A Systematic Review Evaluating the Impact of Fibre Supplementation on Gut Health and Other Clinical Outcomes in Adults with Haematological Malignancies During Haematopoietic Stem Cell Transplantation
Abstract
1. Introduction
1.1. Graft vs. Host Disease
1.2. Role of Dietary Fibre
1.3. Types of Fibres
2. Methodology
2.1. Eligibility Criteria
2.2. Literature Search Methodology
Data Extraction
2.3. Quality Assessment
3. Results
3.1. Study Selection
3.2. Quality Assessment Outcomes
3.3. Study Design
3.4. Population Demographics and Treatments
3.5. Intervention Types
3.6. Study Outcomes Measured
3.7. Gastrointestinal Outcomes
Author, Year, Country | Study Design | Patient Population and Sample Size | Intervention | Outcomes Measured | Results Summary |
---|---|---|---|---|---|
Andermann et al., 2021 [39] | Prospective cohort study | Adults with HM Reduced-intensity conditioning Allogeneic HCT I: n = 5 C: n = 6 | Intervention: Single prebiotic (FOS) Daily dose: Prebiotic FOS (Fibrose F97, Cosucra, Belgium) 5, 10, or 15 g (cohort divided into 3 groups of n = 5) Start: Day of hospital admission; 5 days prior to transplant Stop: 21 days post-transplantation | Primary: FOS tolerability, adverse events, feasibility of delivery Secondary: aGvHD incidence (CTCAE v4.0), survival, Clostridioides difficile-associated diarrhoea (CDAD) incidence, Shannon diversity, key taxa changes, SCFA levels, FOXP3 + Treg concentrations, and CTLA4+ T-cells | Feasibility met the preset goal. Faecal butyrate levels were significantly higher in the intervention group, plus the dominant plasma metabolites were significant more stable compared to controls. Also, significant alterations in intestinal and plasma metabolites versus control. |
Yoshifuji et al., 2020 Japan [40] | Prospective study | Adults with HM Reduced- and high-intensity conditioning Allogeneic HCT I: n = 49 C (historical): n = 142 Faecal samples collected: I: n = 30, C: n = 72 | Intervention: Prebiotic Daily dose: 16 g resistant starch (RS) and 1 pack GFO (prebiotic mixture)
Stop: Day 28 post-transplantation Control: Usual care | Primary: Incidence and duration of diarrhoea (CTCAE v4.0) and oral mucositis (OAG score) Secondary: Incidence of aGvHD and TPN use Additional measures: Prebiotic intake, fibre provision, opioid use, survival, Shannon diversity, butyrate-producing bacteria abundance, and butyrate concentration | Prebiotic intake mitigated mucosal injury and reduced the incidence of all aGVHD grades. Intervention group had significant maintenance of gut microbial diversity and preserved butyrate-producing bacterial population. Also, post-transplantation faecal butyrate concentration was maintained or increased more frequently than in the control group. |
Iyama et al., 2014 Japan [41] | Non-RCT | Adults with HM Reduced- and high-intensity conditioning Allogeneic HCT I: n = 22 C: (historical): n = 22 Matched-pair control group Controls were matched to cases at a 1:1 ratio based on factors like age, disease status, and pre-transplant conditioning to reduce bias | Daily dose: 2 packs of 15 g GFO 3 × per day (Otsuka Pharmaceuticals Co., Ltd.)
Stop: 28 days post-transplantation. Early stop if vomiting occurred | Primary: Severity and incidence of diarrhoea and oral mucositis (CTCAE v4.0) Secondary: Days of diarrhoea, mucositis, weight loss, TPN, microbial infection, hospital days, survival, aGvHD incidence and severity, and relapse rate | Fewer days of diarrhoea grades 3–4 in patients receiving the intervention than in those who did not; also, days of mucositis grades 3–4 at day 100 was 100% in the GFO group and 77.3% in the control group. Weight loss and the number of days of intravenous hyperalimentation were better in the intervention group. Other outcomes were not affected. |
Author (Year) | Group | Reported Clinical Outcomes | Reported Microbiome/Metabolome Outcomes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wt. | Diarrhoea | Mucositis | Infections/Immunological Markers | aGvHD | Disease | Microbiome/Metabolome | |||||||||
Loss (Kg) | Duration (Days) | Incidence (%) | Max. Grade | Duration (Days) | Max Grade | Days of Fever >38.5 °C | Reported Infection | Immune Cell Markers | Incidence n, % | Survival Rate | SI | Butyrate Bacterial Abundance | Faecal Butyrate Levels | ||
Anderman et al (2021) [39] | FOS | CDAC 0, 0% BSI 6.40% | D28 CTLA4+ CD4+ T-Cells higher FOS group p < 0.001 D28 FOXP3 + CD4+ T-cells higher FOS group p = 0.013 | 9, 60% Grades I–IV | Overall mortality 6 months, 2.13% 12 months, 3.20% | No significant difference between groups and recovered to baseline by D + 100 | No significant differences between groups | ||||||||
Control | CDAC 2.13% BSI 3.19% | 9, 56% Grades I–IV | Overall mortality 6 months, 2.13% 12 months, 6.38% | ||||||||||||
Yoshifuji et al. (2020) [40] | RS + GFO | Duration less in RS + GFO gp * (p = 0.049) RS + GFO, 7 days; Control, 9 days | Incidence of no diarrhoea RS + FOS, 17%; Control, 7% | Grade 3+ similar between groups | Moderate–severe oral mucositis less in FOS group * (p < 0.001) 11 days vs. 14 days | MAX OAG higher in control than prebiotic (p = 0.101) | Cumulative incidence is lower in RS + GFO group at D100 for All grade aGvHD 53.1% vs. 73.2% (p = 0.004) Grades II–IV 24.5% vs. 46.1% (p = 0.006) Skin—all grades 44.9% vs. 63.4% (p = 0.010) | OS higher in RS + GFO group No significant difference in NRM | SI higher pre-HCT in control * (p = 0.011), D28 no significant difference in SI between groups (p = 0.444) | Butyrate-producing bacterial levels sustained in RS + GFO group from pre-HCT to D28 p = 0.013) | Butyrate levels higher pre-HCT in control p = 0.013) | ||||
Historical Control | |||||||||||||||
Iyama et al. (2014) [41] | G.FO | Lower % wt. loss 2.15% GFO vs. 6.42% * p < 0.001 | Less days grades 3–4 with GFO *, 0.86 vs. 3.27 days (p = 0.001), or grade 2, 3.73 vs. 7.68 days | No difference in max. grade score, 2 (GFO) vs. 2.68 (control) (p = 0.68) | Less days grades 3–4 with GFO, 3.86 vs. 6 days (p = 0.033) | No significant difference in max. grade score, 1.55 (GFO) vs. 2.05 (control) (p = 0.2) | No difference in days of fever, 0.73 days | No difference in documented microbial infections, 4/22 (GFO vs. 5/22 control | No significant difference in incidence and severity | OS greater in GFO group D + 100 (100% vs. 77.3%) * (p = 0.0091) | |||||
Control |
aGVHD Incidence and Risk
3.8. Nutritional Outcomes
3.9. Microbiological Outcomes
3.10. Immunity, Infection, and Fever
4. Discussion
4.1. Fibre Structure and Composition May Explain Variations in Outcomes
4.2. Changes in Microbiota Were Underreported and Limited by Pre-Transplant Dysbiosis
4.3. The Role of Prebiotic Fibre Supplementation on aGvHD Remains Inconclusive
4.4. Prebiotics Appear to Offer Differential Improvements in Mucositis
4.5. Limitations
4.6. Implications for Clinical Practice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hu, J.; Wang, J.; Li, Y.; Xue, K.; Kan, J. Use of dietary fibers in reducing the risk of several cancer types: An umbrella review. Nutrients 2023, 15, 2545. [Google Scholar] [CrossRef]
- Uribe-Herranz, M.; Klein-González, N.; Gerardo Rodríguez-Lobato, L.; Juan, M.; de Larrea, C.F. Gut microbiota influence in hematological malignancies: From Genesis to cure. Int. J. Mol. Sci. 2021, 22, 1026. [Google Scholar] [CrossRef]
- Hoffbrand, A.V.; Chowdary, P.; Collins, G.P.; Loke, J. Chapter 25, Hematopoietic stem cell transplantation. In Hoffbrands Essential Haematology, 9th ed.; John Wiley & Sons Ltd.: Chichester, UK, 2024; Chapter 25; pp. 138–301, 328–330. ISBN 9781394168170. [Google Scholar]
- Gea-Banacloche, J. Risks and Epidemiology of Infections After Hematopoietic Stem Cell Transplantation. Transpl. Infect. 2016, 15, 81–99. [Google Scholar] [CrossRef]
- Cancer Research UK. How Chemotherapy Works. 2024. Available online: https://www.cancerresearchuk.org/about-cancer/treatment/chemotherapy/how-chemotherapy-works (accessed on 25 December 2024).
- Montassier, E.; Gastinne, T.; Vangay, P.; Al-Ghalith, G.A.; Bruley des Varannes, S.; Massart, S.; Moreau, P.; Potel, G.; de La Cochetière, F.M.; Batard, E.; et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 2015, 42, 515–528. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Fraser, A.; Paul, M.; Vidal, L.; Lawrie, T.A.; van de Wetering, M.D.; Kremer, L.C.M.; Leibovici, L. Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst. Rev. 2012, 18, CD004386. [Google Scholar] [CrossRef]
- Andersen, S.; Henden, A.; Staudacher, H.; Kennedy, G.; Gavin, N. Fibre intake and supplementation during treatment for Haematological Malignancies: A scoping review. J. Hum. Nutr. Diet. 2023, 36, 1982–1991. [Google Scholar] [CrossRef]
- de Vere Hunt, I.; M Kilgour, J.M.; Danby, R.; Peniket, A.; Matin, R.N. “Is this the GVHD?” A qualitative exploration of quality of life issues in individuals with graft-versus-host disease following allogeneic stem cell transplant and their experiences of a specialist multidisciplinary bone marrow transplant service. Health Qual. Life Outcomes 2021, 19, 11. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline clinical nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Murphy, J.; Munir, F.; Davey, F.; Miller, L.; Cutress, R.; White, R.; Lloyd, M.; Roe, J.; Granger, C.; Burden, S.; et al. The provision of nutritional advice and care for cancer patients: A UK national survey of healthcare professionals. Support. Care Cancer 2021, 29, 2435–2442. [Google Scholar] [CrossRef]
- Miller, L.J.; Halliday, V.; Snowden, J.A.; Aithal, G.P.; Lee, J.; Greenfield, D.M. Health professional attitudes and perceptions of prehabilitation and nutrition before haematopoietic cell transplantation. J. Hum. Nutr. Diet. 2024, 37, 1007–1021. [Google Scholar] [CrossRef]
- Couriel, D.; Caldera, H.; Champlin, R.; Komanduri, K. Acute graft-versus-host disease: Pathophysiology, clinical manifestations, and management. Cancer 2004, 101, 1936–1946. [Google Scholar] [CrossRef]
- Mathewson, N.D.; Jenq, R.; Mathew, A.V.; Koenigsknecht, M.; Hanash, A.; Toubai, T.; Oravecz-Wilson, K.; Wu, S.R.; Sun, Y.; Rossi, C.; et al. Gut microbiome–derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 2016, 17, 505–513. [Google Scholar] [CrossRef]
- Toubai, T.; Sun, Y.; Reddy, P. GVHD pathophysiology: Is acute different from chronic? Best Pract. Res. Clin. Haematol. 2008, 21, 101–117. [Google Scholar] [CrossRef]
- Rashid, N.; Gooley, T.; Furlong, T.; Lee, S.J.; Martin, P.J.; Storb, R.; Mielcarek, M. Impact of Donor Statin Treatment on Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation. Transplant. Cell Ther. 2023, 29, 701.e1–701.e8. [Google Scholar] [CrossRef]
- Di Francesco, A.; Raiola, A.M.; Dominietto, A.; Di Grazia, C.; Gualandi, F.; Van Lint, M.T.; Bregante, S.; Chiusolo, P.; Laurenti, L.; Sora, F.; et al. Acute graft versus host disease 1976–2020: Reduced incidence and predictive factors. Front. Med. 2024, 10, 1320692. [Google Scholar] [CrossRef]
- Greinix, H.T.; Eikema, D.J.; Koster, L.; Penack, O.; Yakoub-Agha, I.; Montoto, S.; Chabannon, C.; Styczynski, J.; Nagler, A.; Robin, M.; et al. Improved outcome of patients with graft-versus-host disease after allogeneic hematopoietic cell transplantation for hematologic malignancies over time: An EBMT mega-file study. Haematologica 2022, 107, 1054–1063. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Makki, K.; Edward, C.; Deehan, E.D.; Walter, J.; Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef]
- Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Shi, H.; ter Horst, R.; Nielen, S.; Bloemendaal, M.; Jaeger, M.; Joosten, I.; Koenen, H.; Leo, A.B.; Joosten, L.A.B.; Schweren, L.J.S.; et al. The gut microbiome as mediator between diet and its impact on immune function. Sci. Rep. 2022, 12, 5149. [Google Scholar] [CrossRef]
- Yue, X.; Wen, S.; Long-Kun, D.; Man, Y.; Chang, S.; Min, Z.; Shuang-Yu, L.; Xin, Q.; Jie, M.; Liang, W. Three important short-chain fatty acids (SCFAs) attenuate the inflammatory response induced by 5-FU and maintain the integrity of intestinal mucosal tight junction. BMC Immunol. 2022, 23, 19. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. Food Sci. Technol. 2011, 49, 255–266. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef]
- McKeown, N.M.; Fahey, G.C.; Slavin, J.; van der Kamp, J.-W. Fibre intake for Optimal Health: How can healthcare professionals support people to reach dietary recommendations? BMJ 2022, 378, e054370. [Google Scholar] [CrossRef]
- Williams, B.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J. “Dietary fibre”: Moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Zhang, N.; Jin, M.; Wang, K.; Zhang, Z.; Shah, N.P.; Wei, H. Functional oligosaccharide fermentation in the gut: Improving intestinal health and its determinant factors-A review. Carbohydr. Polym. 2022, 284, 119043. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Batista, V.L.; da Silva, T.F.; de Jesus, L.C.L.; Coelho-Rocha, N.D.; Barroso, F.A.L.; Tavares, L.M.; Azevedo, V.; Mancha-Agresti, P.; Drumond, M.M. Probiotics, Prebiotics, Synbiotics, and Paraprobiotics as a Therapeutic Alternative for Intestinal Mucositis. Front. Microbiol. 2020, 11, 544490. [Google Scholar] [CrossRef]
- Ciernikova, S.; Sevcikova, A.; Drgona, L.; Mego, M. Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188990. [Google Scholar] [CrossRef]
- Spencer, C.N.; McQuade, J.L.; Gopalakrishnan, V.; McCulloch, J.A.; Vetizou, M.; Cogdill, A.P.; Khan, M.A.W.; Zhang, X.; White, M.G.; Peterson, C.B.; et al. Dietary fiber and probiotics affect the gut microbiome and melanoma immunotherapy response. Science 2021, 374, 1632–1640. [Google Scholar] [CrossRef]
- Radjabzadeh, D.; Boer, C.G.; Beth, S.A.; van der Wal, P.; Kiefte-De Jong, J.C.; Jansen, M.A.E.; Konstantinov, S.R.; Peppelenbosch, M.P.; Hays, J.P.; Jaddoe, V.W.V.; et al. Diversity, compositional and functional differences between gut microbiota of children and adults. Sci. Rep. 2020, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. 2020. Available online: https://www.prisma-statement.org/ (accessed on 25 December 2024).
- Wells, G.A.; Shea, B.; D O’Connell, D.; J Peterson, J.; V Welch, J.; M Losos, M.; Tugwell, P.; The Ottawa Hospital. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2021. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 25 December 2024).
- PUBRICA. Assessing Study Quality in Meta-Analysis Using Newcastle-Ottawa Scale. 2023. Available online: https://pubrica.com/academy/meta-analysis/assessing-study-quality-in-meta-analysis-using-newcastle-ottawa-scale/ (accessed on 25 December 2024).
- Andermann, T.M.; Fouladi, F.; Tamburini, F.B.; Sahaf, B.; Tkachenko, E.; Greene, C.; Buckley, M.T.; Brooks, E.F.; Hedlin, H.; Arai, S.; et al. A Fructo-Oligosaccharide Prebiotic Is Well Tolerated in Adults Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Phase I Dose-Escalation Trial. Transplant. Cell. Ther. 2021, 27, 932.e1–932.e11. [Google Scholar] [CrossRef] [PubMed]
- Yoshifuji, K.; Inamoto, K.; Kiridoshi, Y.; Takeshita, K.; Sasajima, S.; Shiraishi, Y.; Yamashita, Y.; Nisaka, Y.; Ogura, Y.; Takeuchi, R.; et al. Prebiotics protect against acute graft-versus-host disease and preserve the gut microbiota in Stem Cell Transplantation. Blood Adv. 2020, 4, 4607–4617. [Google Scholar] [CrossRef]
- Iyama, S.; Sato, T.; Tatsumi, H.; Hashimoto, A.; Tatekoshi, A.; Kamihara, Y.; Horiguchi, H.; Ibata, S.; Ono, K.; Murase, K.; et al. Efficacy of Enteral Supplementation Enriched with Glutamine, Fiber, and Oligosaccharide on Mucosal Injury following Hematopoietic Stem Cell Transplantation. Case Rep. Oncol. 2014, 7, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. The P value and statistical significance: Misunderstandings, explanations, challenges, and alternatives. Indian J. Psychol. Med. 2019, 41, 210–215. [Google Scholar] [CrossRef]
- Tuncer, H.H.; Rana, N.; Milani, C.; Darko, A.; Al-Homsi, S.A. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation. World J. Gastroenterol. 2012, 18, 1851. [Google Scholar] [CrossRef]
- Beals, M.; Gross, L.; Harrell, S. Diversity Indices: Shannon’s H and E. 2000. Available online: https://legacy.nimbios.org/~gross/bioed/bealsmodules/shannonDI.html (accessed on 25 December 2024).
- Nogal, A.; Valdes, A.M.; Menni, C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021, 13, 1897212. [Google Scholar] [CrossRef]
- Cheon, S.; Kim, G.; Bae, J.H.; Lee, D.H.; Seong, H.; Kim, D.H.; Han, J.S.; Lim, S.Y.; Han, N.S. Comparative analysis of prebiotic effects of four oligosaccharides using in vitro gut model: Digestibility, microbiome, and metabolome changes. FEMS Microbiol. Ecol. 2023, 99, fiad002. [Google Scholar] [CrossRef]
- Dou, Y.; Yu, X.; Luo, Y.; Chen, B.; Ma, D.; Zhu, J. Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3298. [Google Scholar] [CrossRef]
- Pouille, C.L.; Ouaza, S.; Roels, E.; Behra, J.; Tourret, M.; Molinié, R.; Fontaine, J.-X.; Mathiron, D.; Gagneul, D.; Taminiau, B.; et al. Chicory: Understanding the Effects and Effectors of This Functional Food. Nutrients 2022, 14, 957. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Sun, Y.; Ye, H.; Hu, B.; Zeng, X. Lactosucrose and its analogues derived from lactose and sucrose: Influence of structure on human intestinal microbiota in vitro. J. Funct. Foods 2015, 17, 73–82. [Google Scholar] [CrossRef]
- Silvério, S.C.; Macedo, E.A.; Teixeira, J.A.; Rodrigues, L.R. Perspectives on the biotechnological production and potential applications of lactosucrose: A review. J. Funct. Foods 2015, 19, 74–90. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, N.; Zhang, H.; Li, H.; Guo, J.; Zhang, Y.; Chen, Y.; Wang, Y.; Shi, N. Resistant starch and the gut microbiome: Exploring beneficial interactions and dietary impacts. Food Chem. X 2024, 21, 101118. [Google Scholar] [CrossRef]
- Adrianna Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.M.; Krystian Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Nan, D.; Yao, W.; Huang, L.; Liu, R.; Chen, X.; Xia, W.; Sheng, H.; Zhang, H.; Liang, X.; Lu, Y. Glutamine and cancer: Metabolism, immune microenvironment, and therapeutic targets. Cell Commun. Signal. 2025, 23, 45. [Google Scholar] [CrossRef]
- Muranaka, H.; Akinsola, R.; Billet, S.; Pandol, S.J.; Hendifar, A.E.; Bhowmick, N.A.; Gong, J. Glutamine Supplementation as an Anticancer Strategy: A Potential Therapeutic Alternative to the Convention. Cancers 2024, 16, 1057. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Yang, Q. Glutamine and leukemia research: Progress and clinical prospects. Discov. Oncol. 2024, 15, 391. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Li, M.; Vadakath, R.; Henke, K.A.; Tran, T.C.; Li, H.; Yamadi, M.; Darbha, S.; Yang, Y.; Kabat, J.; et al. Gα13 restricts nutrient driven proliferation in mucosal germinal centers. Nat. Immunol. 2024, 25, 1718–1730. [Google Scholar] [CrossRef]
- do Carmo, M.M.R.; Walker, J.C.; Novello, D.; Caselato, V.M.; Sgarbieri, V.C.; Ouwehand, A.C.; Andreollo, N.A.; Hiane, P.A.; Dos Santos, E.F. Polydextrose: Physiological Function, and Effects on Health. Nutrients 2016, 8, 553. [Google Scholar] [CrossRef]
- Yoshioka, M.; Shimomura, Y.; Suzuki, M. Dietary polydextrose affects the large intestine in rats. J. Nutr. 1994, 124, 539–547. [Google Scholar] [CrossRef]
- Roytiö, H.; Ouwehand, A.C. The fermentation of polydextrose in the large intestine and its beneficial effects. Benef. Microbes 2014, 5, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Luo, B.; Xiang, M.; Liu, H.; Zhai, Z.; Wang, T.; Craig, S.A. Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am. J. Clin. Nutr. 2000, 72, 1503–1509. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Helmink, B.A.; Spencer, C.N.; Reuben, A.; Wargo, J.A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018, 33, 570–580. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Rehman, T.U.; Elhusseini, H.; Kazadi, D.; Halaweish, H.; Khan, M.H.; Hoeschen, A.; Cao, Q.; Luo, X. Randomized Double-Blind Phase II Trial of Fecal Microbiota Transplantation Versus Placebo in Allogeneic Hematopoietic Cell Transplantation and AML. J. Clin. Oncol. 2023, 41, 5306–5319. [Google Scholar] [CrossRef] [PubMed]
- Innes, A.J.; Mullish, B.H.; Ghani, R.; Szydlo, R.M.; Apperley, J.F.; Olavarria, E.; Renuka Palanicawandar, R.; Kanfer, E.J.; Milojkovic, D.; Julie A K McDonald, J.A.K.; et al. Fecal Microbiota Transplant Mitigates Adverse Outcomes Seen in Patients Colonized with Multidrug-Resistant Organisms Undergoing Allogeneic Hematopoietic Cell Transplantation. Front. Cell. Infect. Microbiol. 2021, 11, 684659. [Google Scholar] [CrossRef] [PubMed]
- Goeser, F.; Sifft, B.; Stein-Thoeringer, C.; Farowski, F.; Strassburg, C.P.; Brossart, P.; Higgins, P.G.; Scheid, C.; Wolf, D.; Tobias A W Holderried, T.A.W.; et al. Fecal microbiota transfer for refractory intestinal graft-versus-host disease—Experience from two German tertiary centers. Eur. J. Haematol. 2021, 107, 229–245. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Marcela A Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef]
- Yue, X.; Zhou, H.; Wang, S.; Chen, X.; Xiao, H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med. 2024, 13, e6799. [Google Scholar] [CrossRef]
- Yu, J.; Sun, H.; Cao, W.; Han, L.; Song, Y.; Wan, D.; Jiang, Z. Applications of gut microbiota in patients with hematopoietic stem-cell transplantation. Exp. Hematol. Oncol. 2020, 9, 35. [Google Scholar] [CrossRef]
- Hong, T.; Wang, R.; Wang, X.; Yang, S.; Wang, W.; Gao, Q.; Zhang, X. Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Front. Immunol. 2021, 12, 644982. [Google Scholar] [CrossRef]
- Tarantino, G.; Saraceni, F.; Mancini, G.; Poiani, M.; Maroni, L.; Goteri, G.; Scortechini, I.; Fiorentini, A.; Dubbini, M.V.; Marini, F.; et al. Gastrointestinal complications after allogeneic hematopoietic stem cell transplant: A multidisciplinary approach with early endoscopic evaluation. Clin. Hematol. Int. 2021, 3, 161. [Google Scholar] [CrossRef]
- Berlana, D. Parenteral Nutrition Overview. Nutrients 2022, 14, 4480. [Google Scholar] [CrossRef]
- Rau, S.; Gregg, A.; Yaceczko, S.; Limketkai, B. Prebiotics and Probiotics for Gastrointestinal Disorders. Nutrients 2024, 16, 778. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef]
- Gardiner, B.; Wardill, H.R.; O’Connor, G.; Hargrave, D.; Lett, A.M. The impact of fibre and prebiotic interventions on outcomes in cancer and haematopoietic stem cell transplantation: A systematic review. Clin. Nutr. 2025, 44, 86–100. [Google Scholar] [CrossRef]
- Riwes, M.M.; Golob, J.L.; Magenau, J.; Shan, M.; Dick, G.; Braun, T.; Schmidt, T.M.; Pawarode, A.; Anand, S.; Ghosh, M.; et al. Feasibility of a dietary intervention to modify gut microbial metabolism in patients with hematopoietic stem cell transplantation. Nat. Med. 2023, 29, 2805–2813. [Google Scholar] [CrossRef] [PubMed]
- Yazdandoust, E.; Hajifathali, A.; Roshandel, E.; Zarif, M.N.; Pourfathollah, A.A.; Parkhideh, S.; Mehdizadeh, M.; Amini-Kafiabad, S. Gut microbiota intervention by pre and probiotics can induce regulatory T cells and reduce the risk of severe acute GVHD following allogeneic hematopoietic stem cell transplantation. Transpl. Immunol. 2023, 78, 101836. [Google Scholar] [CrossRef] [PubMed]
- Malay, S.; Chung, K.C. The choice of controls for providing validity and evidence in clinical research. Plast. Reconstr. Surg. 2012, 130, 959–965. [Google Scholar] [CrossRef]
- Jackson, P.P.J.; Wijeyesekera, A.; Rastall, R.A. Inulin-type fructans and short-chain fructooligosaccharides—Their role within the food industry as fat and sugar replacers and texture modifiers—What needs to be considered! Food Sci. Nutr. 2022, 11, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Crohn’s & Colitis UK. Food and Crohn’s or Colitis. 2023. Available online: https://crohnsandcolitis.org.uk/info-support/information-about-crohns-and-colitis/all-information-about-crohns-and-colitis/living-with-crohns-or-colitis/food (accessed on 26 December 2024).
PICO | Inclusion Criteria |
---|---|
Patient | Adults 18 years and over with histological confirmation of haematological malignancy receiving haematopoietic stem cell transplantation. |
Intervention | Oral prebiotic fibre dietary advice or supplementation. |
Comparison | Usual care or no prebiotic fibre supplementation. |
Outcomes |
|
First Author | Study Type | Selection (Maximum 4 *) | Compatibility (Maximum 2 *) | Outcome/Exposure (Maximum 3 *) | Overall Score (Maximum 9 *) |
---|---|---|---|---|---|
Andermann et al. | Prospective cohort study | 3 | 1 | 3 | 7 |
Yoshifuji et al. | Prospective study | 2 | 2 | 3 | 7 |
Iyama et al. | Non-RCT | 4 | 1 | 3 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCullough, F.; Cheung, J.; Miller, L.J. A Systematic Review Evaluating the Impact of Fibre Supplementation on Gut Health and Other Clinical Outcomes in Adults with Haematological Malignancies During Haematopoietic Stem Cell Transplantation. Nutrients 2025, 17, 2973. https://doi.org/10.3390/nu17182973
McCullough F, Cheung J, Miller LJ. A Systematic Review Evaluating the Impact of Fibre Supplementation on Gut Health and Other Clinical Outcomes in Adults with Haematological Malignancies During Haematopoietic Stem Cell Transplantation. Nutrients. 2025; 17(18):2973. https://doi.org/10.3390/nu17182973
Chicago/Turabian StyleMcCullough, Fiona, Janice Cheung, and Laura J. Miller. 2025. "A Systematic Review Evaluating the Impact of Fibre Supplementation on Gut Health and Other Clinical Outcomes in Adults with Haematological Malignancies During Haematopoietic Stem Cell Transplantation" Nutrients 17, no. 18: 2973. https://doi.org/10.3390/nu17182973
APA StyleMcCullough, F., Cheung, J., & Miller, L. J. (2025). A Systematic Review Evaluating the Impact of Fibre Supplementation on Gut Health and Other Clinical Outcomes in Adults with Haematological Malignancies During Haematopoietic Stem Cell Transplantation. Nutrients, 17(18), 2973. https://doi.org/10.3390/nu17182973