).
- Wright, K.P., Jr.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 2013, 23, 1554–1558. [Google Scholar] [CrossRef]
- Haus, E.L.; Smolensky, M.H. Shift work and cancer risk: Potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med. Rev. 2013, 17, 273–284. [Google Scholar] [CrossRef]
- Stevens, R.G.; Hansen, J.; Costa, G.; Haus, E.; Kauppinen, T.; Aronson, K.J.; Castaño-Vinyals, G.; Davis, S.; Frings-Dresen, M.H.W.; Fritschi, L.; et al. Considerations of circadian impact for defining “shift work” in cancer studies: IARC Working Group Report. Occup. Environ. Med. 2011, 68, 154–162. [Google Scholar] [CrossRef]
- Gan, Y.; Yang, C.; Tong, X.; Sun, H.; Cong, Y.; Yin, X.; Li, L.; Cao, S.; Dong, X.; Gong, Y.; et al. Shift work and diabetes mellitus: A meta-analysis of observational studies. Occup. Environ. Med. 2015, 72, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Reinke, H.; Asher, G. Circadian clock control of liver metabolic functions. Gastroenterology 2016, 150, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Kecklund, G.; Axelsson, J. Health consequences of shift work and insufficient sleep. BMJ 2016, 355, i5210. [Google Scholar] [CrossRef]
- Albrecht, U. Timing to perfection: The biology of central and peripheral circadian clocks. Neuron 2012, 74, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Boivin, D.B.; Boudreau, P. Impacts of shift work on sleep and circadian rhythms. Pathol. Biol. 2014, 62, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Papantoniou, K.; Pozo, O.J.; Espinosa, A.; Marcos, J.; Castaño-Vinyals, G.; Basagaña, X.; Ribas, F.C.; Mirabent, J.; Martín, J.; Carenys, G.; et al. Circadian variation of melatonin, light exposure, and diurnal preference in day and night shift workers of both sexes. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1176–1186. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Night shift work. In IARC Monographs on the Identification of Carcinogenic Hazards to Humans; IARC: Lyon, France, 2020; Volume 124. [Google Scholar]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020, 20, 40–54. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Zeevi, D.; Levy, M.; Zilberman-Schapira, G.; Suez, J.; Tengeler, A.C.; Abramson, L.; Katz, M.N.; Korem, T.; Zmora, N.; et al. Transkingdom control of Microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014, 159, 514–529. [Google Scholar] [CrossRef]
- Liang, X.; Bushman, F.D.; FitzGerald, G.A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl. Acad. Sci. USA 2015, 112, 10479–10484. [Google Scholar] [CrossRef] [PubMed]
- Zarrinpar, A.; Chaix, A.; Yooseph, S.; Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014, 20, 1006–1017. [Google Scholar] [CrossRef]
- Voigt, R.M.; Forsyth, C.B.; Green, S.J.; Mutlu, E.; Engen, P.; Vitaterna, M.H.; Turek, F.W.; Keshavarzian, A. Circadian disorganization alters intestinal Microbiota. PLoS ONE 2014, 9, e97500. [Google Scholar] [CrossRef]
- Benedict, C.; Vogel, H.; Jonas, W.; Woting, A.; Blaut, M.; Schürmann, A.; Cedernaes, J. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol. Metab. 2016, 5, 1175–1186. [Google Scholar] [CrossRef]
- Mukherji, A.; Kobiita, A.; Ye, T.; Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and Microbiota cues transduced by TLRs. Cell 2013, 153, 812–827. [Google Scholar] [CrossRef]
- Wang, Y.; Kuang, Z.; Yu, X.; Ruhn, K.A.; Kubo, M.; Hooper, L.V. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 2017, 357, 912–916. [Google Scholar] [CrossRef]
- Dinges, D.F.; Rogers, N.L.; Baynard, M.D. Chronic sleep deprivation. In Principles and Practice of Sleep Medicine, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 67–76. [Google Scholar]
- Deaver, J.A.; Eum, S.Y.; Toborek, M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front. Microbiol. 2018, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Swanson, G.R.; Gorenz, A.; Shaikh, M.; Desai, V.; Kaminsky, T.; Van Den Berg, J.; Murphy, T.; Raeisi, S.; Fogg, L.; Vitaterna, M.H.; et al. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G192–G201. [Google Scholar] [CrossRef] [PubMed]
- Vetter, C.; Devore, E.E.; Wegrzyn, L.R.; Massa, J.; Speizer, F.E.; Kawachi, I.; Rosner, B.; Stampfer, M.J.; Schernhammer, E.S. Association between rotating night shift work and risk of coronary heart disease among women. JAMA 2016, 315, 1726. [Google Scholar] [CrossRef] [PubMed]
- Mortaş, H.; Bilici, S.; Öztürk, H.; Karakan, T. Changes in intestinal parameters and their association with dietary patterns in rotational shift workers. Chronobiol. Int. 2022, 39, 872–885. [Google Scholar] [CrossRef]
- Rogers, A.E.; Hu, Y.-J.; Yue, Y.; Wissel, E.F.; Petit, R.A.; Iii Jarrett, S.; Christie, J.; Read, T.D. Shiftwork, functional bowel symptoms, and the microbiome. PeerJ 2021, 9, e11406. [Google Scholar] [CrossRef]
- Mortaş, H.; Bilici, S.; Karakan, T. The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiol. Int. 2020, 37, 1067–1081. [Google Scholar] [CrossRef]
- Arble, D.M.; Bass, J.; Laposky, A.D.; Vitaterna, M.H.; Turek, F.W. Circadian timing of food intake contributes to weight gain. Obesity 2009, 17, 2100–2102. [Google Scholar] [CrossRef]
- Kawada, T.; Otsuka, T.; Inagaki, H.; Wakayama, Y.; Katsumata, M.; Li, Q.; Li, Y.-J. A cross-sectional study on the shift work and metabolic syndrome in Japanese male workers. Aging Male 2010, 13, 174–178. [Google Scholar] [CrossRef]
- James, S.M.; Honn, K.A.; Gaddameedhi, S.; Van Dongen, H.P.A. Shift work: Disrupted circadian rhythms and sleep—Implications for health and well-being. Curr. Sleep Med. Rep. 2017, 3, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 2014, 20, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; FitzGerald, G.A. Timing the microbes: The circadian rhythm of the gut microbiome. J. Biol. Rhythm. 2017, 32, 505–515. [Google Scholar] [CrossRef]
- Longo, V.D.; Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef]
- Yu, B.; Wang, K.-Y.; Wang, N.-R.; Zhang, L.; Zhang, J.-P. Effect of probiotics and paraprobiotics on patients with sleep disorders and sub-healthy sleep conditions: A meta-analysis of randomized controlled trials. Front. Neurol. 2024, 15, 1477533. [Google Scholar] [CrossRef] [PubMed]
- Eastman, C.; Smith, M.R. Shift work: Health, performance and safety problems, traditional countermeasures, and innovative management strategies to reduce circadian misalignment. Nat. Sci. Sleep 2012, 4, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- National Institute for Health Research. PROSPERO: International Prospective Register of Systematic Reviews. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 30 March 2025).
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The well-built clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12–A13. [Google Scholar] [CrossRef]
- Higgins, J.P.; Morgan, R.L.; Rooney, A.A.; Taylor, K.W.; Thayer, K.A.; Silva, R.A.; Lemeris, C.; Akl, E.A.; Bateson, T.F.; Berkman, N.D.; et al. A tool to assess risk of bias in non-randomized follow-up studies of exposure effects (ROBINS-E). Environ. Int. 2024, 186, 108602. [Google Scholar] [CrossRef]
- Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 2 September 2025).
- Zhang, Y.; Zhao, L.; Jia, Y.; Zhang, X.; Han, Y.; Lu, P.; Yuan, H. Mediation Mendelian randomisation study on the effects of shift work on coronary heart disease and traditional risk factors via gut microbiota. J. Glob. Health 2024, 14, 04110. [Google Scholar] [CrossRef]
- Yao, T.; Chao, Y.-P.; Huang, C.-M.; Lee, H.-C.; Liu, C.-Y.; Li, K.-W.; Hsu, A.-L.; Tung, Y.-T.; Wu, C.W. Impacts of night shift on medical professionals: A pilot study of brain connectivity and gut microbiota. Front. Neurosci. 2025, 19, 1503176. [Google Scholar] [CrossRef]
- Cajochen, C.; Kräuchi, K.; Wirz-Justice, A. Role of melatonin in the regulation of human circadian rhythms and sleep. J. Neuroendocr. 2003, 15, 432–437. [Google Scholar] [CrossRef]
- Kohsaka, A.; Bass, J. A sense of time: How molecular clocks organize metabolism. Trends Endocrinol. Metab. 2007, 18, 4–11. [Google Scholar] [CrossRef]
- Cermakian, N.; Lange, T.; Golombek, D.; Sarkar, D.; Nakao, A.; Shibata, S.; Mazzoccoli, G. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol. Int. 2013, 30, 870–888. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Kutalik, Z.; Holmes, M.V.; Minelli, C.; et al. Guidelines for performing Mendelian randomization investigations: Update for summer 2023. Wellcome Open Res. 2023, 4, 186. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Shibata, S. Chronobiology and nutrition. Neuroscience 2013, 253, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Zou, X.; Zhang, Z.; Wang, Y.; Shi, L.; Ren, W.; Huang, J. Circadian rhythms of gut microbiota and plaque vulnerability: Mechanisms and chrono-microbiota modulation interventions. Gut Microbes 2025, 17, 2532703. [Google Scholar] [CrossRef] [PubMed]
PICO Element | Description | Inclusion Criteria | Exclusion Criteria |
---|---|---|---|
Population (P) | Adult human participants | Adults (≥18 years) exposed to shift work (night or rotating shifts) | Animal models, in vitro studies, or populations not exposed to shift work |
Intervention (I) | Exposure to shift work | Exposure to night shifts, rotating shifts, or other work schedules involving circadian disruption | Studies that do not specify shift work as the exposure of interest |
Comparison (C) | Day workers or non-shift workers (when applicable) | Studies that include a comparison group of non-shift workers or baseline/control data | Studies lacking a clear reference or comparison group (if applicable to the study design) |
Outcome (O) | Changes in gut microbiota composition or function | Studies reporting gut microbiota outcomes (e.g., diversity indices, taxonomic shifts, dysbiosis), assessed via stool sample analysis or genomic sequencing | Studies without original microbiota data, or focusing exclusively on circadian disruption or sleep without reference to shift work |
Study Design | Type of research included | Original, peer-reviewed observational or experimental studies (e.g., cross-sectional, cohort, pilot, Mendelian randomization) | Reviews, editorials, case reports, or conference abstracts |
Study (First Author, Year) | Design | Sample/Shift Type | Shift Work Definition | Shift Work Exposure Duration | Gender | Country | Age Range |
---|---|---|---|---|---|---|---|
Mortaş et al., 2020 [27] | Prospective, longitudinal, observational study | 10 security officers; rotational shifts | Day shift (07:00–15:00 h) for 4 weeks and after working the night shift (23:00–07:00 h) for 2 weeks. | September 2017–October 2018 | 10 males | Turkey | 25–40 years |
Mortaş et al., 2022 [25] | Prospective, longitudinal, within-subject observational study | 10 security officers; rotational shifts | Day shift (07:00–15:00 h) for 4 weeks and after working the night shift (23:00–07:00 h) for 2 weeks | September 2017–October 2018 | 10 males | Turkey | 25–40 years |
Rogers et al., 2021 [26] | Prospective, longitudinal, pre-post pilot study | 51 full-time nurses; 12 h day or night shifts | 47% straight day shifts, 51% night shifts, 2% rotating shifts | Unspecified duration | 49 females, 2 males | United States | 18–65 years |
Yao et al., 2025 [42] | Prospectiove, longitudinal, observational pilot study | 15 healthcare workers; 4-night shifts + 3 rest days | Consecutive shift work for at least 4 days with a 3-day resting period after shifts | Unspecified duration | 11 females, 4 males | Taipei, China | 20–65 years |
Zhang et al., 2024 [41] | Mediation, mendelian randomisation study with cohort studies | 263,315 European individuals with jobs involving shift work and 18,340 individuals with microbiota information | Jobs involving shift work (JSW) from the UK Biobank | Not specified | Non-specified but heterogeneous in terms of ethnic background, age, male/female ratio | Mainly Europeans but also from Middle Eastern, East Asian; American Hispanic/Latin and African American countries. | Adults |
Study | Main Microbiota Findings | Associated Clinical Outcomes | Key Observations | Key Limitations | NIH Quality Assessment | ROBINS-E Risk of Bias |
---|---|---|---|---|---|---|
Mortaş et al., 2020 [27] | Bacteroidetes decreased; Actinobacteria and Firmicutes increased during night shifts | Potential metabolic and inflammatory implications due to altered Firmicutes/Bacteroidetes ratio | Gut dysbiosis possibly linked to night shift exposure | Small sample, healthy individuals only | 55% | High risk |
Mortaş et al., 2022 [25] | Increased Blautia, Bifidobacterium, Dialister, Ruminococcus gnavus after night shifts; more pronounced with high sugar diet | Reduced short-chain fatty acid (SCFA) production potentially compromising intestinal barrier function | Microbiota changes observed independent of major dietary or biochemical shifts | Small sample, no repeated samples | 58% | High risk |
Rogers et al., 2021 [26] | Significant within-shift changes in alpha/beta diversity; three Amplicon Sequence Variants (ASVs), associated with irritable bowel syndrome (IBS) symptoms | IBS symptoms potentially associated with microbial diversity and ASVs changes | Significant ASVs changes detected in relation to symptom clusters | Volunteer bias, limited representativeness | 60% | Some concerns |
Yao et al., 2025 [42] | No global changes in diversity; Gemellaceae family altered, correlating with brain connectivity shifts | Altered functional brain connectivity associated with Gemellaceae abundance during shifts | Brain dan/dmn (default mode y dorsal attention) connectivity changed dynamically; Gemellaceae correlated with network activity changes | Diet not controlled; cultural context | 67% | Some concerns |
Zhang et al., 2024 [41] | Eubacterium brachy group mediates Jobs involving Shift Work (JSW) effect on hypertension and Coronary Heart Disease (CHD) risk | Elevated risk of hypertension and CHD mediated by gut microbial taxa | Eubacterium brachy identified as key mediator linking JSW to increased cardiometabolic risk | Summary-level data; self-reported exposure; genus-level resolution | 90% | Some concerns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasa-Ciria, D.; Couto, S.; Samatán, E.; Martínez-Jarreta, B.; Cenit, M.d.C.; Iguacel, I. Disrupted Rhythms, Disrupted Microbes: A Systematic Review of Shift Work and Gut Microbiota Alterations. Nutrients 2025, 17, 2894. https://doi.org/10.3390/nu17172894
Grasa-Ciria D, Couto S, Samatán E, Martínez-Jarreta B, Cenit MdC, Iguacel I. Disrupted Rhythms, Disrupted Microbes: A Systematic Review of Shift Work and Gut Microbiota Alterations. Nutrients. 2025; 17(17):2894. https://doi.org/10.3390/nu17172894
Chicago/Turabian StyleGrasa-Ciria, Diego, Sergio Couto, Eva Samatán, Begoña Martínez-Jarreta, María del Carmen Cenit, and Isabel Iguacel. 2025. "Disrupted Rhythms, Disrupted Microbes: A Systematic Review of Shift Work and Gut Microbiota Alterations" Nutrients 17, no. 17: 2894. https://doi.org/10.3390/nu17172894
APA StyleGrasa-Ciria, D., Couto, S., Samatán, E., Martínez-Jarreta, B., Cenit, M. d. C., & Iguacel, I. (2025). Disrupted Rhythms, Disrupted Microbes: A Systematic Review of Shift Work and Gut Microbiota Alterations. Nutrients, 17(17), 2894. https://doi.org/10.3390/nu17172894