Targeting the Gut Microbiota in Pediatric Obesity: A Paradigm Shift in Prevention and Treatment? A Comprehensive Review
Abstract
1. Introduction
2. Methods
3. The Role of GM in Pediatric Obesity
4. Gut Dysbiosis in Pediatric Obesity
4.1. Gut Dysbiosis—Induced Inflammatory and Immune-Metabolic Activation
4.2. Gut Dysbiosis—Driven Hormonal Dysregulation
5. Evidence on the Potential Therapeutic Role of GM in Pediatric Obesity
5.1. MD and GM: A Symbiotic Alliance
5.2. Probiotics: Strain-Specific Tools for Pediatric Metabolic Health
References | Study Design | Population | Main Findings |
---|---|---|---|
Solito et al. [118] | Randomized, double-blind, placebo-controlled cross-over trial. | 101 children and adolescents with obesity (mean age 12 years) with IR (defined by HOMA-IR > 2.5 or fasting insulin > 15 μU/mL) were randomly assigned to receive either a probiotic mix of Bifidobacterium breve BR03 and B632 (2 × 109 CFU/day) or placebo for 8 weeks, followed by a 4-week washout and crossover. All subjects followed an isocaloric Mediterranean diet and lifestyle recommendations during the trial. | In the first 8-week phase, probiotics improved insulin sensitivity. Significant reductions were also observed in fasting insulin, WC, ALT, and fecal E. coli levels (all p < 0.05). SCFAs profiles remained stable in the probiotic arm, while placebo subjects exhibited increased acetic acid levels. |
Rodrigo et al. [124] | Randomized, double-blind, placebo-controlled cross-over trial. | 84 children with obesity and diagnosed with ultrasound-detected NAFLD/NASH were divided into probiotic group (n = 43) and into placebo group (n = 41). Participants in the probiotic group were randomized to receive a multi-strain probiotic supplement for 6 months. Both groups followed structured dietary and lifestyle modifications. | Both groups showed improvements in triglycerides, AST, ALT, AST/ALT ratio, and ALP levels, but only the placebo group reached statistical significance (all p < 0.05). Although BMI decreased significantly in the probiotic group, no significant difference was found compared to placebo (p > 0.05). Liver steatosis grade in USS improved from stage II–III to stage I in a small non-significant subset of probiotic-treated patients. Transient elastography showed no significant fibrosis improvement in either group (p > 0.05). |
Chen et al. [125] | Randomized, double-blind, placebo-controlled trial. | 82 children aged 6–18 with overweight or obesity were enrolled, and 53 participants (probiotic group, n = 27; placebo group, n = 26) completed the trial. Probiotic group received a multi-strain probiotic supplement (containing Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9) or placebo, along with standard dietary and exercise guidance. | After 12 weeks, the probiotic group showed increased serum HDL and adiponectin levels, while BMI, TC, LDL, leptin, and TNF-α levels decreased. Higher abundances of B. animalis and Lactobacillus spp. were associated with improved HDL (p = 0.029). Lactobacillus spp. levels were inversely correlated with lipid metabolism (p = 0.026), which in turn was positively associated with TC (p < 0.001) and LDL (p = 0.027). |
Li et al. [126] | Systematic review and meta-analysis. | A systematic review through PubMed, Web of Science, Embase, Cochrane Library, SinoMed and CNKI was performed. 206 children with overweight or obesity from 4 randomized controlled trials were included. All participants underwent probiotic strains treatment with various treatment durations and geographic settings. | Compared to placebo group, probiotics increased HDL-C (p = 0.0001) and adiponectin levels (p < 0.0001), while reducing LDL-C (p = 0.04), leptin (p < 0.0001), and TNF-α (p < 0.0001). No significant effects were observed for TC or TG between the two groups (all p > 0.05). BMI changes were significant in the placebo group (p = 0.04). |
5.3. Prebiotics: An Adjunctive Viable Therapeutic Option
References | Study Design | Population | Main Findings |
---|---|---|---|
Nicolucci et al. [134] | Randomized, double-blind, placebo-controlled trial | 42 children aged 7 to 12 years with simple overweight or obesity were randomly assigned to receive either OI (8 g/day; n = 22) or an isocaloric maltodextrin placebo (n = 20) for 16 weeks. | Children who received prebiotic supplementation with OI experienced a 3.1% reduction in body weight z-score, a 2.4% decrease in total BFP, and a 3.8% decline in trunk fat. The OI group showed a 19% reduction in serum triglycerides and a 15% decrease in IL-6, whereas IL-6 increased by 25% in the placebo group. Microbiota analysis revealed a selective expansion of Bifidobacterium spp. and a reduction of Bacteroides vulgatus in the prebiotic group. |
Hume et al. [135] | Randomized, double-blind, placebo-controlled trial | 42 children aged 7 to 12 years with overweight or obesity were enrolled, and 38 participants concluded the 16-week trial. Prebiotic group (n = 20) received an 8 g/day of OI. Placebo group (n = 18) received an isocaloric maltodextrin. Appetite control was assessed both objectively (via energy intake) and subjectively (through visual analogue scales and parent-completed questionnaires). | Prebiotics significantly increased post-breakfast feelings of fullness (p = 0.04) and reduced the desire for further food intake compared to placebo (p = 0.03). Significant reduction in energy intake at the final breakfast buffet in children aged 11–12 years) compared to younger participants was found (p = 0.04). Fasting adiponectin and ghrelin levels significantly increased in the prebiotic group compared to placebo group (p = 0.04 and p = 0.03, respectively). |
Visuthranukul et al. [136] | Randomized double-blind placebo-controlled trial | 155 Thai children with obesity aged 7–15 years were divided in 3 groups: (i) children receiving inulin supplementation, (ii) children receiving maltodextrin placebo, and (iii) patients receiving dietary fiber counseling only. | Both intervention groups showed a significant reduction in BMI z-score, FMI, percent body fat, and trunk FMI (all p < 0.05). Both groups also demonstrated significant reductions in IL-1β (−34.8%) (p < 0.0001) and TNF-α levels (−25.8%) (p < 0.0001), while IL-6 increased (+21.5%, p = 0.006). IL-6 showed a positive correlation with percent body fat (r = 0.29, p = 0.008) and FMI (r = 0.25, p = 0.049). No differences between groups for cytokines or fecal calprotectin were detected. |
Visuthranukul et al. [141] | Randomized, double-blind, placebo-controlled trial | 143 Thai children aged 7 to 15 years with obesity randomly allocated to three arms: (i) intervention group receiving inulin, (ii) placebo group receiving isocaloric maltodextrin, and (iii) control group receiving only dietary fiber advice. All participants underwent standardized monthly follow-up for 6 months, with identical lifestyle counseling. | The intervention group showed a significant increase in microbial alpha-diversity (p < 0.05). This group also showed significant enrichment in beneficial taxa, particularly Bifidobacterium, Blautia, Megasphaera, and butyrate-producing bacteria such as Agathobacter, Eubacterium coprostanoligenes, and Subdoligranulum with associated clinical and metabolic improvements (all p < 0.05). |
5.4. Synbiotics: A Synergistic Strategy
5.5. Postbiotics: An Emerging Therapeutic Target
5.6. FMT: A Novel Insight into Future Therapeutic Approaches
References | Study Design | Population | Main Findings |
---|---|---|---|
Ipar et al. [149] | Randomized controlled trial | 86 children and adolescents with primary obesity were enrolled and 77 children (aged 5–17 years) completed the one- month intervention. Participants were randomly divided in two groups: (i) patients (n = 35) receiving standard lifestyle modifications including reduced caloric intake and increased physical activity; (ii) patients (n = 42) receiving the same lifestyle advice in addition to a daily synbiotic supplement for a 30-day period. 40 children were enrolled as a control group. | Children receiving synbiotic supplementation showed a significantly greater reduction in both body weight (p < 0.001) and BMI (p < 0.001) compared to those undergoing standard intervention alone. Significant improvements in anthropometric measures were also reported in the synbiotic group (all p < 0.05). Oxidative stress and TC and LDL levels significantly decreased in the synbiotic group (all p < 0.05). |
Atazadegan et al. [152] | Randomized, double-blind, placebo-controlled trial | 60 children and adolescents overweight or with obesity aged 8–18 years were randomly allocated in two group: (i) patients receiving a synbiotic supplement-comprising Lactobacillus coagulans SC-208 and Lactobacillus indicus HU36 (each at 6 × 109 CFU) with FOS; (ii) patients receiving placebo for 8 weeks. | WHtR significantly decreased in the synbiotic group compared to baseline (p = 0.05). No significant differences for other anthropometric indices were found compared to placebo (all p > 0.05). |
Leong et al. [168] | Randomized, double-blind, placebo-controlled trial | 87 New Zealand adolescents aged 14–18 years with obesity stratified by sex and randomly assigned 1:1 to receive either a single course of encapsulated FMT derived from healthy lean same-sex donors (n = 42) or placebo (n = 45). The intervention was followed by a 26-week monitoring period. Baseline metabolic syndrome was assessed in a subset of participants. | Participants of the FMT group experienced a significant and sustained reduction in the A/G fat ratio at 6, 12, and 26 weeks compared to placebo (all p < 0.05). No significant effects were found on insulin sensitivity, liver enzymes, lipid profile, inflammatory markers, total body fat percentage, or quality of life (all p > 0.05). In children with metabolic syndrome at baseline, FMT was associated with a significantly higher resolution rate of the condition by week 26 (from 18 to 4 cases) compared to placebo (from 13 to 10 cases), with an aOR of 0.06 (95% CI 0.01–0.45; p = 0.007). |
Fahim et al. [170] | Systematic review and meta-analysis | 17 RCT examining data of 838 children and adolescents aged 0 to 19 years with overweight or obesity across multiple countries were included. Targeted interventions included probiotics, prebiotics, synbiotics, SCFAs, and fecal microbiota transplantation FMT. | In adolescents aged 10–19 years, probiotics and FMT did not show significant effects on anthropometric or cardiometabolic parameters. In patients aged 0–19 years, prebiotics were associated with modest but statistically significant reductions in BMI (MD −0.70, 95% CI −1.25 to −0.15) and body weight (MD −1.5 kg, 95% CI −2.61 to −0.39) compared to placebo. Synbiotics showed reduced SBP in one study (n = 56). SCFAs reduced WC (MD −5.08 cm, 95% CI −7.40 to −2.76) and BMI (MD −2.26, 95% CI −3.24 to −1.28). Very low overall certainty due to methodological limitations, small samples, and sparse outcome reporting. |
Wilson et al. [173] | Randomized, double-blind, placebo-controlled trial | 87 Australian adolescents with obesity aged 14–18 years randomly allocated to receive either encapsulated FMT from healthy donors (n = 42) or placebo capsules (n = 45). After the 26-week double-blind phase, 55 participants (27 FMT, 28 placebo) were followed up at 4 years. Baseline metabolic syndrome status enabled stratified analyses. | After 4 years, adjusted analyses showed no significant effect of FMT on BMI compared to placebo. Adolescents who received FMT exhibited reduced WC (−10.0 cm, p = 0.026), total body fat percentage (−4.8%, p = 0.024), and hs-CRP levels (−68%, p = 0.002) and a lower metabolic syndrome severity score (−0.58, p = 0.003). HDL cholesterol levels increased modestly in the FMT group (p = 0.037). |
5.7. Translational Insights from Murine Models
6. Limitations
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FMT | fecal microbiota transplantation |
GLP-1 | Glucagon-like peptide-1 |
GM | Gut microbiota |
HDL-C | high-density lipoprotein cholesterol |
IR | Insulin resistance |
LDL-C | low-density lipoprotein cholesterol |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
MD | Mediterranean diet |
NAFLD | Non-alcoholic fatty liver disease |
RCT | randomized controlled trial |
SCFAs | Short-Chain Fatty Acids |
TC | total cholesterol |
T2D | type 2 diabetes |
TG | triglycerides |
TLR4 | Toll-like receptor 4 |
References
- Hannon, T.S.; Arslanian, S.A. Obesity in Adolescents. N. Engl. J. Med. 2023, 389, 251–261. [Google Scholar] [CrossRef]
- The Lancet Diabetes & Endocrinology. Childhood Obesity: A Growing Pandemic. Lancet Diabetes Endocrinol. 2022, 10, 1. [Google Scholar] [CrossRef]
- Kerr, J.A.; Patton, G.C.; Cini, K.I.; Abate, Y.H.; Abbas, N.; Abd Al Magied, A.H.A.; Abd ElHafeez, S.; Abd-Elsalam, S.; Abdollahi, A.; Abdoun, M.; et al. Global, Regional, and National Prevalence of Child and Adolescent Overweight and Obesity, 1990–2021, with Forecasts to 2050: A Forecasting Study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 785–812. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.; Buoncristiano, M.; Kovacs, V.A.; Yngve, A.; Spiroski, I.; Obreja, G.; Starc, G.; Pérez, N.; Rito, A.I.; Kunešová, M.; et al. Prevalence of Severe Obesity among Primary School Children in 21 European Countries. Obes. Facts 2019, 12, 244–258. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128 9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800–813. [Google Scholar] [CrossRef]
- Zhu, H.; Yi, X.; He, M.; Wu, S.; Li, M.; Gao, S. Exploring the Interplay of Genetic Variants and Environmental Factors in Childhood Obesity: A Systematic Review and Meta-Analysis. Metabolism 2025, 170, 156303. [Google Scholar] [CrossRef]
- Ernest, D.K.; Onugha, E.A.; Singh, B.; Sharma, S.V.; Dave, J.M. A Scoping Review of the Social Determinants of Pediatric and Adolescent Obesity. Int. J. Pediatr. 2025, 2025, 8871022. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; Baima, J.; Cecere, V.; Monteduro, M.; Farella, I.; Vitale, R.; Antoniotti, V.; Urbano, F.; Tini, S.; Lenzi, F.R.; et al. Fructose Intake and Unhealthy Eating Habits Are Associated with MASLD in Pediatric Obesity: A Cross-Sectional Pilot Study. Nutrients 2025, 17, 631. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Sun, H. Recent Prevalence and Trends of Obesity and Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD) among US Adolescents: 1999 to 2020. Pediatr. Obes. 2025, 20, e70003. [Google Scholar] [CrossRef]
- Forcina, G.; Luciano, M.; Frattolillo, V.; Mori, S.; Monaco, N.; Guarino, S.; Marzuillo, P.; Miraglia Del Giudice, E.; Di Sessa, A. Kidney Damage in Pediatric Obesity: Insights from an Emerging Perspective. JCM 2024, 13, 7025. [Google Scholar] [CrossRef]
- Chung, G.E.; Yu, S.J.; Yoo, J.-J.; Cho, Y.; Lee, K.; Shin, D.W.; Kim, Y.J.; Yoon, J.-H.; Han, K.; Cho, E.J. Metabolic Dysfunction-Associated Steatotic Liver Disease Increases Cardiovascular Disease Risk in Young Adults. Sci. Rep. 2025, 15, 5777. [Google Scholar] [CrossRef]
- Obrycki, Ł.; Skoczyński, K.; Sikorski, M.; Koziej, J.; Mitoraj, K.; Pilip, J.; Pac, M.; Feber, J.; Litwin, M. Current Etiology of Hypertension in European Children—Factors Associated with Primary Hypertension. Pediatr. Nephrol. 2025, 40, 3233–3244. [Google Scholar] [CrossRef]
- Badr, M.; El-Rabaa, G.; Freiha, M.; Kędzia, A.; Niechciał, E. Endocrine Consequences of Childhood Obesity: A Narrative Review. Front. Endocrinol. 2025, 16, 1584861. [Google Scholar] [CrossRef]
- Maffeis, C.; Olivieri, F.; Valerio, G.; Verduci, E.; Licenziati, M.R.; Calcaterra, V.; Pelizzo, G.; Salerno, M.; Staiano, A.; Bernasconi, S.; et al. The Treatment of Obesity in Children and Adolescents: Consensus Position Statement of the Italian Society of Pediatric Endocrinology and Diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. Ital. J. Pediatr. 2023, 49, 69. [Google Scholar] [CrossRef]
- Seo, Y.-G.; Lim, H.; Kim, Y.; Ju, Y.-S.; Lee, H.-J.; Jang, H.B.; Park, S.I.; Park, K.H. The Effect of a Multidisciplinary Lifestyle Intervention on Obesity Status, Body Composition, Physical Fitness, and Cardiometabolic Risk Markers in Children and Adolescents with Obesity. Nutrients 2019, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Garnett, S.P.; Baur, L.; Burrows, T.; Stewart, L.; Neve, M.; Collins, C. Effectiveness of Lifestyle Interventions in Child Obesity: Systematic Review with Meta-Analysis. Pediatrics 2012, 130, e1647–e1671. [Google Scholar] [CrossRef]
- Manco, M. Reframing Obesity in Children. JAMA Pediatr. 2025, 179, 693. [Google Scholar] [CrossRef] [PubMed]
- Yanovski, J.A.; Krakoff, J.; Salaita, C.G.; McDuffie, J.R.; Kozlosky, M.; Sebring, N.G.; Reynolds, J.C.; Brady, S.M.; Calis, K.A. Effects of Metformin on Body Weight and Body Composition in Obese Insulin-Resistant Children. Diabetes 2011, 60, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Masarwa, R.; Brunetti, V.C.; Aloe, S.; Henderson, M.; Platt, R.W.; Filion, K.B. Efficacy and Safety of Metformin for Obesity: A Systematic Review. Pediatrics 2021, 147, e20201610. [Google Scholar] [CrossRef]
- Evia-Viscarra, M.L.; Rodea-Montero, E.R.; Apolinar-Jiménez, E.; Muñoz-Noriega, N.; García-Morales, L.M.; Leaños-Pérez, C.; Figueroa-Barrón, M.; Sánchez-Fierros, D.; Reyes-García, J.G. The Effects of Metformin on Inflammatory Mediators in Obese Adolescents with Insulin Resistance: Controlled Randomized Clinical Trial. J. Pediatr. Endocrinol. Metab. 2012, 25, 41–49. [Google Scholar] [CrossRef]
- Weghuber, D.; Barrett, T.; Barrientos-Pérez, M.; Gies, I.; Hesse, D.; Jeppesen, O.K.; Kelly, A.S.; Mastrandrea, L.D.; Sørrig, R.; Arslanian, S. Once-Weekly Semaglutide in Adolescents with Obesity. N. Engl. J. Med. 2022, 387, 2245–2257. [Google Scholar] [CrossRef]
- Kelly, A.S.; Auerbach, P.; Barrientos-Perez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A Randomized, Controlled Trial of Liraglutide for Adolescents with Obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar] [CrossRef]
- Armstrong, S.C.; Bolling, C.F.; Michalsky, M.P.; Reichard, K.W.; SECTION ON OBESITY, SECTION ON SURGERY; Haemer, M.A.; Muth, N.D.; Rausch, J.C.; Rogers, V.W.; Heiss, K.F.; et al. Pediatric Metabolic and Bariatric Surgery: Evidence, Barriers, and Best Practices. Pediatrics 2019, 144, e20193223. [Google Scholar] [CrossRef]
- Pratt, J.S.A.; Browne, A.; Browne, N.T.; Bruzoni, M.; Cohen, M.; Desai, A.; Inge, T.; Linden, B.C.; Mattar, S.G.; Michalsky, M.; et al. ASMBS Pediatric Metabolic and Bariatric Surgery Guidelines, 2018. Surg. Obes. Relat. Dis. 2018, 14, 882–901. [Google Scholar] [CrossRef]
- Castaner, O.; Goday, A.; Park, Y.-M.; Lee, S.-H.; Magkos, F.; Shiow, S.-A.T.E.; Schröder, H. The Gut Microbiome Profile in Obesity: A Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.Y. Association of Gut Microbiota with Obesity in Children and Adolescents. Clin. Exp. Pediatr. 2023, 66, 148–154. [Google Scholar] [CrossRef]
- Schoultz, I.; Claesson, M.J.; Dominguez-Bello, M.G.; Fåk Hållenius, F.; Konturek, P.; Korpela, K.; Laursen, M.F.; Penders, J.; Roager, H.; Vatanen, T.; et al. Gut Microbiota Development across the Lifespan: Disease Links and Health-promoting Interventions. J. Intern. Med. 2025, 297, 560–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Wang, Y.-P. Gut Microbiota-Brain Axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef]
- Koller, A.M.; Săsăran, M.O.; Mărginean, C.O. The Role of Gut Microbiota in Pediatric Obesity and Metabolic Disorders: Insights from a Comprehensive Review. Nutrients 2025, 17, 1883. [Google Scholar] [CrossRef]
- Rondanelli, M.; Borromeo, S.; Cavioni, A.; Gasparri, C.; Gattone, I.; Genovese, E.; Lazzarotti, A.; Minonne, L.; Moroni, A.; Patelli, Z.; et al. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025, 15, 127. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Scarpellini, E.; Colica, C.; Boccuto, L.; Salehi, B.; Sharifi-Rad, J.; Aiello, V.; Romano, B.; De Lorenzo, A.; Izzo, A.A.; et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019, 11, 2690. [Google Scholar] [CrossRef] [PubMed]
- Delzenne, N.M.; Neyrinck, A.M.; Bäckhed, F.; Cani, P.D. Targeting Gut Microbiota in Obesity: Effects of Prebiotics and Probiotics. Nat. Rev. Endocrinol. 2011, 7, 639–646. [Google Scholar] [CrossRef]
- Jones, L.; Kumar, J.; Mistry, A.; Sankar Chittoor Mana, T.; Perry, G.; Reddy, V.P.; Obrenovich, M. The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and Technological Innovation. Biomedicines 2019, 7, 24. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Blaser, M.J.; Ley, R.E.; Knight, R. Development of the Human Gastrointestinal Microbiota and Insights from High-Throughput Sequencing. Gastroenterology 2011, 140, 1713–1719. [Google Scholar] [CrossRef]
- Ley, D.; Desseyn, J.-L.; Gouyer, V.; Plet, S.; Tims, S.; Renes, I.; Mischke, M.; Gottrand, F. Early Life Nutrition Influences Susceptibility to Chronic Inflammatory Colitis in Later Life. Sci. Rep. 2019, 9, 18111. [Google Scholar] [CrossRef] [PubMed]
- U-Din, M.; Ahmed, B.A.; Syed, S.A.; Ong, F.J.; Oreskovich, S.M.; Gunn, E.; Surette, M.G.; Punthakee, Z.; Steinberg, G.R.; Morrison, K.M. Characteristics of Abdominal Visceral Adipose Tissue, Metabolic Health and the Gut Microbiome in Adults. J. Clin. Endocrinol. Metab. 2024, 109, 680–690. [Google Scholar] [CrossRef]
- Yarahmadi, A.; Afkhami, H.; Javadi, A.; Kashfi, M. Understanding the Complex Function of Gut Microbiota: Its Impact on the Pathogenesis of Obesity and beyond: A Comprehensive Review. Diabetol. Metab. Syndr. 2024, 16, 308. [Google Scholar] [CrossRef]
- Chen, X.; You, L.; Jia, Y. The Role of Probiotics in Adolescents’ Obesity. Front. Cell. Infect. Microbiol. 2025, 15, 1546627. [Google Scholar] [CrossRef]
- Faienza, M.F.; Urbano, F.; Anaclerio, F.; Moscogiuri, L.A.; Konstantinidou, F.; Stuppia, L.; Gatta, V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr. Issues Mol. Biol. 2024, 46, 4358–4378. [Google Scholar] [CrossRef]
- Ortiz-Samur, N.S.; Vijaya, A.K.; Burokas, A.; Mela, V. Exploring the Role of Microglial Cells in the Gut–Brain Axis Communication: A Systematic Review. J. Neurochem. 2025, 169, e70154. [Google Scholar] [CrossRef] [PubMed]
- Ben-Azu, B.; Del Re, E.C.; VanderZwaag, J.; Carrier, M.; Keshavan, M.; Khakpour, M.; Tremblay, M.-È. Emerging Epigenetic Dynamics in Gut-Microglia Brain Axis: Experimental and Clinical Implications for Accelerated Brain Aging in Schizophrenia. Front. Cell. Neurosci. 2023, 17, 1139357. [Google Scholar] [CrossRef]
- Martínez-Montoro, J.I.; Martín-Núñez, G.M.; González-Jiménez, A.; Garrido-Sánchez, L.; Moreno-Indias, I.; Tinahones, F.J. Interactions between the Gut Microbiome and DNA Methylation Patterns in Blood and Visceral Adipose Tissue in Subjects with Different Metabolic Characteristics. J. Transl. Med. 2024, 22, 1089. [Google Scholar] [CrossRef] [PubMed]
- Nohesara, S.; Abdolmaleky, H.M.; Dickerson, F.; Pinto-Tomás, A.A.; Jeste, D.V.; Thiagalingam, S. Maternal Gut Microbiome-Mediated Epigenetic Modifications in Cognitive Development and Impairments: A New Frontier for Therapeutic Innovation. Nutrients 2024, 16, 4355. [Google Scholar] [CrossRef]
- Fasano, A.; Chassaing, B.; Haller, D.; Flores Ventura, E.; Carmen-Collado, M.; Pastor, N.; Koren, O.; Berni Canani, R. Microbiota during Pregnancy and Early Life: Role in Maternal−neonatal Outcomes Based on Human Evidence. Gut Microbes 2024, 16, 2392009. [Google Scholar] [CrossRef]
- Li, N.; Liu, H.-Y.; Liu, S.-M. Deciphering DNA Methylation in Gestational Diabetes Mellitus: Epigenetic Regulation and Potential Clinical Applications. Int. J. Mol. Sci. 2024, 25, 9361. [Google Scholar] [CrossRef]
- Woo, V.; Alenghat, T. Epigenetic Regulation by Gut Microbiota. Gut Microbes 2022, 14, 2022407. [Google Scholar] [CrossRef] [PubMed]
- Shock, T.; Badang, L.; Ferguson, B.; Martinez-Guryn, K. The Interplay between Diet, Gut Microbes, and Host Epigenetics in Health and Disease. J. Nutr. Biochem. 2021, 95, 108631. [Google Scholar] [CrossRef]
- Koleva, P.; Bridgman, S.; Kozyrskyj, A. The Infant Gut Microbiome: Evidence for Obesity Risk and Dietary Intervention. Nutrients 2015, 7, 2237–2260. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Federici, M. Gut Microbiome and Microbial Metabolites: A New System Affecting Metabolic Disorders. J. Endocrinol. Investig. 2019, 42, 1011–1018. [Google Scholar] [CrossRef]
- Rezabakhsh, A.; Habtemariam, S.; Parvizi, R.; Meddahi-Pellé, A.; Ruiz, V.R.; Pavon-Djavid, G.; Barzgari, A. The Gut-Heart Axis: A Correlation between Paneth Cells’ Dysfunction, Microbiome Dysbiosis, and Cardiovascular Diseases. Cell Commun. Signal. 2025, 23, 347. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef]
- Shabani, M.; Ghoshehy, A.; Mottaghi, A.M.; Chegini, Z.; Kerami, A.; Shariati, A.; Taati Moghadam, M. The Relationship between Gut Microbiome and Human Diseases: Mechanisms, Predisposing Factors and Potential Intervention. Front. Cell. Infect. Microbiol. 2025, 15, 1516010. [Google Scholar] [CrossRef] [PubMed]
- Carrizales-Sánchez, A.K.; García-Cayuela, T.; Hernández-Brenes, C.; Senés-Guerrero, C. Gut Microbiota Associations with Metabolic Syndrome and Relevance of Its Study in Pediatric Subjects. Gut Microbes 2021, 13, 1960135. [Google Scholar] [CrossRef]
- De Moura E Dias, M.; Ribeiro, M.G.C.; Kravchychyn, A.C.P.; Hermsdorff, H.H.M. Microbiota-Gut-Brain Axis and Impaired Satiety in Individuals with Obesity: A Potentially Bidirectional Association. Curr. Nutr. Rep. 2025, 14, 92. [Google Scholar] [CrossRef] [PubMed]
- Mogoş, G.F.R.; Manciulea, M.; Enache, R.-M.; Pavelescu, L.A.; Popescu (Roşu), O.A.; Cretoiu, S.M.; Marinescu, I. Intestinal Microbiota in Early Life: Latest Findings Regarding the Role of Probiotics as a Treatment Approach for Dysbiosis. Nutrients 2025, 17, 2071. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Liu, L.; Li, M.; Qin, Y.; Liu, Y.; Li, M.; Lian, B.; Guo, R.; Xiao, Y.; Yin, C. Childhood Obesity and Insulin Resistance Is Correlated with Gut Microbiome Serum Protein: An Integrated Metagenomic and Proteomic Analysis. Sci. Rep. 2025, 15, 21436. [Google Scholar] [CrossRef]
- Iqbal, F.; Shenoy, P.A.; Lewis, L.E.S.; Siva, N.; Purkayastha, J.; Eshwara, V.K. Influence of Perinatal Antibiotic on Neonatal Gut Microbiota: A Prospective Cohort Study. BMC Pediatr. 2025, 25, 560. [Google Scholar] [CrossRef]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef]
- Nohesara, S.; Mostafavi Abdolmaleky, H.; Pirani, A.; Thiagalingam, S. Therapeutic Horizons: Gut Microbiome, Neuroinflammation, and Epigenetics in Neuropsychiatric Disorders. Cells 2025, 14, 1027. [Google Scholar] [CrossRef] [PubMed]
- Gyarmati, P.; Song, Y.; Dotimas, J.; Yoshiba, G.; Christison, A. Cross-sectional Comparisons of Gut Microbiome and Short-chain Fatty Acid Levels among Children with Varied Weight Classifications. Pediatr. Obes. 2021, 16, e12750. [Google Scholar] [CrossRef] [PubMed]
- Morgado, M.C.; Sousa, M.; Coelho, A.B.; Costa, J.A.; Seabra, A. Exploring Gut Microbiota and the Influence of Physical Activity Interventions on Overweight and Obese Children and Adolescents: A Systematic Review. Healthcare 2023, 11, 2459. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Cassader, M. Obesity, Diabetes, and Gut Microbiota. Diabetes Care 2010, 33, 2277–2284. [Google Scholar] [CrossRef]
- Akagbosu, C.O.; Nadler, E.P.; Levy, S.; Hourigan, S.K. The Role of the Gut Microbiome in Pediatric Obesity and Bariatric Surgery. Int. J. Mol. Sci. 2022, 23, 15421. [Google Scholar] [CrossRef] [PubMed]
- Del Chierico, F.; Abbatini, F.; Russo, A.; Quagliariello, A.; Reddel, S.; Capoccia, D.; Caccamo, R.; Ginanni Corradini, S.; Nobili, V.; De Peppo, F.; et al. Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Front. Microbiol. 2018, 9, 1210. [Google Scholar] [CrossRef]
- Indiani, C.M.D.S.P.; Rizzardi, K.F.; Castelo, P.M.; Ferraz, L.F.C.; Darrieux, M.; Parisotto, T.M. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child. Obes. 2018, 14, 501–509. [Google Scholar] [CrossRef]
- Wang, L.; Yi, Q.; Xu, H.; Liu, H.; Tan, B.; Deng, H.; Chen, Y.; Wang, R.; Tang, F.; Cheng, X.; et al. Alterations in the Gut Microbiota Community Are Associated with Childhood Obesity and Precocious Puberty. BMC Microbiol. 2024, 24, 311. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Brestoff, J.R.; Artis, D. Immune Regulation of Metabolic Homeostasis in Health and Disease. Cell 2015, 161, 146–160. [Google Scholar] [CrossRef]
- Tarantino, G. Gut Microbiome, Obesity-Related Comorbidities, and Low-Grade Chronic Inflammation. J. Clin. Endocrinol. Metab. 2014, 99, 2343–2346. [Google Scholar] [CrossRef]
- Da Silva, T.F.; Casarotti, S.N.; De Oliveira, G.L.V.; Penna, A.L.B. The Impact of Probiotics, Prebiotics, and Synbiotics on the Biochemical, Clinical, and Immunological Markers, as Well as on the Gut Microbiota of Obese Hosts. Crit. Rev. Food Sci. Nutr. 2021, 61, 337–355. [Google Scholar] [CrossRef]
- Granato, A.; Xie, Q.Y.; Wong, A.; Yau, C.; Noseworthy, R.; Chen, T.; Gianetto-Hill, C.; Allen-Vercoe, E.; Guidos, C.J.; Hamilton, J.K.; et al. Metabolic Dysfunction Associated with Alterations in Gut Microbiota in Adolescents with Obesity. Diabetes 2025, 74, 720–733. [Google Scholar] [CrossRef]
- Cao, B.; Sun, Y.; Lam, C.; Chen, Y.; Dri, C.E.; McIntyre, R.S. Interaction between Dietary Omega-3 Polyunsaturated Fatty Acids, Obesity and Gut Microbiota in Preclinical Models: A Systematic Review of Randomized Controlled Trials. Diabetes Obes. Metab. 2025, 27, 4643–4661. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Yin, J.; Gong, Z.; Sun, J.; Shen, S.; Yang, Y.; Liu, T.; Wang, L.; Huo, J. Integrating Metabolomics and Gut Microbiota to Identify Key Biomarkers and Regulatory Pathways Underlying Metabolic Heterogeneity in Childhood Obesity. Nutrients 2025, 17, 1876. [Google Scholar] [CrossRef]
- Chen, Y.; Tilves, C.; Bohn, B.; Doyon, M.; Bouchard, L.; Perron, P.; Guerin, R.; Masse, E.; Hivert, M.; Mueller, N.T. Gut Microbiota and Microbial Metabolites Are Associated with Body Composition in 5-year-old Children: A Cross-sectional Study in the Gen3G Cohort. Pediatr. Obes. 2025, 20, e70007. [Google Scholar] [CrossRef]
- Chekima, K.; Yan, S.W.; Lee, S.W.H.; Wong, T.Z.; Noor, M.I.; Ooi, Y.B.; Metzendorf, M.-I.; Lai, N.M. Low Glycaemic Index or Low Glycaemic Load Diets for People with Overweight or Obesity. Cochrane Database Syst. Rev. 2023, 2023, CD005105. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health: A Critical Review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Myhrstad, M.C.W.; Tunsjø, H.; Charnock, C.; Telle-Hansen, V.H. Dietary Fiber, Gut Microbiota, and Metabolic Regulation—Current Status in Human Randomized Trials. Nutrients 2020, 12, 859. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- Perrone, P.; D’Angelo, S. Gut Microbiota Modulation Through Mediterranean Diet Foods: Implications for Human Health. Nutrients 2025, 17, 948. [Google Scholar] [CrossRef]
- Khavandegar, A.; Heidarzadeh, A.; Angoorani, P.; Hasani-Ranjbar, S.; Ejtahed, H.-S.; Larijani, B.; Qorbani, M. Adherence to the Mediterranean Diet Can Beneficially Affect the Gut Microbiota Composition: A Systematic Review. BMC Med. Genom. 2024, 17, 91. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Chambers, E.S.; Byrne, C.S.; Rugyendo, A.; Morrison, D.J.; Preston, T.; Tedford, C.; Bell, J.D.; Thomas, L.; Akbar, A.N.; Riddell, N.E.; et al. The Effects of Dietary Supplementation with Inulin and Inulin-propionate Ester on Hepatic Steatosis in Adults with Non-alcoholic Fatty Liver Disease. Diabetes Obes. Metab. 2019, 21, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Gómez, G.; Yañez, F.; Soler, Z.; Pons-Tarin, M.; Mayorga, L.; Herrera-deGuise, C.; Borruel, N.; Rodriguez-Sinovas, A.; Consegal, M.; Manjón, I.; et al. Microbiome Multi-Omics Analysis Reveals Novel Biomarkers and Mechanisms Linked with CD Etiopathology. Biomark. Res. 2025, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean Diet: Epidemiological and Molecular Aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef]
- Zambrano, A.K.; Cadena-Ullauri, S.; Ruiz-Pozo, V.A.; Tamayo-Trujillo, R.; Paz-Cruz, E.; Guevara-Ramírez, P.; Frias-Toral, E.; Simancas-Racines, D. Impact of Fundamental Components of the Mediterranean Diet on the Microbiota Composition in Blood Pressure Regulation. J. Transl. Med. 2024, 22, 417. [Google Scholar] [CrossRef]
- Garicano Vilar, E.; López Oliva, S.; Penadés, B.F.; Sánchez Niño, G.M.; Terrén Lora, A.; Sanz Rojo, S.; Mauro Martín, I.S. Mediterranean Diet Effect on the Intestinal Microbiota, Symptoms, and Markers in Patients with Functional Gastrointestinal Disorders. Microorganisms 2024, 12, 1969. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, W.; Wan, X.; Lv, X.; Lin, P.; Si, S.; Xue, F.; Wang, A.; Cao, Y. The Effects of Mediterranean Diet on Cardiovascular Risk Factors, Glycemic Control and Weight Loss in Patients with Type 2 Diabetes: A Meta-Analysis. BMC Nutr. 2024, 10, 59. [Google Scholar] [CrossRef]
- Qu, C.; Zhao, J.; Lai, J.; Wu, X.; Huang, P.; Zhu, T.; Li, Y.; Liu, T.; Yuan, J.; Wang, N.; et al. Adherence to a Mediterranean Diet Is Associated with a Lower Risk of Diabetic Kidney Disease among Individuals with Hyperglycemia: A Prospective Cohort Study. BMC Med. 2024, 22, 224. [Google Scholar] [CrossRef]
- Sebastian, S.A.; Padda, I.; Johal, G. Long-Term Impact of Mediterranean Diet on Cardiovascular Disease Prevention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Probl. Cardiol. 2024, 49, 102509. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; García-Hermoso, A.; Martínez-González, M.Á.; Rodríguez-Artalejo, F. Mediterranean Diet and Cardiometabolic Biomarkers in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2421976. [Google Scholar] [CrossRef]
- Yurtdaş, G.; Akbulut, G.; Baran, M.; Yılmaz, C. The Effects of Mediterranean Diet on Hepatic Steatosis, Oxidative Stress, and Inflammation in Adolescents with non-alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Pediatr. Obes. 2022, 17, e12872. [Google Scholar] [CrossRef] [PubMed]
- Blancas-Sánchez, I.M.; Del Rosal Jurado, M.; Aparicio-Martínez, P.; Quintana Navarro, G.; Vaquero-Abellan, M.; Castro Jiménez, R.A.; Fonseca Pozo, F.J. A Mediterranean-Diet-Based Nutritional Intervention for Children with Prediabetes in a Rural Town: A Pilot Randomized Controlled Trial. Nutrients 2022, 14, 3614. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, F.; Wang, R.; Sun, B.; Liu, P.J. Effects of Probiotics, Prebiotics, and Synbiotics on Cardiometabolic Risk Factors in Children and Adolescents with Overweight or Obesity: A Systematic Review and Bayesian Network Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2024, 1–15. [Google Scholar] [CrossRef]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, Inflammation, and the Gut Microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef]
- Amat-Bou, M.; Garcia-Ribera, S.; Climent, E.; Piquer-Garcia, I.; Corripio, R.; Sanchez-Infantes, D.; Villalta, L.; Elias, M.; Jiménez-Chillarón, J.C.; Chenoll, E.; et al. Effects of Bifidobacterium Animalis Subsp. Lactis (BPL1) Supplementation in Children and Adolescents with Prader-Willi Syndrome: A Randomized Crossover Trial. Nutrients 2020, 12, 3123. [Google Scholar] [CrossRef]
- Loy, M.H.; Usseglio, J.; Lasalandra, D.; Gold, M.A. Probiotic Use in Children and Adolescents with Overweight or Obesity: A Scoping Review. Child. Obes. 2023, 19, 145–159. [Google Scholar] [CrossRef]
- Vajro, P.; Mandato, C.; Licenziati, M.R.; Franzese, A.; Vitale, D.F.; Lenta, S.; Caropreso, M.; Vallone, G.; Meli, R. Effects of Lactobacillus Rhamnosus Strain GG in Pediatric Obesity-Related Liver Disease. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 740–743. [Google Scholar] [CrossRef]
- López-Moreno, A.; Suárez, A.; Avanzi, C.; Monteoliva-Sánchez, M.; Aguilera, M. Probiotic Strains and Intervention Total Doses for Modulating Obesity-Related Microbiota Dysbiosis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1921. [Google Scholar] [CrossRef]
- Jones, R.B.; Alderete, T.L.; Martin, A.A.; Geary, B.A.; Hwang, D.H.; Palmer, S.L.; Goran, M.I. Probiotic Supplementation Increases Obesity with No Detectable Effects on Liver Fat or Gut Microbiota in Obese Hispanic Adolescents: A 16-Week, Randomized, Placebo-Controlled Trial. Pediatr. Obes. 2018, 13, 705–714. [Google Scholar] [CrossRef]
- Luzzi, A.; Briata, I.M.; Di Napoli, I.; Giugliano, S.; Di Sabatino, A.; Rescigno, M.; Cena, H. Prebiotics, Probiotics, Synbiotics and Postbiotics to Adolescents in Metabolic Syndrome. Clin. Nutr. 2024, 43, 1433–1446. [Google Scholar] [CrossRef] [PubMed]
- Wieërs, G.; Belkhir, L.; Enaud, R.; Leclercq, S.; Philippart de Foy, J.-M.; Dequenne, I.; de Timary, P.; Cani, P.D. How Probiotics Affect the Microbiota. Front. Cell. Infect. Microbiol. 2019, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Shen, X.; Shi, X.; Sakandar, H.A.; Quan, K.; Li, Y.; Jin, H.; Kwok, L.-Y.; Zhang, H.; Sun, Z. Targeting Gut Microbiota and Metabolism as the Major Probiotic Mechanism-An Evidence-Based Review. Trends Food Sci. Technol. 2023, 138, 178–198. [Google Scholar] [CrossRef]
- Crovesy, L.; Ostrowski, M.; Ferreira, D.M.T.P.; Rosado, E.L.; Soares-Mota, M. Effect of Lactobacillus on Body Weight and Body Fat in Overweight Subjects: A Systematic Review of Randomized Controlled Clinical Trials. Int. J. Obes. 2017, 41, 1607–1614. [Google Scholar] [CrossRef]
- Ejtahed, H.-S.; Angoorani, P.; Soroush, A.-R.; Atlasi, R.; Hasani-Ranjbar, S.; Mortazavian, A.M.; Larijani, B. Probiotics Supplementation for the Obesity Management; A Systematic Review of Animal Studies and Clinical Trials. J. Funct. Foods 2019, 52, 228–242. [Google Scholar] [CrossRef]
- Choi, W.J.; Dong, H.J.; Jeong, H.U.; Jung, H.H.; Kim, Y.-H.; Kim, T.H. Antiobesity Effects of Lactobacillus Plantarum LMT1-48 Accompanied by Inhibition of Enterobacter Cloacae in the Intestine of Diet-Induced Obese Mice. J. Med. Food 2019, 22, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Dong, H.J.; Jeong, H.U.; Ryu, D.W.; Song, S.M.; Kim, Y.R.; Jung, H.H.; Kim, T.H.; Kim, Y.-H. Lactobacillus Plantarum LMT1-48 Exerts Anti-Obesity Effect in High-Fat Diet-Induced Obese Mice by Regulating Expression of Lipogenic Genes. Sci. Rep. 2020, 10, 869. [Google Scholar] [CrossRef]
- Sohn, M.; Jung, H.; Lee, W.S.; Kim, T.H.; Lim, S. Effect of Lactobacillus Plantarum LMT1-48 on Body Fat in Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Metab. J. 2023, 47, 92–103. [Google Scholar] [CrossRef]
- Lee, S.-B.; Yoo, B.; Baeg, C.; Yun, J.; Ryu, D.; Kim, G.; Kim, S.; Shin, H.; Lee, J.H. A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Lactobacillus Plantarum LMT1-48 on Body Fat Loss. Nutrients 2025, 17, 1191. [Google Scholar] [CrossRef]
- Solito, A.; Bozzi Cionci, N.; Calgaro, M.; Caputo, M.; Vannini, L.; Hasballa, I.; Archero, F.; Giglione, E.; Ricotti, R.; Walker, G.E.; et al. Supplementation with Bifidobacterium Breve BR03 and B632 Strains Improved Insulin Sensitivity in Children and Adolescents with Obesity in a Cross-over, Randomized Double-Blind Placebo-Controlled Trial. Clin. Nutr. 2021, 40, 4585–4594. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.K.; Youn, S.J.; Choi, Y.; Eun, S.W.; Shin, S.M. Body Fat Reduction Effect of Bifidobacterium Breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients 2022, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Minami, J.; Iwabuchi, N.; Tanaka, M.; Yamauchi, K.; Xiao, J.; Abe, F.; Sakane, N. Effects of Bifidobacterium Breve B-3 on Body Fat Reductions in Pre-Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Biosci. Microbiota Food Health 2018, 37, 67–75. [Google Scholar] [CrossRef]
- Kondo, S.; Xiao, J.; Satoh, T.; Odamaki, T.; Takahashi, S.; Sugahara, H.; Yaeshima, T.; Iwatsuki, K.; Kamei, A.; Abe, K. Antiobesity Effects of Bifidobacterium Breve Strain B-3 Supplementation in a Mouse Model with High-Fat Diet-Induced Obesity. Biosci. Biotechnol. Biochem. 2010, 74, 1656–1661. [Google Scholar] [CrossRef]
- Kondo, S.; Kamei, A.; Xiao, J.Z.; Iwatsuki, K.; Abe, K. Bifidobacterium Breve B-3 Exerts Metabolic Syndrome-Suppressing Effects in the Liver of Diet-Induced Obese Mice: A DNA Microarray Analysis. Benef. Microbes 2013, 4, 247–252. [Google Scholar] [CrossRef]
- Minami, J.; Kondo, S.; Yanagisawa, N.; Odamaki, T.; Xiao, J.; Abe, F.; Nakajima, S.; Hamamoto, Y.; Saitoh, S.; Shimoda, T. Oral Administration of Bifidobacterium Breve B-3 Modifies Metabolic Functions in Adults with Obese Tendencies in a Randomised Controlled Trial. J. Nutr. Sci. 2015, 4, e17. [Google Scholar] [CrossRef]
- Rodrigo, T.; Dulani, S.; Nimali Seneviratne, S.; De Silva, A.P.; Fernando, J.; De Silva, H.J.; Jayasekera; Wickramasinghe, V.P. Effects of Probiotics Combined with Dietary and Lifestyle Modification on Clinical, Biochemical, and Radiological Parameters in Obese Children with Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis: A Randomized Clinical Trial. Clin. Exp. Pediatr. 2022, 65, 304–311. [Google Scholar] [CrossRef]
- Chen, A.-C.; Fang, T.-J.; Ho, H.-H.; Chen, J.-F.; Kuo, Y.-W.; Huang, Y.-Y.; Tsai, S.-Y.; Wu, S.-F.; Lin, H.-C.; Yeh, Y.-T. A Multi-Strain Probiotic Blend Reshaped Obesity-Related Gut Dysbiosis and Improved Lipid Metabolism in Obese Children. Front. Nutr. 2022, 9, 922993. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, T.; Qin, L.; Wu, L. Effects of Probiotic Administration on Overweight or Obese Children: A Meta-Analysis and Systematic Review. J. Transl. Med. 2023, 21, 525. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Liber, A.; Szajewska, H. Effect of Oligofructose Supplementation on Body Weight in Overweight and Obese Children: A Randomised, Double-Blind, Placebo-Controlled Trial. Br. J. Nutr. 2014, 112, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Okuda, M.; Sasaki, S.; Kunitsugu, I.; Shigeta, M. Dietary Fiber Consumption Decreases the Risks of Overweight and Hypercholesterolemia in Japanese Children. Ann. Nutr. Metab. 2015, 67, 58–64. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, M.; Deehan, E.C.; Cai, C.; Madsen, K.L.; Wine, E.; Li, G.; Li, J.; Liu, J.; Zhang, Z. Dietary Fiber for the Prevention of Childhood Obesity: A Focus on the Involvement of the Gut Microbiota. Gut Microbes 2024, 16, 2387796. [Google Scholar] [CrossRef]
- Fiore, G.; Magenes, V.C.; DI Profio, E.; Milanta, C.; Calcaterra, V.; Diamanti, A.; Campoy, C.; Zuccotti, G.; Verduci, E. Gut Microbiota in Obesity and Related Comorbidities in Children and Adolescents: The Role of Biotics in Treatment. Minerva Pediatr. 2022, 74, 632–649. [Google Scholar] [CrossRef]
- Antoniotti, V.; Partenope, C.; Solito, A.; Mancioppi, V.; Baima, J.; Medina, F.; Dimarakis, S.; Agostini, A.; Sista, M.T.; Monzani, A.; et al. Efficacy of Myo-Inositol and Zinc on Insulin Resistance in a Paediatric Population with Obesity. Diabetes Obes. Metab. 2025, 27, 1932–1939. [Google Scholar] [CrossRef]
- Wang, Y.; Salonen, A.; Jian, C. Can Prebiotics Help Tackle the Childhood Obesity Epidemic? Front. Endocrinol. 2023, 14, 1178155. [Google Scholar] [CrossRef]
- Nicolucci, A.C.; Hume, M.P.; Martínez, I.; Mayengbam, S.; Walter, J.; Reimer, R.A. Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity. Gastroenterology 2017, 153, 711–722. [Google Scholar] [CrossRef]
- Hume, M.P.; Nicolucci, A.C.; Reimer, R.A. Prebiotic Supplementation Improves Appetite Control in Children with Overweight and Obesity: A Randomized Controlled Trial1, 2, 3. Am. J. Clin. Nutr. 2017, 105, 790–799. [Google Scholar] [CrossRef]
- Visuthranukul, C.; Kwanbunbumpen, T.; Chongpison, Y.; Chamni, S.; Panichsillaphakit, E.; Uaariyapanichkul, J.; Maholarnkij, S.; Chomtho, S. The Impact of Dietary Fiber as a Prebiotic on Inflammation in Children with Obesity. Foods 2022, 11, 2856. [Google Scholar] [CrossRef]
- Tayebi, S.M.; Poorhabibi, H.; Heidary, D.; Amini, M.A.; Sadeghi, A. Impact of Aerobic Exercise on Chronic Inflammation in Older Adults: A Systematic Review and Meta-Analysis. BMC Sports Sci. Med. Rehabil. 2025, 17, 229. [Google Scholar] [CrossRef] [PubMed]
- Hennigar, S.R.; McClung, J.P.; Pasiakos, S.M. Nutritional Interventions and the IL-6 Response to Exercise. FASEB J. 2017, 31, 3719–3728. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, K.; Schjerling, P.; Pedersen, B.K. Physical Activity and Plasma Interleukin-6 in Humans—Effect of Intensity of Exercise. Eur. J. Appl. Physiol. 2000, 83, 512–515. [Google Scholar] [CrossRef]
- Hojman, P.; Brolin, C.; Nørgaard-Christensen, N.; Dethlefsen, C.; Lauenborg, B.; Olsen, C.K.; Åbom, M.M.; Krag, T.; Gehl, J.; Pedersen, B.K. IL-6 Release from Muscles during Exercise Is Stimulated by Lactate-Dependent Protease Activity. Am. J. Physiol.-Endocrinol. Metab. 2019, 316, E940–E947. [Google Scholar] [CrossRef] [PubMed]
- Visuthranukul, C.; Sriswasdi, S.; Tepaamorndech, S.; Chamni, S.; Leelahavanichkul, A.; Joyjinda, Y.; Aksornkitti, V.; Chomtho, S. Enhancing Gut Microbiota and Microbial Function with Inulin Supplementation in Children with Obesity. Int. J. Obes. 2024, 48, 1696–1704. [Google Scholar] [CrossRef]
- Holmes, Z.C.; Silverman, J.D.; Dressman, H.K.; Wei, Z.; Dallow, E.P.; Armstrong, S.C.; Seed, P.C.; Rawls, J.F.; David, L.A. Short-Chain Fatty Acid Production by Gut Microbiota from Children with Obesity Differs According to Prebiotic Choice and Bacterial Community Composition. mBio 2020, 11, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Yadav, M.; Sehrawat, N.; Sharma, A.K.; Kumar, S.; Singh, R.; Kumar, A.; Kumar, A. Synbiotics as Potent Functional Food: Recent Updates on Therapeutic Potential and Mechanistic Insight. J. Food Sci. Technol. 2024, 61, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Barengolts, E. Gut microbiota, prebiotics, probiotics, and synbiotics in management of obesity and prediabetes: Review of randomized controlled trials. Endocr. Pract. 2016, 22, 1224–1234. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Álvarez-Arraño, V.; Martín-Peláez, S. Effects of Probiotics and Synbiotics on Weight Loss in Subjects with Overweight or Obesity: A Systematic Review. Nutrients 2021, 13, 3627. [Google Scholar] [CrossRef]
- Kilic Yildirim, G.; Dinleyici, M.; Vandenplas, Y.; Dinleyici, E.C. Effects of Synbiotic Supplementation on Intestinal Microbiota Composition in Children and Adolescents with Exogenous Obesity: (Probesity-2 Trial). Gut Pathog. 2023, 15, 36. [Google Scholar] [CrossRef]
- Ipar, N.; Aydogdu, S.D.; Yildirim, G.K.; Inal, M.; Gies, I.; Vandenplas, Y.; Dinleyici, E.C. Effects of Synbiotic on Anthropometry, Lipid Profile and Oxidative Stress in Obese Children. Benef. Microbes 2015, 6, 775–782. [Google Scholar] [CrossRef]
- Kianifar, H.R.; Ahanchian, H.; Safarian, M.; Javid, A.; Farsad-Naeimi, A.; Jafari, S.A.; kiani, M.A.; Dahri, M. Effects of Synbiotics on Anthropometric Indices of Obesity in Children: A Randomized Double-Blind Placebo-Controlled Pilot Study. Top. Clin. Nutr. 2018, 33, 118–126. [Google Scholar] [CrossRef]
- Mohammadi, H.; Ghavami, A.; Hadi, A.; Askari, G.; Symonds, M.; Miraghajani, M. Effects of Pro-/Synbiotic Supplementation on Anthropometric and Metabolic Indices in Overweight or Obese Children and Adolescents: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2019, 44, 269–276. [Google Scholar] [CrossRef]
- Atazadegan, M.A.; Heidari-Beni, M.; Entezari, M.H.; Sharifianjazi, F.; Kelishadi, R. Effects of Synbiotic Supplementation on Anthropometric Indices and Body Composition in Overweight or Obese Children and Adolescents: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. World J. Pediatr. 2023, 19, 356–365. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Nazarinejad, Z.; Molani-Gol, R.; Roozbeh Nasiraie, L.; Ebrahimzadeh-Attari, V. Postbiotics as a Novel Intervention for Obesity Management and Improving Metabolic Parameters: A Systematic Review and Meta-Analysis of Animal Studies. J. Transl. Med. 2025, 23, 913. [Google Scholar] [CrossRef]
- Kovacs, E.; Szabo, K.; Varvara, R.-A.; Uifãlean, A.; Cozma, A.; Vulturar, R.; Sitar-Taut, A.V.; Gabbianelli, R.; Myhrstad, M.C.W.; Telle-Hansen, V.H.; et al. Resistant Starch and Microbiota-Derived Secondary Metabolites: A Focus on Postbiotic Pathways in Gut Health and Irritable Bowel Syndrome. Int. J. Mol. Sci. 2025, 26, 7753. [Google Scholar] [CrossRef]
- Eslami, M.; Pakmehr, A.; Pourghazi, F.; Kami, A.; Ejtahed, H.-S.; Mohajeri-Tehrani, M.; Hasani-Ranjbar, S.; Larijani, B. The Anti-Obesity Effects of Postbiotics: A Systematic Review of Pre-Clinical and Clinical Studies. Clin. Nutr. ESPEN 2024, 64, 370–389. [Google Scholar] [CrossRef]
- Han, H.; Xiong, H.; Liu, Z.; Liu, X.; Wang, H.; Kou, J.; Yi, D.; Shi, Y.; Wu, H.; Qiao, J. Pasteurized Akkermansia Muciniphila Timepie001 Ameliorates DSS-Induced Ulcerative Colitis in Mice by Alleviating Intestinal Injury and Modulating Gut Microbiota. Front. Microbiol. 2025, 16, 1542522. [Google Scholar] [CrossRef]
- Cavallari, J.F.; Fullerton, M.D.; Duggan, B.M.; Foley, K.P.; Denou, E.; Smith, B.K.; Desjardins, E.M.; Henriksbo, B.D.; Kim, K.J.; Tuinema, B.R.; et al. Muramyl Dipeptide-Based Postbiotics Mitigate Obesity-Induced Insulin Resistance via IRF4. Cell Metab. 2017, 25, 1063–1074.e3. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; Van Der Beek, C.M.; Jocken, J.W.E.; Goossens, G.H.; Holst, J.J.; Olde Damink, S.W.M.; Lenaerts, K.; Dejong, C.H.C.; Blaak, E.E. Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Sci. Rep. 2017, 7, 2360. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.S.W.; O’Sullivan, J.M.; Derraik, J.G.B.; Cutfield, W.S. Gut Microbiome Transfer—Finding the Perfect Fit. Clin. Endocrinol. 2020, 93, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Yadegar, A.; Bar-Yoseph, H.; Monaghan, T.M.; Pakpour, S.; Severino, A.; Kuijper, E.J.; Smits, W.K.; Terveer, E.M.; Neupane, S.; Nabavi-Rad, A.; et al. Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clin. Microbiol. Rev. 2024, 37, e00060-22. [Google Scholar] [CrossRef]
- Cymbal, M.; Chatterjee, A.; Baggott, B. Fecal Microbiota Transplantation: Current Evidence and Future Directions. Clevel. Clin. J. Med. 2025, 92, 421–428. [Google Scholar] [CrossRef]
- Del Chierico, F.; Manco, M.; Gardini, S.; Guarrasi, V.; Russo, A.; Bianchi, M.; Tortosa, V.; Quagliariello, A.; Shashaj, B.; Fintini, D.; et al. Fecal Microbiota Signatures of Insulin Resistance, Inflammation, and Metabolic Syndrome in Youth with Obesity: A Pilot Study. Acta Diabetol. 2021, 58, 1009–1022. [Google Scholar] [CrossRef]
- Nóbrega, R.; Costa, C.F.F.A.; Cerqueira, Ó.; Inês, A.; Carrola, J.S.; Gonçalves, C. Association between Gut Microbiota and Pediatric Obesity: A Systematic Review. Nutrition 2025, 140, 112875. [Google Scholar] [CrossRef] [PubMed]
- Zikou, E.; Koliaki, C.; Makrilakis, K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024, 12, 1871. [Google Scholar] [CrossRef]
- Yu, E.W.; Gao, L.; Stastka, P.; Cheney, M.C.; Mahabamunuge, J.; Torres Soto, M.; Ford, C.B.; Bryant, J.A.; Henn, M.R.; Hohmann, E.L. Fecal Microbiota Transplantation for the Improvement of Metabolism in Obesity: The FMT-TRIM Double-Blind Placebo-Controlled Pilot Trial. PLoS Med. 2020, 17, e1003051. [Google Scholar] [CrossRef]
- Kootte, R.S.; Levin, E.; Salojärvi, J.; Smits, L.P.; Hartstra, A.V.; Udayappan, S.D.; Hermes, G.; Bouter, K.E.; Koopen, A.M.; Holst, J.J.; et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017, 26, 611–619.e6. [Google Scholar] [CrossRef]
- Leong, K.S.W.; Jayasinghe, T.N.; Wilson, B.C.; Derraik, J.G.B.; Albert, B.B.; Chiavaroli, V.; Svirskis, D.M.; Beck, K.L.; Conlon, C.A.; Jiang, Y.; et al. Effects of Fecal Microbiome Transfer in Adolescents with Obesity: The Gut Bugs Randomized Controlled Trial. JAMA Netw. Open 2020, 3, e2030415. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Z.; Liu, Y.; Jian, E.; Ye, P.; Jiang, H.; Yu, X.; Cai, P. Research Trends between Childhood Obesity and Gut Microbiota: A Bibliometric Analysis (2002–2023). Front. Microbiol. 2024, 15, 1461306. [Google Scholar] [CrossRef]
- Fahim, S.M.; Huey, S.L.; Palma Molina, X.E.; Agarwal, N.; Ridwan, P.; Ji, N.; Kibbee, M.; Kuriyan, R.; Finkelstein, J.L.; Mehta, S. Gut Microbiome-Based Interventions for the Management of Obesity in Children and Adolescents Aged up to 19 Years. Cochrane Database Syst. Rev. 2025, 2025, CD015875. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-Talk between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef]
- Wilson, B.C.; Zuppi, M.; Derraik, J.G.B.; Albert, B.B.; Tweedie-Cullen, R.Y.; Leong, K.S.W.; Beck, K.L.; Vatanen, T.; O’Sullivan, J.M.; Cutfield, W.S.; et al. Long-Term Health Outcomes in Adolescents with Obesity Treated with Faecal Microbiota Transplantation: 4-Year Follow-Up. Nat. Commun. 2025, 16, 7786. [Google Scholar] [CrossRef]
- Zou, B.; Liu, S.-X.; Li, X.-S.; He, J.-Y.; Dong, C.; Ruan, M.-L.; Xu, L.; Bai, T.; Huang, Z.-H.; Shu, S.-N. Long-Term Safety and Efficacy of Fecal Microbiota Transplantation in 74 Children: A Single-Center Retrospective Study. Front. Pediatr. 2022, 10, 964154. [Google Scholar] [CrossRef] [PubMed]
- Conover, K.R.; Absah, I.; Ballal, S.; Brumbaugh, D.; Cho, S.; Cardenas, M.C.; Knackstedt, E.D.; Goyal, A.; Jensen, M.K.; Kaplan, J.L.; et al. Fecal Microbiota Transplantation for Clostridioides difficile Infection in Immunocompromised Pediatric Patients. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 440–446. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Ahmed, H.; Leyrolle, Q.; Leclercq, S.; Amadieu, C.; Meuronen, T.; Layé, S.; Cani, P.D.; Kärkkäinen, O.; Bindels, L.B.; et al. Fecal Transplantation from Humans with Obesity to Mice Drives a Selective Microbial Signature without Impacting Behavioral and Metabolic Health. Sci. Rep. 2025, 15, 15455. [Google Scholar] [CrossRef]
- Porcari, S.; Benech, N.; Valles-Colomer, M.; Segata, N.; Gasbarrini, A.; Cammarota, G.; Sokol, H.; Ianiro, G. Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic. Cell Host Microbe 2023, 31, 712–733. [Google Scholar] [CrossRef]
- Lai, Z.-L.; Tseng, C.-H.; Ho, H.J.; Cheung, C.K.Y.; Lin, J.-Y.; Chen, Y.-J.; Cheng, F.-C.; Hsu, Y.-C.; Lin, J.-T.; El-Omar, E.M.; et al. Fecal Microbiota Transplantation Confers Beneficial Metabolic Effects of Diet and Exercise on Diet-Induced Obese Mice. Sci. Rep. 2018, 8, 15625. [Google Scholar] [CrossRef]
- Bhatia, Z.; Kumar, S.; Seshadri, S. Fecal Microbiota Transplantation as a Potential Therapeutic Approach to Improve Impaired Glucose Tolerance via Gut Microbiota Modulation in Rat Model. J. Diabetes. Metab. Disord. 2024, 24, 28. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, G.; Qian, J.; Xu, Y.; Li, B.; Shi, Y.; Le, G.; Xie, Y. Fecal Microbiota Transplantation from Methionine-Restricted Diet Mouse Donors Reduces Fat Deposition in Obese Mice by Remodeling the Gut Microbiota. Food Biosci. 2024, 59, 104255. [Google Scholar] [CrossRef]
- Mao, X.; Larsen, S.B.; Zachariassen, L.S.F.; Brunse, A.; Adamberg, S.; Mejia, J.L.C.; Larsen, F.; Adamberg, K.; Nielsen, D.S.; Hansen, A.K.; et al. Transfer of Modified Gut Viromes Improves Symptoms Associated with Metabolic Syndrome in Obese Male Mice. Nat. Commun. 2024, 15, 4704. [Google Scholar] [CrossRef]
- Wenjiao, D.; Yurou, W.; Jiaqi, X.; Yan, H.; Hongfang, J.; Min, C.; Jianjin, G. Animal Studies on the Modulation of Differential Efficacy of Polyethylene Glycol Loxenatide by Intestinal Flora. Front. Endocrinol. 2025, 16, 1508473. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wu, C.; Xu, J.; Ye, C.; Chen, X.; Tian, H.; Zong, N.; Zhang, S.; Li, L.; Gao, Y.; et al. Donor-Recipient Intermicrobial Interactions Impact Transfer of Subspecies and Fecal Microbiota Transplantation Outcome. Cell Host Microbe 2024, 32, 349–365.e4. [Google Scholar] [CrossRef] [PubMed]
- Keubler, L.M.; Talbot, S.R.; Bleich, A.; Boyle, E.C. Systematic Review and Meta-Analysis of the Effect of Fecal Microbiota Transplantation on Behavior in Animals. Neurosci. Biobehav. Rev. 2023, 153, 105316. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, T.; Debédat, J.; Marquet, F.; Da-Cunha, C.; Ichou, F.; Guerre-Millo, M.; Kapel, N.; Aron-Wisnewsky, J.; Clément, K. Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter. Front. Microbiol. 2019, 9, 3289. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Y.; Ma, B.; Wang, Z.; Wei, B. Gut Microbiota and Exercise: Probiotics to Modify the Composition and Roles of the Gut Microbiota in the Context of 3P Medicine. Microb. Ecol. 2025, 88, 38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcina, G.; Di Filippo, P.; De Biasio, D.; Cesaro, F.G.; Frattolillo, V.; Massa, A.; De Cesare, M.; Marzuillo, P.; Miraglia del Giudice, E.; Di Sessa, A. Targeting the Gut Microbiota in Pediatric Obesity: A Paradigm Shift in Prevention and Treatment? A Comprehensive Review. Nutrients 2025, 17, 2942. https://doi.org/10.3390/nu17182942
Forcina G, Di Filippo P, De Biasio D, Cesaro FG, Frattolillo V, Massa A, De Cesare M, Marzuillo P, Miraglia del Giudice E, Di Sessa A. Targeting the Gut Microbiota in Pediatric Obesity: A Paradigm Shift in Prevention and Treatment? A Comprehensive Review. Nutrients. 2025; 17(18):2942. https://doi.org/10.3390/nu17182942
Chicago/Turabian StyleForcina, Gianmario, Pierluigi Di Filippo, Delia De Biasio, Francesco Giustino Cesaro, Vittoria Frattolillo, Alessia Massa, Maria De Cesare, Pierluigi Marzuillo, Emanuele Miraglia del Giudice, and Anna Di Sessa. 2025. "Targeting the Gut Microbiota in Pediatric Obesity: A Paradigm Shift in Prevention and Treatment? A Comprehensive Review" Nutrients 17, no. 18: 2942. https://doi.org/10.3390/nu17182942
APA StyleForcina, G., Di Filippo, P., De Biasio, D., Cesaro, F. G., Frattolillo, V., Massa, A., De Cesare, M., Marzuillo, P., Miraglia del Giudice, E., & Di Sessa, A. (2025). Targeting the Gut Microbiota in Pediatric Obesity: A Paradigm Shift in Prevention and Treatment? A Comprehensive Review. Nutrients, 17(18), 2942. https://doi.org/10.3390/nu17182942