Plant-Based Functional Foods from Borneo
Abstract
:1. Introduction
2. Tropical Fruits
2.1. Durians
2.2. Purple Mangosteen and Other Garcinia Fruits
2.3. Rambutans and Pulasan
2.4. Langsat
2.5. Dabai
2.6. Native Mango in Borneo
2.7. Artocarpus Species
2.8. Baccaurea Species
2.9. Averrhoa Species
2.10. Wild Berries
2.11. Pangium Species
2.12. Other Underutilised Fruits
3. Fermented Foods
4. Borneo Seaweeds
5. Vegetables
5.1. Terung Dayak
5.2. Ferns
5.3. Borneo Wild Ginger
5.4. Torch Ginger/Bunga Kantan
5.5. Green Leafy Vegetables (Ulam)
5.6. Rebung
5.7. Tubers, Stems and Leaves from Yams
5.8. Edible Mushrooms
5.9. Staple Starch-Based Food
5.10. Root Vegetables
5.11. Other Vegetables
5.12. Other Plant-Derived Food Sources
6. Incorporating Bornean Fruits and Vegetables into Other Asian and Western Diets
7. Opportunities and Innovations
8. Limitations in the Current Studies
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ray, M. Order in the Court: 10 “Trials of the Century”. Encyclopedia Britannica. Available online: https://www.britannica.com/list/order-in-the-court-10-trials-of-the-century (accessed on 10 December 2024).
- Mocatta, G. Borneo’s Biological Treasure Trove. 27 March 2012. Available online: https://www.bbc.com/travel/article/20120323-borneos-biological-treasure-trove (accessed on 10 December 2024).
- McLellan, J. Strategies for revitalizing endangered Borneo languages: A comparison between Negara Brunei Darussalam and Sarawak, Malaysia. Southeast Asia 2014, 14, 14–22. [Google Scholar]
- Keong, C.Y.; Onuma, A. Transboundary ecological conservation, environmental value, and environmental sustainability: Lessons from the heart of Borneo. Sustainability 2021, 13, 9727. [Google Scholar] [CrossRef]
- Moate, M. What Causes Deforestation in Borneo and How Do We Stop It? Earth.Org, 2 March 2023. Available online: https://earth.org/deforestation-in-borneo/ (accessed on 10 December 2024).
- Sundara Rajoo, K.; Lepun, P.; Alan, R.; Singh Karam, D.; Abdu, A.; Rosli, Z.; Izani, N.; James Gerusu, G. Ethnobotanical study of medicinal plants used by the Kenyah community of Borneo. J. Ethnopharmacol. 2023, 301, 115780. [Google Scholar] [CrossRef] [PubMed]
- Bryan, J.E.; Shearman, P.L.; Asner, G.P.; Knapp, D.E.; Aoro, G.; Lokes, B. Extreme differences in forest degradation in Borneo: Comparing practices in Sarawak, Sabah, and Brunei. PLoS ONE 2013, 8, e69679. [Google Scholar] [CrossRef]
- Hali, A.A.; Othman, N.; Ismail, S.R.; Jawan, J.A.; Ibrahim, N.N. Indigenous knowledge and biodiversity conservation in Sabah, Malaysia. Int. J. Soc. Sci. Hum. 2012, 2, 159–163. [Google Scholar] [CrossRef]
- Sabah Biodiversity Centre. Sabah Biodiversity Outlook 2012; Sabah Biodiversity Centre: Sabah, Malaysia, 2012; p. 210. Available online: https://sabc.sabah.gov.my/sites/default/files/uploads/attachments/2020-05/Sabah-Biodiversity-Outlook.pdf (accessed on 14 November 2024).
- Kindelan, K. Plant-Based Diets Reduce Risk of Heart Disease, Dementia, Study Finds. ABC News. 2021. Available online: https://abcnews.go.com/GMA/Wellness/plant-based-diets-reduce-risk-heart-disease-dementia/story?id=76108931 (accessed on 10 December 2024).
- Storz, M.A. What makes a plant-based diet? A review of current concepts and proposal for a standardized plant-based dietary intervention checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, R.J. Definition of a plant-based diet and overview of this special issue. J. Geriatr. Cardiol. 2017, 14, 315. [Google Scholar] [PubMed]
- Adarshan, S.; Sree, V.S.; Muthuramalingam, P.; Nambiar, K.S.; Sevanan, M.; Satish, L.; Venkidasamy, B.; Jeelani, P.G.; Shin, H. Understanding macroalgae: A comprehensive exploration of nutraceutical, pharmaceutical, and omics dimensions. Plants 2024, 13, 113. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Castellari, M. Algae as nutritional and functional food sources. Foods 2023, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Soret, S. Sustainability of plant-based diets: Back to the future. Am. J. Clin. Nutr. 2014, 100, 476S–482S. [Google Scholar] [CrossRef] [PubMed]
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F.D. The role of plant-based alternative foods in sustainable and healthy food systems: Consumption trends in the UK. Sci. Total Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660S–663S. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Water Scarcity–One of the Greatest Challenges of Our Time; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/newsroom/story/Water-Scarcity-One-of-the-greatest-challenges-of-our-time/en (accessed on 10 December 2024).
- Fresán, U.; Sabaté, J. Vegetarian diets: Planetary health and its alignment with human health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef]
- DeClercq, V.; Nearing, J.T.; Sweeney, E. Plant-based diets and cancer risk: What is the evidence? Curr. Nutr. Rep. 2022, 11, 354–369. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.; Cappuccio, F.P. Plant-based dietary patterns for human and planetary health. Nutrients 2022, 14, 1614. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-Meyer, E.; et al. The safe and effective use of plant-based diets with guidelines for health professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef] [PubMed]
- Kraak, V.I.; Aschemann-Witzel, J. The future of plant-based diets: Aligning healthy marketplace choices with equitable, resilient, and sustainable food systems. Annu. Rev. Public Health 2024, 45, 253–275. [Google Scholar] [CrossRef]
- Agnoli, C.; Baroni, L.; Bertini, I.; Ciappellano, S.; Fabbri, A.; Goggi, S.; Metro, D.; Papa, M.; Sbarbati, R.; Scarino, M.L.; et al. A comprehensive review of healthy effects of vegetarian diets. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- John, O.D.; du Preez, R.; Panchal, S.K.; Brown, L. Tropical foods as functional foods for metabolic syndrome. Food Funct. 2020, 11, 6946–6960. [Google Scholar] [CrossRef]
- Panchal, S.K.; John, O.D.; Mathai, M.L.; Brown, L. Anthocyanins in chronic diseases: The power of purple. Nutrients 2022, 14, 2161. [Google Scholar] [CrossRef] [PubMed]
- Lamb, A. A Guide to Market Fruits of Borneo; Natural History Publications (Borneo): Kota Kinabalu, Malaysia, 2022. [Google Scholar]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Devalaraja, S.; Jain, S.; Yadav, H. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res. Int. 2011, 44, 1856–1865. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Brown, L. Tropical fruits from Australia as potential treatments for metabolic syndrome. Curr. Opin. Pharmacol. 2022, 63, 102182. [Google Scholar] [CrossRef] [PubMed]
- Shaffiq, M.A.; Bujang, J.S.; Harah, M.Z.; Ramaiya, S.D. Marketable wild fruits of Sarawak, Borneo: Their mode of consumption, uses and sugar profiles. Indian J. Tradit. Knowl. 2013, 12, 195–201. [Google Scholar]
- Khoo, H.E.; Azlan, A.; Kong, K.W.; Ismail, A. Phytochemicals and medicinal properties of indigenous tropical fruits with potential for commercial development. Evid. Based Complement. Alternat. Med. 2016, 2016, 7591951. [Google Scholar] [CrossRef] [PubMed]
- Az-Zahra, F.R.; Widya Sari, N.L.; Saputry, R.; Nugroho, G.D.; Sunarto; Pribadi, T.; Setyawan, A.D. Traditional knowledge of the Dayak Tribe (Borneo) in the use of medicinal plants. Biodiversitas 2021, 22, 4633–4647. [Google Scholar] [CrossRef]
- Thorogood, C.J.; Ghazalli, M.N.; Siti-Munirah, M.Y.; Nikong, D.; Kusuma, Y.W.C.; Sudarmono, S.; Witono, J.R. The king of fruits. Plants People Planet 2022, 4, 538–547. [Google Scholar] [CrossRef]
- Sujang, G.B.; Ramaiya, S.D.; Lee, S.Y.; Zakaria, M.H. Characterization of indigenous Durio species from Sarawak, Borneo: Relationships between chemical composition and sensory attributes. PeerJ 2024, 12, e17688. [Google Scholar] [CrossRef] [PubMed]
- Hartati, F.K.; Djauhari, A.B.; Sucahyo, B.S. Proximate and toxicity analysis and the utilization of durian seed flour (Durio Zibethinus Merr). Lett. Appl. NanoBioScience 2023, 12, 151. [Google Scholar]
- Easter, E.M.; Aruno, C. Showing You the Right Way to Eat Durian Flowers. The Star. 28 May 2024. Available online: https://www.thestar.com.my/news/nation/2024/05/28/showing-you-the-right-way-to-eat-durian-flowers (accessed on 1 December 2024).
- Juarah, N.; Surugau, N.; Rusdi, N.A.; Abu-Bakar, M.F.; Suleiman, M. Phytochemical content and antioxidant properties of Bornean wild durian from Sabah. IOP Conf. Ser. Earth Environ. Sci. 2021, 736, 012030. [Google Scholar] [CrossRef]
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; Volume 1. [Google Scholar] [CrossRef]
- John, O.D.; Brown, L.; Panchal, S.K. Garcinia fruits: Their potential to combat metabolic syndrome. In Nutraceuticals and Natural Product Derivatives; Ullah, M.F., Ahmad, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 39–80. [Google Scholar] [CrossRef]
- John, O.D.; Mouatt, P.; Panchal, S.K.; Brown, L. Rind from purple mangosteen (Garcinia mangostana) attenuates diet-induced physiological and metabolic changes in obese rats. Nutrients 2021, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Muhamad Adyab, N.S.; Rahmat, A.; Abdul Kadir, N.A.A.; Jaafar, H.; Shukri, R.; Ramli, N.S. Mangosteen (Garcinia mangostana) flesh supplementation attenuates biochemical and morphological changes in the liver and kidney of high fat diet-induced obese rats. BMC Complement. Altern. Med. 2019, 19, 344. [Google Scholar] [CrossRef] [PubMed]
- Gerten, D.; Salma, I.; Muhammad Shafie, M.S.; Shariah, U.; Brooke, P.; Wong, W.W.W.; Norhayati, M.H. Traditional knowledge and practices related to genus Citrus, Garcinia, Mangifera and Nephelium in Malaysia. Open Access Libr. J. 2015, 2, e1453. [Google Scholar] [CrossRef]
- Hortiforum. Brunei Cherry. Available online: https://hortiforum.com/brunei-cherry/ (accessed on 10 December 2024).
- Haris, M.A.M.; Sani, S.A. Antioxidant screening of Garcinia forbesii originated from Sabah. J. Phys. Conf. Ser. 2022, 2314, 012031. [Google Scholar] [CrossRef]
- Setiawan, A.; Hanum, L.; Pancaning Wardoyo, E.R. The effect of mundu fruit (Garcinia dulcis (Roxb.) Kurz) methanol extract on lyphoprotein prodile and trygliseride white rat (Rattus norvegicus L). J. Biol. Res. 2014, 19, 74–77. [Google Scholar] [CrossRef]
- Khamthong, N.; Hutadilok-Towatana, N. Phytoconstituents and biological activities of Garcinia dulcis (Clusiaceae): A Review. Nat. Prod. Commun. 2017, 12, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Thepthong, P.; Phongpaichit, S.; Carroll, A.R.; Voravuthikunchai, S.P.; Mahabusarakam, W. Prenylated xanthones from the stem bark of Garcinia dulcis. Phytochem. Lett. 2017, 21, 32–37. [Google Scholar] [CrossRef]
- John, O.D.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Physiological and metabolic effects of yellow mangosteen (Garcinia dulcis) rind in rats with diet-induced metabolic syndrome. Int. J. Mol. Sci. 2019, 21, 272. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Zaman, M.K. A comprehensive review on ethnobotany, nutritional values, phytochemistry and pharmacological attributes of ten Garcinia species of South-east Asia. S. Afr. J. Bot. 2022, 148, 39–59. [Google Scholar] [CrossRef]
- Chantree, P.; Martviset, P.; Thongsepee, N.; Sangpairoj, K.; Sornchuer, P. Anti-inflammatory effect of garcinol extracted from Garcinia dulcis via modulating NF-κB signaling pathway. Nutrients 2023, 15, 575. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Baghdadi, A.; Tayebi-Meigooni, A. a-Mangostin-rich extracts from mangosteen pericarp: Optimization of green extraction protocol and evaluation of biological activity. Molecules 2018, 23, 1852. [Google Scholar] [CrossRef] [PubMed]
- Hiranrangsee, L.; Kumaree, K.K.; Sadiq, M.B.; Anal, A.K. Extraction of anthocyanins from pericarp and lipids from seeds of mangosteen (Garcinia mangostana L.) by ultrasound-assisted extraction (UAE) and evaluation of pericarp extract enriched functional ice-cream. J. Food Sci. Technol. 2016, 53, 3806–3813. [Google Scholar] [CrossRef] [PubMed]
- Nerome, H.; Hoshino, R.; Ito, S.; Esaki, R.; Eto, Y.; Wakiyama, S.; Sharmin, T.; Goto, M.; Kanda, H.; Mishima, K. Functional ingredients extraction from Garcinia mangostana pericarp by liquefied dimethyl ether. Eng. J. 2016, 20, 155–162. [Google Scholar] [CrossRef]
- Machmudah, S.; Lestari, S.D.; Widiyastuti; Wahyudiono; Kanda, H.; Winardi, S.; Goto, M. Subcritical water extraction enhancement by adding deep eutectic solvent for extracting xanthone from mangosteen pericarps. J. Supercrit. Fluids 2018, 133, 615–624. [Google Scholar] [CrossRef]
- Chhouk, K.; Quitain, A.T.; Gaspillo, P.-a.D.; Maridable, J.B.; Sasaki, M.; Shimoyama, Y.; Goto, M. Supercritical carbon dioxide-mediated hydrothermal extraction of bioactive compounds from Garcinia mangostana pericarp. J. Supercrit. Fluids 2016, 110, 167–175. [Google Scholar] [CrossRef]
- Hamid, M.A.; Bakar, N.A.; Park, C.S.; Ramli, F.; Wan, W.R. Optimisation of alpha mangostin extraction using supercritical CO2 from Garcinia mangostana. Chem. Eng. Transact. 2018, 63, 577–582. [Google Scholar] [CrossRef]
- Bundeesomchok, K.; Filly, A.; Rakotomanomana, N.; Panichayupakaranant, P.; Chemat, F. Extraction of α-mangostin from Garcinia mangostana L. using alternative solvents: Computational predictive and experimental studies. LWT 2016, 65, 297–303. [Google Scholar] [CrossRef]
- Tangpromphan, P.; Palitsakun, S.; Kaewchada, A.; Jaree, A. Recovery of alpha-mangostin and gamma-mangostin from mangosteen pericarps via green solvent extraction and isocratic preparative chromatography. Case Stud. Chem. Environ. Eng. 2023, 8, 100537. [Google Scholar] [CrossRef]
- Soontornwat, A.; Pongsuttiyakorn, T.; Rakmae, S.; Sritham, E.; Sirisomboon, P.; Pun, U.K.; Krusong, W.; Pornchaloempong, P. Mangosteen pericarp processing technology to create economic value and reduce biowaste. Foods 2024, 13, 2286. [Google Scholar] [CrossRef]
- Yuvanatemiya, V.; Srean, P.; Klangbud, W.K.; Venkatachalam, K.; Wongsa, J.; Parametthanuwat, T.; Charoenphun, N. A review of the influence of various extraction techniques and the biological effects of the xanthones from mangosteen (Garcinia mangostana L.) pericarps. Molecules 2022, 27, 8775. [Google Scholar] [CrossRef] [PubMed]
- Hemachandran, H.; Anantharaman, A.; Mohan, S.; Mohan, G.; Kumar, D.T.; Dey, D.; Kumar, D.; Dey, P.; Choudhury, A.; George Priya Doss, C.; et al. Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples. Food Chem. 2017, 227, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Sayuti, K.; Yenrina, R.; Anggraini, T. Characteristics of “kolang-kaling” (sugar palm fruit jam) with added natural colorants. Pak. J. Nutr. 2017, 16, 69–76. [Google Scholar] [CrossRef]
- Kah Hon, L.; Azrina Abd, A.; Yee Li, K.; Sheau Wei, G.; Kulhar Vijay, S.; Lan Ching, S.; Pichiah, S. Synergized mechanistic and solar photocatalysis features of N-TiO2 functionalised activated carbon. AIMS Mat. Sci. 2017, 4, 800–813. [Google Scholar] [CrossRef]
- Ruthiraan, M.; Abdullah, E.C.; Mubarak, N.M.; Noraini, M.N. A promising route of magnetic based materials for removal of cadmium and methylene blue from waste water. J. Environ. Chem. Eng. 2017, 5, 1447–1455. [Google Scholar] [CrossRef]
- Aizat, W.M.; Ahmad-Hashim, F.H.; Syed Jaafar, S.N. Valorization of mangosteen, “he Queen of Fruits”, and new advances in postharvest and in food and engineering applications: A review. J. Adv. Res. 2019, 20, 61–70. [Google Scholar] [CrossRef]
- Pangsupa, W.; Hunsom, M. Preparation of mangosteen shell-derived activated carbon via KOH activation for adsorptive refining of crude biodiesel. J. Am. Oil Chem. Soc. 2016, 93, 1697–1708. [Google Scholar] [CrossRef]
- Xue, M.; Chen, C.; Ren, Z.; Tan, Y.; Li, B.; Zhang, C. A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery. Mat. Lett. 2017, 209, 594–597. [Google Scholar] [CrossRef]
- Winuprasith, T.; Khomein, P.; Mitbumrung, W.; Suphantharika, M.; Nitithamyong, A.; McClements, D.J. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoll. 2018, 83, 153–164. [Google Scholar] [CrossRef]
- Chakraborty, B.; Mishra, D.S.; Hazarika, B.; Hazarika, T.; Ghosh, S. Chapter 29. Rambutan (Nephelium lapspaceum). In Breeding of Underutilized Fruit Crops, 1st ed.; Ghosh, S.N., Ed.; Jaya Publishing House: New Delhi, India, 2015; pp. 425–439. [Google Scholar]
- Mahmud, N.A.F.U.B.; Rosli, S.N.B.; Hijas, N.H.B.; Newsletter-Nephelium lappaceum L. mybis. 2024. Available online: https://www.mybis.gov.my/art/787 (accessed on 10 December 2024).
- Afzaal, M.; Saeed, F.; Bibi, M.; Ejaz, A.; Shah, Y.A.; Faisal, Z.; Ateeq, H.; Akram, N.; Asghar, A.; Shah, M.A. Nutritional, pharmaceutical, and functional aspects of rambutan in industrial perspective: An updated review. Food Sci. Nutr. 2023, 11, 3675–3685. [Google Scholar] [CrossRef]
- Tsong, J.L.; Goh, L.P.; Gansau, J.A.; How, S.-E. Review of Nephelium lappaceum and Nephelium ramboutan-ake: A high potential supplement. Molecules 2021, 26, 7005. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Pinela, J.; Dias, M.I.; Pereira, C.; Petrović, J.; Soković, M.; Calhelha, R.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Barros, L. Valorization of rambutan (Nephelium lappaceum L.) peel: Chemical composition, biological activity, and optimized recovery of anthocyanins. Food Res. Int. 2023, 165, 112574. [Google Scholar] [CrossRef]
- Biswas, S. Nutritional and phytochemical profile of rambutan: A concise review. Int. J. Food Nutr. Sci. 2021, 10, 577–584. [Google Scholar]
- Hernández-Hernández, C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Flores-Gallegos, A.C.; Morlett-Chávez, J.; Govea-Salas, M.; Ascacio-Valdés, J.A. Rambutan (Nephelium lappaceum L.): Nutritional and functional properties. Trends Food Sci. Technol. 2019, 85, 201–210. [Google Scholar] [CrossRef]
- Mahmood, K.; Kamilah, H.; Alias, A.K.; Ariffin, F. Nutritional and therapeutic potentials of rambutan fruit (Nephelium lappaceum L.) and the by-products: A review. J. Food Meas. Charact. 2018, 12, 1556–1571. [Google Scholar] [CrossRef]
- Lim, T.K. Nephelium ramboutan-ake. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2013; Volume 6, pp. 75–79. [Google Scholar] [CrossRef]
- Chan, C.K.; Goh, B.H.; Kamarudin, M.N.A.; Kadir, H.A. Aqueous fraction of Nephelium ramboutan-ake rind induces mitochondrial-mediated apoptosis in HT-29 human colorectal adenocarcinoma cells. Molecules 2012, 17, 6633–6657. [Google Scholar] [CrossRef]
- Hairunisa, I.; Mentari, I.A.; Julianti, T.; Wikantyasning, E.R.; Cholisoh, Z.; Ningsih, S.C.; Muslim, M.R.F. Antioxidant activities in different parts of pulasan (Nephelium mutabile Blume) from east Borneo. IOP Conf. Ser. Earth Environ. Sci. 2021, 736, 012018. [Google Scholar] [CrossRef]
- Tan, S.S.; Tan, S.T.; Tan, C.X. The anti-hypertensive and hypoglycemic potential of bioactive compounds derived from pulasan rind. Processes 2022, 10, 592. [Google Scholar] [CrossRef]
- Mayanti, T.; Sinaga, S.E.; Supratman, U. Phytochemistry and biological activity of Lansium domesticum Corr. species: A review. J. Pharm. Pharmacol. 2022, 74, 1568–1587. [Google Scholar] [CrossRef]
- Mayanti, T.; Zulfikar; Fawziah, S.; Naini, A.A.; Maharani, R.; Farabi, K.; Nurlelasari; Yusuf, M.; Harneti, D.; Kurnia, D.; et al. New triterpenoids from Lansium domesticum Corr. cv kokossan and their cytotoxic activity. Molecules 2023, 28, 2144. [Google Scholar] [CrossRef] [PubMed]
- Leaman, D.J.; Arnason, J.T.; Yusuf, R.; Sangat-Roemantyo, H.; Soedjito, H.; Angerhofer, C.K.; Pezzuto, J.M. Malaria remedies of the Kenyah of the Apo Kayan, East Kalimantan, Indonesian Borneo: A quantitative assessment of local consensus as an indicator of biological efficacy. J. Ethnopharmacol. 1995, 49, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Monzon, R.B.; Alvior, J.P.; Luczon, L.L.; Morales, A.S.; Mutuc, F.E. Larvicidal potential of five Philippine plants against Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). Southeast Asian J. Trop. Med. Public Health 1994, 25, 755–759. [Google Scholar] [PubMed]
- Subahar, R.; Aulung, A.; Husna, I.; Winita, R.; Susanto, L.; Lubis, N.S.; Firmansyah, N.E. Effects of Lansium domesticum leaf extract on mortality, morphology, and histopathology of Aedes aegypti larvae (Diptera: Culicidae). Int. J. Mosq. Res. 2020, 7, 105–111. [Google Scholar]
- Tilaar, M.; Wih, W.L.; Ranti, A.S.; Wasitaatmadja, S.M.; Junardy, F.D. Review of Lansium domesticum Corrêa and its use in cosmetics. Latin Am. Caribb. Bull. Med. Aromat. Plants 2008, 7, 183–189. [Google Scholar]
- Manosroi, A.; Jantrawut, P.; Sainakham, M.; Manosroi, W.; Manosroi, J. Anticancer activities of the extract from Longkong (Lansium domesticum) young fruits. Pharmaceut. Biol. 2012, 50, 1397–1407. [Google Scholar] [CrossRef]
- Taeri, Y.; Ruslin; Sabarudin; Sida, N.A.; Kasmawati, H.; Diman, L.O.M. Determination of antiradical activity, total phenolic, and total flavonoid contents of extracts and fractions of langsat (Lansium domesticum Corr.) seeds. Borneo J. Pharm. 2020, 3, 249–256. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Mohamed, G.A.; Ibrahim, S.R.M. Lansium domesticum—A fruit with multi-benefits: Traditional uses, phytochemicals, nutritional value, and bioactivities. Nutrients 2022, 14, 1531. [Google Scholar] [CrossRef]
- Ali-Hassan, S.-H.; Fry, J.R.; Abu-Bakar, M.-F. Antioxidative phytochemicals and anti-cholinesterase activity of native kembayau (Canarium odontophyllum) fruit of Sabah, Malaysian Borneo. J. Nutr. Food Sci. 2013, 4, 1000249. [Google Scholar] [CrossRef]
- Chua, H.P.; Nicholas, D.; Suzalyna, M. Phenolic and flavonoid contents and antioxidant activities of selected dabai (Canarium odontophyllum) genotypes. J. Trop. Agric. Food Sci. 2014, 42, 105–114. [Google Scholar]
- Basri, D.F.; Alamin, Z.A.Z.; Chan, K.M. Assessment of cytotoxicity and genotoxicity of stem bark extracts from Canarium odontophyllum Miq. (dabai) against HCT 116 human colorectal cancer cell line. BMC Complement. Altern. Med. 2016, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Sam, J.H.; Chan, Y.S.; Nandong, J.; Siner, A.; Kansedo, J.; Panau, F. Antioxidant properties of underutlized bornean dabai fruit and its potential applications as a nutraceutical product. Mat. Sci. Forum 2022, 107, 211–218. [Google Scholar] [CrossRef]
- Chew, L.Y.; Khoo, H.E.; Amin, I.; Azrina, A.; Lau, C.Y. Analysis of phenolic compounds of dabai (Canarium odontophyllum Miq.) fruits by high-performance liquid chromatograph. Food Anal. Methods 2012, 5, 126–137. [Google Scholar] [CrossRef]
- Kadir, N.A.; Azlan, A.; Abas, F.; Ismail, I.S. Effect of defatted dabai pulp extract in urine metabolomics of hypercholesterolemic rats. Nutrients 2020, 12, 3511. [Google Scholar] [CrossRef]
- Azlan, A.; Prasad, K.N.; Khoo, H.E.; Abdul-Aziz, N.; Mohamad, A.; Ismail, A.; Amom, Z. Comparison of fatty acids, vitamin E and physicochemical properties of Canarium odontophyllum Miq. (dabai), olive and palm oils. J. Food Comp. Anal. 2010, 23, 772–776. [Google Scholar] [CrossRef]
- Jelani, N.A.A.; Azlan, A.; Ismail, A.; Khoo, H.E.; Alinafiah, S.M. Fatty acid profiles and antioxidant properties of dabai oil. ScienceAsia 2017, 43, 347–353. [Google Scholar] [CrossRef]
- Kadir, N.A.; Azlan, A.; Abas, F.; Ismail, I.S. Hepatoprotective effect of supercritical carbon dioxide extracted dabai pulp oil and its defatted pulp. Molecules 2021, 26, 671. [Google Scholar] [CrossRef]
- Aziz, M.W.H.A.; Masre, S.F.; Basri, D.F.; Ghazali, A.R. Canarium odontophyllum Miq. (dabai) leaf phytoextracts and their medicinal properties. Pertanika J. Sci. Technol. 2022, 30, 2115–2125. [Google Scholar] [CrossRef]
- Ledesma, N.; Micaksono, H. A review of asam kumbang (Mangifera quadrifeda Jack). In Proceedings of the Florida State Horticultural Society; CABI: Wallingford, UK,, 2022. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009; Available online: https://apps.worldagroforestry.org/treedb2/speciesprofile.php?Spid=18080 (accessed on 11 December 2024).
- Mirfat, A.H.S.; Salma, I.; Razali, M. Natural antioxidant properties of selected wild Mangifera species in Malaysia. J. Trop. Agric. Food Sci. 2016, 44, 63–72. [Google Scholar]
- Tangah, J.; Bajau, F.E.; Jilimin, W.; Chan, H.T.; Wong, S.K.; Chan, E.W.C. Phytochemistry and pharmacology of Mangifera pajang: An iconic fruit of Sabah, Malaysia. Sys. Rev. Pharm. 2017, 8, 86–91. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009, 113, 479–483. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Fry, J.R. A review on underutilized indigenous bambangan (Mangifera pajang) fruit as a potential novel source for functional food and medicine. J. Med. Plants Res. 2013, 7, 3292–3297. [Google Scholar]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Burr, S.A.; Fry, J.R. Cytotoxicity and polyphenol diversity in selected parts of Mangifera pajang and Artocarpus odoratissimus fruits. Nutr. Food Sci. 2010, 40, 29–38. [Google Scholar] [CrossRef]
- Hassan, F.A.; Ismail, A.; Abdulhamid, A.; Azlan, A. Identification and quantification of phenolic compounds in bambangan (Mangifera pajang Kort.) peels and their free radical scavenging activity. J. Agric. Food Chem. 2011, 59, 9102–9111. [Google Scholar] [CrossRef]
- Luo, F.; Lv, Q.; Zhao, Y.; Hu, G.; Huang, G.; Zhang, J.; Sun, C.; Li, X.; Chen, K. Quantification and purification of mangiferin from Chinese Mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H2O2-induced stress. Int. J. Mol. Sci. 2012, 13, 11260–11274. [Google Scholar] [CrossRef] [PubMed]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Fry, J.R. Chapter 21-Bambangan (Mangifera pajang) seed kernel: Antioxidant properties and anti-cancer effects. In Nuts and Seeds in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 183–187. [Google Scholar] [CrossRef]
- Abdul Aziz, A.H.; Ekos, A.; Julmohammad, N.; Mohd Amin, S.F.; Awang, M.A.; Mamat, H.; Saalah, S.; Saallah, S.; Putra, N.R.; Ahmad Zaini, M.A.; et al. Valorization of bambangan (Mangifera pajang) by-products through extraction of mangiferin using ultrasonic assisted extraction. Int. J. Food 2024, 1, 85–93. [Google Scholar]
- Chan, S.T.; Padam, B.S.; Chye, F.Y. Effect of fermentation on the antioxidant properties and phenolic compounds of Bambangan (Mangifera pajang) fruit. J. Food Sci. Technol. 2023, 60, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Sukari, M.A.; Ismail, N.; Ismail, I.S.; Abdul, A.B.; Abu Bakar, M.F.; Kifli, N.; Ee, G.C.L. Phytochemicals from Mangifera pajang Kosterm and their biological activities. BMC Complement. Altern. Med. 2015, 15, 83. [Google Scholar] [CrossRef]
- Ong, C.C.W.O.; Chan, Y.S.; Khoo, K.S.; Ong, H.C.; Sit, N.W. Antifungal and cytotoxic activities of extracts obtained from underutilised edible tropical fruits. Asia Pac. J. Trop. Biomed. 2018, 8, 313–319. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Mohamad, M.; Rahmat, A.; Burr, S.A.; Fry, J.R. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem. Toxicol. 2010, 48, 1688–1697. [Google Scholar] [CrossRef]
- Yazan, R.; Fadzelly, A.B.M.; Azlen-Che, R.; Kartinee, K.N.; Johnson, S.; Yuan-Han, T.; Abdulmannan, F.; Mohammed, S.E. Methyl gallate isolated from Mangifera pajang kernel induces proliferation inhibition and apoptosis in MCF-7 breast cancer cells via oxidative stress. Asia Pac. J. Trop. Biomed. 2022, 12, 175–184. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ismail, A.; Al-Sheraji, S.H.; Azlan, A.; Abdul Hamid, A. Effects of Mangifera pajang Kostermans juice on plasma antioxidant status and liver and kidney function in normocholesterolemic subjects. J. Funct. Foods 2013, 5, 1900–1908. [Google Scholar] [CrossRef]
- Zabidah, A.A.; Kong, K.W.; Amin, I. Antioxidant properties of tropical juices and their effects on in vitro hemoglobin and low density lipoprotein (LDL) oxidations. Int. Food Res. J. 2011, 18, 549–556. [Google Scholar]
- Alvarado, M.C. Marang fruit (Artocarpus odoratissimus) waste: A promising resource for food and diverse applications: A review of its current status, research opportunities, and future prospects. Food Bioeng. 2023, 2, 350–359. [Google Scholar] [CrossRef]
- Tang, Y.P.; Linda, B.L.L.; Franz, L.W. Proximate analysis of Artocarpus odoratissimus (Tarap) in Brunei Darussalam. Int. Food Res. J. 2013, 20, 409–415. [Google Scholar]
- Ismail, H.A.; Ramaiya, S.D.; Zakaria, M.H. Compositional characteristics and nutritional quality of indigenous fruit of Artocarpus odoratissimus Blanco. Malay. Appl. Biol. 2023, 52, 187–203. [Google Scholar] [CrossRef]
- Yulianti, I.; Padlilah, R.; Ariyanti, R.; Retnowati, Y.; Febrianti, S.; Purnamasari, A. Mapping review of the potential of Tarap Plants (Artocarpus odoratissimus) for health. Int. J. Health Sci. 2022, 6, 2351–2357. [Google Scholar] [CrossRef]
- Nisa, N.; Mohammad Rizki Fadhil, P.; Sukardiman, S. Xanthine oxidase inhibition activity and ADMET properties of terap (Artocarpus odoratissimus Blanco) leaves metabolites: Phytochemical screening and in silico studies. Pharmacog. J. 2021, 13, 1150–1160. [Google Scholar] [CrossRef]
- Ege, B.; Julung, H.; Supiandi, M.I.; Mahanal, S.; Zubaidah, S. Utilization of local fruits as food source for the Dayak Jangkang Tribe, West Kalimantan. IOP Conf. Ser. Earth Environ. Sci. 2022, 978, 012049. [Google Scholar] [CrossRef]
- Pui, L.P.; Karim, R.; Yusof, Y.A.; Wong, C.W.; Ghazali, H.M. Physicochemical and sensory properties of selected ‘cempedak’ (Artocarpus integer L.) fruit varieties. Int. Food Res. J. 2018, 25, 861–869. [Google Scholar]
- Raihandhany, R. A review on ethnobotanical aspects of Artocarpus altilis (Park.) Fosberg (Syn: Artocarpus communis J.R.Forst. & G.Forst.) (Breadfruit) In Indonesia. Genbinesia 2022, 1, 107–119. [Google Scholar]
- Mehta, K.A.; Quek, Y.C.R.; Henry, C.J. Breadfruit (Artocarpus altilis): Processing, nutritional quality, and food applications. Front. Nutr. 2023, 10, 1156155. [Google Scholar] [CrossRef]
- Salma, I.; Mohd Nor, A.; Hasrom, H.; Raziah, M.L. Diversity and use of traditional fruit species in selected home gardens or fruit orchards in Malaysia. J. Trop. Agric. Food Sci. 2006, 34, 149–164. [Google Scholar]
- Swami, S.B.; Thakor, N.J.; Haldankar, P.M.; Kalse, S.B. Jackfruit and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 565–576. [Google Scholar] [CrossRef]
- Ranasinghe, R.A.S.N.; Maduwanthi, S.D.T.; Marapana, R.A.U.J. Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): A review. Int. J. Food Sci. 2019, 2019, 4327183. [Google Scholar] [CrossRef] [PubMed]
- Hoe, V.B.; Siong, K.H. The nutritional value of indigenous fruits and vegetables in Sarawak. Asia Pac. J. Clin. Nutr. 1999, 8, 24–31. [Google Scholar] [CrossRef]
- Haegens, R.M.A.P. Taxonomy, Phylogeny, and Biogeography of Baccaurea, Distichirhops, and Nothobaccaurea (Euphorbiaceae); Naturalis Biodversity Center: Leiden, The Netherlands, 2000; p. 218. [Google Scholar]
- Mojulat, M.B.C.; Surugau, N. A review on benefits, potential and conservation of Baccaurea lanceolata. IOP Conf. Ser. Earth Environ. Sci. 2021, 736, 012042. [Google Scholar] [CrossRef]
- Hadi, S.; Wahyuono, S.; Yuswanto, A.; Lukitaningsih, E. SPF test from Baccaurea lanceolata Muell. Arg fruit isolates. Indones. J. Cancer Chemoprevent. 2017, 8, 38–41. [Google Scholar] [CrossRef]
- Ulpah, R.; Nashihah, S.; Zamzani, I. Antibacterial activity of ethanol extract of limpasu (Baccaurea lanceolata) pericarpium with the ultrasound assisted extraction method against Propionibacterium acne. Acta Pharm. Indones 2024, 11, 6393. [Google Scholar] [CrossRef]
- Kulip, J. An ethnobotanical survey of medicinal and other useful plants of Muruts in Sabah, Malaysia. Telopea 2003, 10, 81–98. [Google Scholar] [CrossRef]
- Galappathie, S.; Palombo, E.A.; Yeo, T.C.; Ley, D.L.S.; Tu, C.L.; Malherbe, F.M.; Mahon, P.J. Comparative antimicrobial activity of South East Asian plants used in Bornean folkloric medicine. J. Herbal Med. 2014, 4, 96–105. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Ahmad, N.E.; Karim, F.A.; Saib, S. Phytochemicals and antioxidative properties of Borneo indigenous liposu (Baccaurea lanceolata) and tampoi (Baccaurea macrocarpa) fruits. Antioxidants 2014, 3, 516–525. [Google Scholar] [CrossRef]
- Fitriansyah, S.; Putri, Y.; Haris, M.; Ferdiansyah, R. Antibacterial activity of extracts of fruits, leaves, and barks of limpasu (Baccaurea lanceolata (Miq.) Müll. Arg.) from South Kalimantan. Pharmaceut. J. Indones. 2019, 15, 111–119. [Google Scholar] [CrossRef]
- Kulip, J. A preliminary survey of traditional medicinal plants in the west coast and interior of Sabah. J. Trop. Forest Sci. 1997, 10, 271–274. [Google Scholar]
- Alhassan, A.M.; Ahmed, Q.U. Averrhoa bilimbi Linn.: A review of its ethnomedicinal uses, phytochemistry, and pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.A.; Goh, L.P.W.; Sabullah, M.K.; Sani, S.A.; Abdulla, R.; Gansau, J.A. A review: Underutilized plant of Sabah and its potential value. Curr. Pharm. Biotechnol. 2022, 23, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Sandoval, J.; Acevedo-Rodríguez, P. Rubus rosifolius (roseleaf raspberry). CABI Compend. 2022. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Ismail, N.A.; Isha, A.; Mei Ling, A.L. Phytochemical composition and biological activities of selected wild berries (Rubus moluccanus L., R. fraxinifolius Poir., and R. alpestris Blume). Evid. Based Complement. Alternat. Med. 2016, 2016, 2482930. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.A.; Matawali, A.; Gansau, J.A. Comparison of antioxidant activity and phytochemical content of Borneo wild berry, Rubus fraxinifolius (Rogimot). Trans. Sci. Technol. 2019, 6, 36–41. [Google Scholar]
- Chai, P.P.K. A Check·List of Flora, Fauna, Food and Medicinal Plants; Forest Department Sarawak: Kuching, Malaysia; International Tropical Timber Organization Japan: Yokohama, Japan, 2000. [Google Scholar]
- Setiyadi, W.; Nandariyah; Budiastuti, M.S. Exploration, abundance and nutrient potential of Rubus in Lawu Mountain, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 200, 012009. [Google Scholar] [CrossRef]
- Bhuyan, B.; Dutta, A. A review on the phytochemical, pharmacological and traditional profile on the Rubus genus in north-eastern and western parts of India. Curr. Trends Pharmaceut. Res. 2021, 8, 73–87. [Google Scholar]
- Listyorini, K.I.; Kusumaningrum, H.D.; Lioe, H.N. Antifungal activity and major bioactive compounds of water extract of Pangium edule seed against Aspergillus flavus. Int. J. Food Sci. 2021, 2021, 3028067. [Google Scholar] [CrossRef] [PubMed]
- Faridah-Hanum, I. Morphological variation of Pangium edule Reinw. Fruits in Malaysia. Gard. Bull. Singap. 1996, 48, 189–194. [Google Scholar]
- Chye, F.Y.; Sim, K.Y. Antioxidative and antibacterial activties of Pangium edule seed extracts. Int. J. Pharmacol. 2009, 5, 285–297. [Google Scholar] [CrossRef]
- Sailah, I.; Tumilaar, S.G.; Lombogia, L.T.; Celik, I.; Tallei, T.E. Molecular docking and dynamics simulations study of selected phytoconstituents of “pangi” (Pangium edule Reinw) leaf as anti-SARS-CoV-2. Philipp. J. Sci. 2021, 150, 925–937. [Google Scholar] [CrossRef]
- Kasim, A.; David, W. Characteristic of Pangium edule Reinw as food preservative from different geographical sites. Asia Pac. J. Sustain. Agric. Food Energy 2013, 1, 6–9. [Google Scholar]
- Abidin, R.K.S.; Arsianti, A. Phytochemical screening, antioxidant activity, and cytotoxicity of ethanol, ethyl acetate, and n-hexane kluwak (Pangium edule) extract on MCF-7 breast cancer cells. Indones. J. Med. Chem. Bioinform. 2024, 2, 5. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; Fry, J.R.; Bakar, M.F.A. Antioxidant and phytochemical study on pengolaban (Litsea garciae), an edible underutilized fruit endemic to Borneo. Food Sci. Biotechnol. 2013, 22, 1–7. [Google Scholar] [CrossRef]
- Jauhari, N.K.; Ibrahim, D.; Ibrahim, M.; Yahya, M.N.A.; Nor, N.M.; Isa, K.A.M.; Ayob, M.K.; Omar, M.N.; Hazali, N. Proximate composition and antioxidant activity of dried belimbing dayak (Baccaurea angulata) fruits. Sains Malays. 2013, 42, 129–134. [Google Scholar]
- Chew, I.Y.Y.; Chung, H.H.; Lau, M.M.L.; Siong, W.B.; Sim, S.F. Shorea macrophylla: Overview of Illipe nut producing tree. Pertanika J. Trop. Agric. Sci. 2022, 45, 663–675. [Google Scholar] [CrossRef]
- Yi, C. Engkabang–The ‘Tree Butter’ from the Forest. Borneo Post Online. 21 June 2020. Available online: https://www.theborneopost.com/2020/06/21/engkabang-the-tree-butter-from-the-forest/ (accessed on 10 December 2024).
- Rao, S.N.; Redhwan, A.I.; Ha, H.C.; Nguang, S.I.; Kari, A.; Yong, W.S.; Yong, F.H.; Komilus, C.F. A review of borneo buah engkabang (Shorea macrophylla) as potential omega-6 lipid source for fish feed. E3S Web Conf. 2023, 442, 02034. [Google Scholar] [CrossRef]
- Aralas, S.; Mohamed, M.; Abu Bakar, M.F. Antioxidant properties of selected salak (Salacca zalacca) varieties in Sabah, Malaysia. Nutr. Food Sci. 2009, 39, 243–250. [Google Scholar] [CrossRef]
- Saleh, M.S.M.; Siddiqui, M.J.; Mediani, A.; Ismail, N.H.; Ahmed, Q.U.; So’ad, S.Z.M.; Saidi-Besbes, S. Salacca zalacca: A short review of the palm botany, pharmacological uses and phytochemistry. Asia. Pac. J. Trop. Med. 2018, 11, 645–652. [Google Scholar] [CrossRef]
- Ridho, A.; Wathoni, N.; Subarnas, A.; Levita, J. Insights of phytoconstituents and pharmacology activities of Salacca plants. J. Appl. Pharmaceut. Sci. 2019, 9, 120–124. [Google Scholar] [CrossRef]
- Siong, K.H. Indigenous Fruits of Sarawak; Sarawak Forest Department: Sarawak, Malaysia, 2003; Available online: https://borneoficus.info/wp-content/uploads/2020/05/01-Sarawak-Indigenous-Fruits-Pg-01-33.pdf (accessed on 15 November 2024).
- Khoo, H.-E.; Prasad, K.N.; Kong, K.-W.; Chew, L.-Y.; Azlan, A.; Sun, J.; Ismail, A.; Idris, S. A review on underutilized tropical fruits in Malaysia. Guangxi Agric. Sci. 2010, 41, 698–702. [Google Scholar]
- Ibrahim, S.A.; Yeboah, P.J.; Ayivi, R.D.; Eddin, A.S.; Wijemanna, N.D.; Paidari, S.; Bakhshayesh, R.V. A review and comparative perspective on health benefits of probiotic and fermented foods. Int. J. Food Sci. Technol. 2023, 58, 4948–4964. [Google Scholar] [CrossRef]
- Ajibola, O.O.; Thomas, R.; Bakare, B.F. Selected fermented indigenous vegetables and fruits from Malaysia as potential sources of natural probiotics for improving gut health. Food Sci. Hum. Wellness 2023, 12, 1493–1509. [Google Scholar] [CrossRef]
- Rajagukguk, Y.V.; Arnold, M. Tempoyak: Fermented durian paste of Malay ethnic and its functional properties. Int. J. Gastron. Food Sci. 2021, 23, 100297. [Google Scholar] [CrossRef]
- Saupi, N.; Saidin, A.A.; Zakariaya, M.H.; Sarbini, S.R.; Yusli, N.A. An ethnobotanical study of indigenous leafy vegetables among local communities in Bintulu, Sarawak, Malaysia. Borneo J. Resour. Sci. Technol. 2020, 10, 155–165. [Google Scholar] [CrossRef]
- Hussin, M.; Anzian, A.; Liew, C.X.; Muhialdin, B.J.; Mohsin, A.Z.; Fang, C.-M.; Saad, M.Z.; Ahmad, N.H.; Hassan, M.; Adnan, H.; et al. Potentially probiotic fermented glutinous rice (Oryza sativa L.) with Lactiplantibacillus plantarum improved immune system response in a small sample of BALB/cByJ mice. Fermentation 2022, 8, 612. [Google Scholar] [CrossRef]
- Sim, K.Y.; Chin, S.Y.; Chye, F.Y.; Anton, A. Microbial diversity of spontaneous bambangan (Mangifera pajang) fermentation, a traditional fermented fruit from Northern Borneo. In Biodiversity-Biotechnology; Sarawak Biodiversity Centre: Kuching, Malaysia, 2010; pp. 405–411. Available online: https://www.ums.edu.my/ipbv2/files/MICROBIOLOGICAL_DIVERSITY.pdf (accessed on 5 November 2024).
- Pilo, W. Kasam Ensabi—The Iban Kimchi. Dayak Daily. 22 February 2023. Available online: https://dayakdaily.com/kasam-ensabi-the-iban-kimchi/ (accessed on 10 December 2024).
- Nst Regional. A Closer Look at Sabah’s Unique Tuhau Delicacy. New Straits Times. 15 May 2024. Available online: https://www.nst.com.my/news/nation/2024/05/1050988/closer-look-sabahs-unique-tuhau-delicacy#google_vignette (accessed on 10 December 2024).
- Sapawi, D.K.B.A.; Ooi, Y.B.H.; Ibrahim, S.B.; Czhing, L.Y. Food safety concerns influence neophobic response towards Kadazandusun traditional food in domestic tourists. J. Tour. Hosp. Environ. Manag. 2024, 4, 34–48. [Google Scholar]
- Jaujip, P. The 101: Fermentation with Pangi Seeds. Periuk. 23 April 2021. Available online: https://www.periuk.my/stories/the-101-fermentation-with-pangi-seeds/ (accessed on 10 December 2024).
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Anuar, N.N.M.; Mohamed, J.; Hanipah, E.N.A.; Yahya, N.J.; Ajik, E.M.; Taib, I.S. The protective effect of Ettlingera coccinea (TUHAU) against autoxidation-induced ox brain homogenate. J. Sains Kesihat. Malays. Isu Khas 2018, 16, 35–39. [Google Scholar] [CrossRef]
- Murwani, R.; Anggraeni, R.; Setiawan, G.N.A.; Astari, P.D.; Cahyani, N.K.D.; Sibero, M.T.; Ambariyanto, A. Lactic acid bacteria isolates and the microbiome of Cincalok, Tempoyak, and Mandai: A traditional fermented food from Kalimantan Island, Indonesia. Int. J. Food Sci. 2024, 2024, 6589766. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Okfrianti, Y.; Herison, C.; Fahrurrozi, F.; Budiyanto, B. Identification of lactic acid bacteria isolated from ethnic fermented bamboo shoot “Lemea” in Bengkulu, Indonesia. Food Res. 2023, 7, 145–150. [Google Scholar] [CrossRef]
- Hussin, H.; Khoso, A. Seaweed cultivation and coastal communities in Malaysia: An overview. Asian Fish. Sci. 2017, 30, 87–100. [Google Scholar] [CrossRef]
- Shah, M.D.; Venmathi Maran, B.A.; Shaleh, S.R.; Zuldin, W.H.; Gnanaraj, C.; Yong, Y.S. Therapeutic potential and nutraceutical profiling of north Bornean seaweeds: A review. Mar. Drugs 2022, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K.; Ming, C.H. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J. Appl. Phycol. 2008, 20, 367–373. [Google Scholar] [CrossRef]
- Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A review on nutrients, phytochemicals, and health benefits of green seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. [Google Scholar] [CrossRef]
- Vairappan, C.; Kawasaki, M. Nutritional properties, antioxidant potential and antibacterial activity of two edible seaweeds, Kappaphycus alvarezii and Eucheuma denticulatum (Gigartinales, Rhodophyta). Malays. J. Sci. 2008, 27, 53–65. [Google Scholar]
- Sade, A.; Ali, I.; Ariff, M.R.M. The Seaweed Industry in Sabah, East Malaysia. J. Southeast Asian Stud. 2006, 11, 97–107. Available online: https://jati.um.edu.my/article/view/5903/3621 (accessed on 2 January 2025).
- Pereira, L. Macroalgae. Encyclopedia 2021, 1, 177–188. [Google Scholar] [CrossRef]
- Guiry, M.D. AlgaeBase. World-Wide Electronic Publication. 2010. Available online: http://www.algaebase.org/ (accessed on 10 December 2024).
- Basyuni, M.; Puspita, M.; Rahmania, R.; Albasri, H.; Pratama, I.; Purbani, D.; Aznawi, A.A.; Mubaraq, A.; Al Mustaniroh, S.S.; Menne, F.; et al. Current biodiversity status, distribution, and prospects of seaweed in Indonesia: A systematic review. Heliyon 2024, 10, e31073. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, W.; Huang, Y.; Wen, Y.; Chu, Y.; Zhao, C. Global seaweed farming and processing in the past 20 years. Food Prod. Process. Nutr. 2022, 4, 23. [Google Scholar] [CrossRef]
- Choudhary, P.; Khade, M.; Savant, S.; Musale, A.; Chelliah, M.S.; Dasgupta, S. Empowering blue economy: From underrated ecosystem to sustainable industry. J. Environ. Manag. 2021, 291, 112697. [Google Scholar] [CrossRef] [PubMed]
- Kee, P.E.; Phang, S.M.; Lan, J.C.-W.; Tan, J.S.; Khoo, K.S.; Chang, J.-S.; Ng, H.-S. Tropical seaweeds as a sustainable resource towards circular bioeconomy: Insights and way forward. Mol. Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Pantis, A.; Nikoloudakis, C.; Tsoutsos, T. A critical review of macroalgae exploitation pathways implemented under the scope of life cycle assessment. ChemEngineering 2024, 8, 74. [Google Scholar] [CrossRef]
- Sugumaran, R.; Padam, B.S.; Yong, W.T.; Saallah, S.; Ahmed, K.; Yusof, N.A. A retrospective review of global commercial seaweed production—Current challenges, biosecurity and mitigation measures and prospects. Int. J. Environ. Res. Public Health 2022, 19, 7087. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Brown, L. Review: Ageing, health and macroalgae. Med. Res. Arch. 2024, 12, 5551. [Google Scholar] [CrossRef]
- Samudra, A.G.; Nugroho, A.E.; Murwanti, R. Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. Annal. Pharmaceut. Françaises 2024, 82, 597–617. [Google Scholar] [CrossRef]
- Matanjun, P.; Mohamed, S.; Muhammad, K.; Mustapha, N.M. Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J. Med. Food 2010, 13, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Wanyonyi, S.; Du Preez, R.; Brown, L.; Paul, N.A.; Panchal, S.K. Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats. Nutrients 2017, 9, 1261. [Google Scholar] [CrossRef]
- du Preez, R.; Paul, N.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Carrageenans from the red seaweed Sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats. Mar. Drugs 2020, 18, 97. [Google Scholar] [CrossRef] [PubMed]
- du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Caulerpa lentillifera (sea grapes) improves cardiovascular and metabolic health of rats with diet-induced metabolic syndrome. Metabolites 2020, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- du Preez, R.; Magnusson, M.; Majzoub, M.E.; Thomas, T.; Praeger, C.; Glasson, C.R.K.; Panchal, S.K.; Brown, L. Brown seaweed Sargassum siliquosum as an intervention for diet-induced obesity in male Wistar rats. Nutrients 2021, 13, 1754. [Google Scholar] [CrossRef]
- Rogel-Castillo, C.; Latorre-Castañeda, M.; Muñoz-Muñoz, C.; Agurto-Muñoz, C. Seaweeds in food: Current trends. Plants 2023, 12, 2287. [Google Scholar] [CrossRef]
- Chik, A.R. Malaysian Seaweed Can Feed the World. The Malaysian Reserve. 5 February 2024. Available online: https://themalaysianreserve.com/2024/02/05/malaysian-seaweed-can-feed-the-world/ (accessed on 14 November 2024).
- Mohammad, S.M.; Mohd Razali, S.F.; Mohamad Rozaiman, N.H.N.; Laizani, A.N.; Zawawi, N. Application of seaweed (Kappaphycus alvarezii) in Malaysian food products. Int. Food Res. J. 2019, 26, 1677–1687. [Google Scholar]
- Lim, C.T.; Matanjun, P. Soy crisps incorporated with red seaweed, Kappaphycus alvarezii. J. Biochem. Microbiol. Biotechnol. 2024, 12, 100–102. [Google Scholar] [CrossRef]
- Mamat, H.; Ling, Y.Y.; Abdul Aziz, A.H.; Wahab, N.A.; Mohd Rosli, R.G.; Sarjadi, M.S.; Zainol, M.K.; Putra, N.R.; Yunus, M.A.C. Utilization of seaweed composite flour (Kappaphycus alvarezii) in the development of steamed bun. J. Appl. Phycol. 2023, 35, 1911–1919. [Google Scholar] [CrossRef]
- Phang, S.-M.; Yeong, H.-Y.; Lim, P.-E. The seaweed resources of Malaysia. Bot. Mar. 2019, 62, 265–273. [Google Scholar] [CrossRef]
- Jipanin, S.J.; Muhamad Shaleh, S.R.; Lim, P.T.; Leaw, C.P.; Mustapha, S. The monitoring of harmful algae blooms in Sabah, Malaysia. J. Phys. Confer. Ser. 2019, 1358, 012014. [Google Scholar] [CrossRef]
- Peng, Z.; Guo, Z.; Wang, Z.; Zhang, R.; Wu, Q.; Gao, H.; Wang, Y.; Shen, Z.; Lek, S.; Xiao, J. Species-specific bioaccumulation and health risk assessment of heavy metal in seaweeds in tropic coasts of South China Sea. Sci. Total Environ. 2022, 832, 155031. [Google Scholar] [CrossRef] [PubMed]
- Thoré, E.S.J.; Muylaert, K.; Bertram, M.G.; Brodin, T. Microalgae. Curr. Biol. 2023, 33, R91–R95. [Google Scholar] [CrossRef]
- Andrew, A.R.; Wei Lie, G.J.C.; Anton, A. Characterisation of local microalgae from Sabah for biofuel production. Short Commun. Biotechnol. 2017, 4, 19–24. [Google Scholar]
- Heng, E.S. Turning to Microalgae for Eco-Solutions. Borneo Post Online. 2 April 2023. Available online: https://www.theborneopost.com/2023/04/02/turning-to-microalgae-for-eco-solutions/ (accessed on 10 December 2024).
- Panchal, S.K.; Heimann, K.; Brown, L. Improving undernutrition with microalgae. Nutrients 2024, 16, 3223. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Qin, Y.; Zhou, X.; Jin, W.; He, Z.; Li, X.; Wang, Q. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. Sci. Total Environ. 2024, 927, 172167. [Google Scholar] [CrossRef] [PubMed]
- Sageng, C.W.; Quee-Ling, L.; Mikal, I.I.; Sandhu, M.K.; Pudun, J.M.; Umadi, M.F.B. Culinary practices of the Bidayuhs in Sarawak, Malaysia: A qualitative study. J. Ethn. Food. 2024, 11, 16. [Google Scholar] [CrossRef]
- Kulip, J.; Majawat, G.; Kulik, J. Medicinal and other useful plants of the Lundayeh community of Sipitang, Sabah, Malaysia. J. Trop. Forest Sci. 2000, 12, 810–816. [Google Scholar]
- Kulip, J. A survey of indigenous plants used for food and medicine by the Kadazandusun ethnic in Tambunan, Sabah, East Malaysia. In Proceedings of the Fourth Biennial Conference of the Borneo Research Council, Bandar Seri Begawan, Brunei, 10–15 June 1996; University of Brunei Darussalam: Gadong, Brunei, 1996. [Google Scholar]
- Awang-Kanak, F.; Abu Baker, M.F. Traditional vegetable salad (ulam) of Borneo as source of functional food. Food Res. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Chen, P. Wild Vegetables add Variety to a Healthy Diet. Borneo Post Online. 24 September 2023. Available online: https://www.theborneopost.com/2023/09/24/wild-vegetables-add-variety-to-a-healthy-diet/ (accessed on 12 December 2024).
- Soon, A.T.K.; Ding, P. A review on wild indigenous eggplant, Terung Asam Sarawak (Solanum lasiocarpum Dunal.). Sains Malays. 2021, 50, 595–603. [Google Scholar] [CrossRef]
- Umar, S.; Razili, R.M.; Hua, W.M.; Hamsein, N.N.; Gumbek, M. Terung Asam Sarawak Technology Package; Department of Agriculture Sarawak: Kuching, Malaysia, 2013. [Google Scholar]
- Terung Asam: The Exotic Vegetable with Amazing Health Benefits. Dayak Daily. 4 November 2023. Available online: https://dayakdaily.com/terung-asam-the-exotic-vegetable-with-amazing-health-benefits/ (accessed on 6 November 2024).
- Ibrahim, N.F.; Zakaria, N.A.; Aris, F. Phytochemistry and biological activity of Terung Asam, indigenous fruit-vegetables of Sarawak—A review. J. Sustain. Sci. Manag. 2022, 17, 270–285. [Google Scholar] [CrossRef]
- Quah, Y.; Tong, S.-R.; Tan, S.-A.; Chow, Y.-L.; Chai, T.-T. Phytochemicals and biological activities of Stenochlaena palustris. In Bioactive Compounds in Bryophytes and Pteridophytes; Murthy, H.N., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 503–525. [Google Scholar] [CrossRef]
- Hendra, R.; Khodijah, R.; Almurdani, M.; Haryani, Y.; Nugraha, A.S.; Frimayanti, N.; Teruna, H.Y.; Abdulah, R. Free radical scavenging, anti-infectious, and toxicity activities from Stenochlaena palustris (Burm.f.) Bedd. extracts. Adv. Pharmacol. Pharmaceut. Sci. 2022, 2022, 5729217. [Google Scholar] [CrossRef]
- Ndanusa, A.H.; Cicuzza, D.; Siddique, M.M. Analysis of the phytochemical contents and anti-oxidative properties of Stenochlaena palustris. Int. Food Res. J. 2020, 27, 798–804. [Google Scholar]
- Tsun-Thai, C.; Esvini, P.; Hean-Chooi, O.; Fai-Chu, W. Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern. Bot. Stud. 2012, 53, 439–446. [Google Scholar]
- Pandiangan, F.I.; Oslo, E.A.; Destine, F.; Josephine; Anwar, R.N. A review on the health benefits of Kalakai (Stenochlaena palustris). J. Funct. Food Nutraceut. 2022, 4, 1–16. [Google Scholar] [CrossRef]
- Cicuzza, D. Diplazium esculentum (Retz.) Sw. Athyriaceae. In Ethnobotany of the Mountain Regions of Southeast Asia; Franco, F.M., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 359–363. [Google Scholar] [CrossRef]
- Halimatussakdiah; Amna, U.; Wahyuningsih, P. Preliminary phytochemical analysis and larvicidal activity of edible fern (Diplazium esculentum (Retz.) Sw.) extract against culex. J. Nat. 2018, 18, 141–147. [Google Scholar] [CrossRef]
- Nikmatullah, M.; Nisyawati; Walujo, E.B. Utilization of a diversity of medicinal plants in Cibeo society, Baduy-Dalam, in Kanekes Village, Leuwidamar District, Lebak Regency, Banten. AIP Conf. Proceed. 2018, 2019, 020003. [Google Scholar] [CrossRef]
- Batoro, J.; Siswanto, D. Ethnomedicinal survey of plants used by local society in Poncokusumo district, Malang, East Java Province, Indonesia. Asia. J. Med. Biol. Res. 2017, 3, 158–167. [Google Scholar] [CrossRef]
- Zannah, F.; Amin, M.; Suwono, H.; Lukiati, B. Phytochemical screening of Diplazium esculentum as medicinal plant from Central Kalimantan, Indonesia. AIP Conf. Proceed. 2017, 1844, 050001. [Google Scholar] [CrossRef]
- Alamsjah, F.; Fandini, S.; Mildawati, M. Evaluation of antibacterial activities and phytochemical composition of ethanolic extract of Diplazium esculentum. Biodiversitas 2024, 25, 937–941. [Google Scholar] [CrossRef]
- Safar, H.F.; Ali, A.H.; Zakaria, N.H.; Kamal, N.; Hassan, N.I.; Agustar, H.K.; Talip, N.; Latip, J. Steroids from Diplazium esculentum: Antiplasmodial activity and molecular docking studies to investigate their binding modes. Trop. Biomed. 2022, 39, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Jualang, A.G.; Adznila, E.; How, S.E. In vitro bioactivities and phytochemicals content of vegetables from Sabah, Malaysia. Borneo Sci. 2016, 37, 37–53. [Google Scholar] [CrossRef]
- Maid, M.; Tay, J.; Yahya, H.; Adnan, F.I.B.; Kodoh, J.; Chiang, L.K. The reliance of forest community on forest for livelihood: A case of Kampung Wawasan, Sook, Sabah, Malaysia. Int. J. Agric. For. Plant. 2017, 5, 110–118. [Google Scholar]
- Irawan, D.; Wijaya, C.H.; Limin, S.H.; Hashidoko, Y.; Osaki, M.; Kulu, I.P. Ethnobotanical study and nutrient potency of local traditional vegetables in Central Kalimantan. Tropics 2006, 15, 441–448. [Google Scholar] [CrossRef]
- Shahid-Ud-Daula, A.F.M.; Kamariah, A.S.; Lim, L.; Ahmad, N. Phytochemical screening, antioxidant, and antimicrobial activities of leaves, stems, and rhizomes of Etlingera coccinea (Blume) S. Sakai & Nagam. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 873–883. [Google Scholar]
- Joseph, E.; Godoong, E. A review of Etlingera coccinea (Blume) S. Sakai and Nagam (Zingiberaceae) on achievement of producing an essential oil and medicinal properties in Sabah, East Malaysia. J. Trop. Biol. Conserv. 2023, 20, 295–303. [Google Scholar] [CrossRef]
- Geraldine, A. Bornean ‘Tuhau’ Plant Rises to Prominence, Thanks to Kadazandusun Cousins. New Straits Times. 19 March 2017. Available online: https://www.nst.com.my/news/2017/03/222474/bornean-tuhau-plant-rises-prominence-thanks-kadazandusun-cousins (accessed on 10 December 2024).
- Ng, X.N.; Chye, F.Y.; Mohd Ismail, A. Nutritional profile and antioxidative properties of selected tropical wild vegetables. Int. Food Res. J. 2012, 19, 1487–1496. [Google Scholar]
- Jems, N.; Rusdi, N.A.; Mus, A.A.; Godoong, E. Chemical composition of essential oil from Etlingera coccinea (Blume) S. Sakai & Nagam in Kadamaian, Kota Belud, Sabah. J. Trop. Biol. Conserv. 2021, 18, 91–105. [Google Scholar] [CrossRef]
- Azmi, N.H.; Jaulis, E.Z. Effects of different cooking preparations on the nutritional composition and antioxidant properties of Etlingera coccinea (Blume) S. Sakai & Nagam (Tuhau). Canrea J. Food Technol. Nutr. Culin. J. 2024, 7, 79–93. [Google Scholar] [CrossRef]
- Huang, F.-Y.; Deng, T.; Meng, L.-X.; Ma, X.-L. Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine 2019, 98, e15054. [Google Scholar] [CrossRef]
- Azmi, N.H.; Azazmi, F.A.W.; Awang, M.A.; Isa, S.F.M.; Rusdi, N.A. Phytochemical screening and antioxidant activity of Tuhau (Etlingera coccinea) rhizome and leaf. Int. J. Food 2024, 1, 50–60. [Google Scholar]
- Vairappan, C.S.; Nagappan, T.; Palaniveloo, K. Essential oil composition, cytotoxic and antibacterial activities of five Etlingera species from Borneo. Nat. Prod. Commun. 2012, 7, 1934578X1200700233. [Google Scholar] [CrossRef]
- Daniel-Jambun, D.; Dwiyanto, J.; Lim, Y.Y.; Tan, J.B.L.; Muhamad, A.; Yap, S.W.; Lee, S.M. Investigation on the antimicrobial activities of gingers (Etlingera coccinea (Blume) S.Sakai & Nagam and Etlingera sessilanthera R.M.Sm.) endemic to Borneo. J. Appl. Microbiol. 2017, 123, 810–818. [Google Scholar] [CrossRef]
- Ismail, N.A.; Ridzuan, R. Medicinal potential and health benefits of torch ginger (Etlingera elatior). Not. Sci. Biol. 2023, 15, 11489. [Google Scholar] [CrossRef]
- Mohd Noor, H.S.; Abu Bakar, M.F.; Abu Bakar, F.I.; Ismail, N.A.; Sanusi, S.B.; Mohamed, M. Phytochemical content and antioxidant activity of selected wild ulam/vegetables consumed by indigenous Jakun community in Taman Negara Johor Endau Rompin (TNJER), Malaysia. Food Res. 2020, 4, 28–33. [Google Scholar] [CrossRef]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Jaiswal, N.; Srivastava, M. A review on medicinal properties of Centella asiatica. Asia. J. Pharmaceut. Clin. Res. 2017, 10, 69–74. [Google Scholar] [CrossRef]
- Kakaes, K. Sayur Manis: Delicious, But Also Deadly, Greens From Borneo. NPR. 14 August 2014. Available online: https://www.npr.org/sections/thesalt/2014/08/14/340358325/sayur-manis-delicious-but-also-deadly-greens-from-borneo (accessed on 12 December 2024).
- Bunawan, H.; Bunawan, S.N.; Baharum, S.N.; Noor, N.M. Sauropus androgynus (L.) Merr. induced bronchiolitis obliterans: From botanical studies to toxicology. Evid. Based Complement. Alternat. Med. 2015, 2015, 714158. [Google Scholar] [CrossRef] [PubMed]
- Anju, T.; Rai, N.K.S.R.; Kumar, A. Sauropus androgynus (L.) Merr.: A multipurpose plant with multiple uses in traditional ethnic culinary and ethnomedicinal preparations. J. Ethn. Foods 2022, 9, 10. [Google Scholar] [CrossRef]
- Lai, R.S.; Chiang, A.A.; Wu, M.T.; Wang, J.S.; Lai, N.S.; Lu, J.Y.; Ger, L.P.; Roggli, V. Outbreak of bronchiolitis obliterans associated with consumption of Sauropus androgynus in Taiwan. Lancet 1996, 348, 83–85. [Google Scholar] [CrossRef]
- Rubin, E.; Aziz, Z.; Surugau, N. Glucosinolates content of in vitro grown Nasturtium officinale (watercress). ASM Sci. J. 2018, 11, 132–139. [Google Scholar]
- Awang-Kanak, F.; Abu Bakar, M.F.; Mohamed, M. Ethnobotanical note, total phenolic content, total flavonoid content, and antioxidative activities of wild edible vegetable, Crassocephalum crepidioides from Kota Belud, Sabah. IOP Conf. Ser. Earth Environ. Sci. 2019, 269, 012012. [Google Scholar] [CrossRef]
- Mu, M. A-Z of Sabah Indigenous Food. The Sun. 21 December 2021. Available online: https://thesun.my/style-life/a-z-of-sabah-indigenous-food-CM8680613 (accessed on 12 December 2024).
- Saikia, K.; Dey, S.; Hazarika, S.N.; Handique, G.K.; Thakur, D.; Handique, A.K. Chemical and biochemical characterization of Ipomoea aquatica: Genoprotective potential and inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Front. Nutr. 2023, 10, 1304903. [Google Scholar] [CrossRef] [PubMed]
- Kangkung as an Excellent Vegetable. Daily Express. 2 February 2020. Available online: https://www.dailyexpress.com.my/read/3485/kangkung-as-an-excellent-vegetable/ (accessed on 30 December 2024).
- Sasikala, M.; Mohan, S.; Swarnakumari, S.; Nagarajan, A. Isolation and in vivo evaluation of anti-breast cancer activity of resin glycoside merremoside from Ipomoea aquatica Forsskal in overcoming multi-drug resistance. Phytomed. Plus 2022, 2, 100359. [Google Scholar] [CrossRef]
- Dewanjee, S.; Joardar, S.; Bhattacharjee, N.; Dua, T.K.; Das, S.; Kalita, J.; Manna, P. Edible leaf extract of Ipomoea aquatica Forssk. (Convolvulaceae) attenuates doxorubicin-induced liver injury via inhibiting oxidative impairment, MAPK activation and intrinsic pathway of apoptosis. Food Chem. Toxicol. 2017, 105, 322–336. [Google Scholar] [CrossRef]
- Lawal, U.; Mediani, A.; Maulidiani, H.; Shaari, K.; Ismail, I.S.; Khatib, A.; Abas, F. Metabolite profiling of Ipomoea aquatica at different growth stages in correlation to the antioxidant and α-glucosidase inhibitory activities elucidated by 1H NMR-based metabolomics. Sci. Hortic. 2015, 192, 400–408. [Google Scholar] [CrossRef]
- Koriem, K.M.M. Antihyperlipidemic activity of the medicinal plants among Kadazan and Dusun communities in Sabah, Malaysia: A review. Asia. Pac. J. Trop. Biomed. 2014, 4, 768–779. [Google Scholar] [CrossRef]
- Kulip, J. The ethnobotany of the Dusun people in Tikolod village, Tambunan district, Sabah, Malaysia. Reinwardtia 2014, 14, 101–121. [Google Scholar] [CrossRef]
- Kodoh, J.; Mojiol, A.R.; Lintangah, W.; Gisiu, F.; Maid, M.; Chiang, L.K. Traditional knowledge on the uses of medicinal plants among the ethnic communities in Kudat, Sabah, Malaysia. Int. J. Agric. For. Plant. 2017, 5, 79–85. [Google Scholar]
- Nirmala, C.; Bisht, M.S.; Laishram, M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods. Int. J. Food Sci. Technol. 2014, 49, 1425–1431. [Google Scholar] [CrossRef]
- Okfrianti, Y.; Herison, C.; Fahrurrozi, F.; Budiyanto, B. The potencial of bamboo shoot for health. Agritepa 2021, 8, 114–122. [Google Scholar] [CrossRef]
- Müller, J.V.; Guzzon, F. The forgotten giant of the Pacific: A review on giant taro (Alocasia macrorrhizos (L.) G.Don). Genet. Resour. Crop Evol. 2024, 71, 519–527. [Google Scholar] [CrossRef]
- Oktavianingsih, L.; Suharyanto, E.; Daryono, B.S.; Purnomo, P. Traditional usages of taro (Colocasia spp.) by ethnic communities in Borneo. Biosaintifika 2017, 9, 248–256. [Google Scholar] [CrossRef]
- Padhan, B.; Panda, D. Potential of neglected and underutilized yams (Dioscorea spp.) for improving nutritional security and health benefits. Front. Pharmacol. 2020, 11, 496. [Google Scholar] [CrossRef]
- Arbain, D.; Sinaga, L.M.R.; Taher, M.; Susanti, D.; Zakaria, Z.A.; Khotib, J. Traditional uses, phytochemistry and biological Activities of Alocasia species: A systematic review. Front. Pharmacol. 2022, 13, 849704. [Google Scholar] [CrossRef]
- Adomėnienė, A.; Venskutonis, P.R. Dioscorea spp.: Comprehensive review of antioxidant properties and their relation to phytochemicals and health benefits. Molecules 2022, 27, 2530. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Lyons, J.B.; Chilaka, C.A. The Dioscorea genus (yam)—An appraisal of nutritional and therapeutic potentials. Foods 2020, 9, 1304. [Google Scholar] [CrossRef]
- Fui, F.S.; Saikim, F.H.; Kulip, J.; Sathiya Seelan, J.S. Distribution and ethnomycological knowledge of wild edible mushrooms in Sabah (Northern Borneo), Malaysia. J. Trop. Biol. Conserv. 2018, 15, 203–222. [Google Scholar] [CrossRef]
- Purwayantie, S.; Edi Suryadi, U. Plant diversity and nutrient substances of native edible plant: Case study in Suka Maju and Tamao Villages, Kapuas Hulu District, West Kalimantan, Indonesia. Biodiversitas 2020, 21, 842–852. [Google Scholar] [CrossRef]
- Shin, C.K.; Yee, C.F.; Shya, L.J.; Atong, M. Nutritional properties of some edible wild mushrooms in Sabah. J. Appl. Sci. 2007, 7, 2216–2221. [Google Scholar] [CrossRef]
- Banji, C. If Unsure of Edibility, Avoid Wild Muchrooms. Borneo Post Online. 2 August 2012. Available online: https://www.theborneopost.com/2012/08/02/if-unsure-of-edibility-avoid-wild-mushrooms/ (accessed on 14 December 2024).
- Saragih, B.; Naibaho, N.M.; Saragih, B. Nutritional, functional properties, glycemic index and glycemic load of indigenous rice from North and East Borneo. Food Res. 2019, 3, 537–545. [Google Scholar] [CrossRef]
- Maikol, N.; Kamarudin, S.; Sentian, J.; Mohamad Saad, M.Z.; Ramlan, N.H.; Teng, L.W.; Ramaiya, S.D. Hill rice (Oryza sativa L.): Exploring the Malaysian knowledge, perception and intention to purchase. Int. J. Acad. Res. Bus. Soc. Sci. 2023, 13, 2444–2452. [Google Scholar] [CrossRef] [PubMed]
- Khazanah Research Institute. The Paddy and Rice Industry of Sabah and Sarawak: Status and Potential; Khazanah Research Institute: Kuala Lumpur, Malaysia, 2022; Available online: https://www.krinstitute.org/assets/contentMS/img/template/editor/Full%20REPORT_KRI_Paddy%20and%20Rice%20Industry%20in%20Sabah%20and%20Sarawak.pdf (accessed on 14 December 2024).
- Abdul latiff, N.; Mohd Din, A.R.J.; Zainul Alam, S.A.; Hanapi, S.Z.; Sarmidi, M.R. Quantification of polyphenol content, antioxidant properties and LC-MS/MS analysis in Malaysian indigenous rice cultivars (Oryza sativa L.). Agric. Nat. Resour. 2019, 53, 402–409. [Google Scholar] [CrossRef]
- Liansim, N.M.S. Selected Physicochemical and Antioxidant Properties of Sabah Upland Rice in Raw, Cooked and Fermented Conditions. Master’s Thesis, Universiti Malaysia Sabah, Sabah, Malaysia, 2015. [Google Scholar]
- Zhang, X.; Sun, M.; Li, D.; Miao, X.; Hua, M.; Sun, R.; Su, Y.; Chi, Y.; Wang, J.; Niu, H. Black rice anthocyanidins regulates gut microbiota and alleviates related symptoms through PI3K/AKT pathway in type 2 diabetic rats. J. Food Biochem. 2023, 2023, 5876706. [Google Scholar] [CrossRef]
- Laorodphun, P.; Arjinajarn, P.; Thongnak, L.; Promsan, S.; Swe, M.T.; Thitisut, P.; Mahatheeranont, S.; Jaturasitha, S.; Lungkaphin, A. Anthocyanin-rich fraction from black rice, Oryza sativa L. var. indica “Luem Pua”, bran extract attenuates kidney injury induced by high-fat diet involving oxidative stress and apoptosis in obese rats. Phytother. Res. 2021, 35, 5189–5202. [Google Scholar] [CrossRef] [PubMed]
- Fatchiyah, F.; Safitri, A.; Rohmah, R.N.; Triprisila, L.F.; Kurnianingsih, N.; Nugraha, Y.; Fajriani, S.; Meidinna, H.N.; Robert-Cairns, J.K. The effect of anthocyanin of whole-grain pigmented rice attenuated visceral fat, cholesterol, LDL and PPARγ gene cascade in dyslipidemia rat. Syst. Rev. Pharm. 2020, 11, 318–327. [Google Scholar]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The genetic basis and nutritional benefits of pigmented rice grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Miwil, O. Traditional Sabahan Dish Linopot Now a Hit Among Tourists. New Straits Times. 14 January 2024. Available online: https://www.nst.com.my/news/nation/2024/01/1001199/traditional-sabahan-dish-linopot-now-hit-among-tourists (accessed on 14 December 2024).
- The Ambitious Salted Fish. Malaysian Food Showcase: Linopot. The Ambitious Salted Fish. 23 February 2022. Available online: https://ikanmas.in/malaysian-food/linopot-sabah/ (accessed on 14 November 2024).
- Lim, L.W.K.; Chung, H.H.; Hussain, H. Organellar genome copy number variations and integrity across different organs, growth stages, phenotypes and main localities of sago palm (Metroxylon sagu Rottboll) in Sarawak, Malaysia. Gene Rep. 2020, 21, 100808. [Google Scholar] [CrossRef]
- Smith, R. What You Need to Know About the ambuyat DISH of Brunei (Recipe); Will Fly For Food: Gifu, Japan, 2023; Available online: https://www.willflyforfood.net/brunei-what-you-need-to-know-about-the-ambuyat-dish-of-brunei-recipe/ (accessed on 10 November 2024).
- Malik, M.R. Ambuyat and Beyond: Exploring Bruneian Cuisine; Anakbrunei.org: Bandar Seri Begawan, Brunei, 2023; Available online: https://anakbrunei.org/ambuyat-and-beyond-exploring-bruneian-cuisine/ (accessed on 14 December 2024).
- Chan, J. Next Time You Are in Sabah, Try Its Traditional Cuisine. Malay Mail. 15 January 2017. Available online: https://www.malaymail.com/news/malaysia/2017/01/15/next-time-you-are-in-sabah-try-its-traditional-cuisine/1292893 (accessed on 14 December 2024).
- Sago-From Palm to Pellets. The Star. 5 June 2023. Available online: https://www.thestar.com.my/news/nation/2023/06/05/sago---from-palm-to-pellets (accessed on 14 December 2024).
- Margaret, M. The Amazing Sago Palm. Borneo Post Online. 25 March 2012. Available online: https://www.theborneopost.com/2012/03/25/the-amazing-sago-palm/ (accessed on 14 December 2024).
- Dewayani, W.; Suryani; Arum, R.H.; Septianti, E. Potential of sago products supporting local food security in South Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2022, 974, 012114. [Google Scholar] [CrossRef]
- Pendi, F.H.; Yan, W.-J.; Hussain, H.; Roslan, H.A.; Julaihi, N. Advances in sago palm research: A comprehensive review of recent findings. Sains Malays. 2023, 52, 3045–3059. [Google Scholar] [CrossRef]
- Ramadhanti, N.; Melia, S.; Hellyward, J.; Purwati, E. Characteristics of lactic acid bacteria isolated from palm sugar from West Sumatra, Indonesia and their potential as a probiotic. Biodiversitas 2021, 22, 2610–2616. [Google Scholar] [CrossRef]
- Srikaeo, K.; Thongta, R. Effects of sugarcane, palm sugar, coconut sugar and sorbitol on starch digestibility and physicochemical properties of wheat based foods. Int. Food Res. J. 2015, 22, 923–929. [Google Scholar]
- Winarni, S.; Arifan, F.; Broto, R.W.; Fuadi, A.; Ramadhan, R. Analysis of glycemic index of “Gula Semut” through blood glucose level test. IOP Conf. Ser. J. Phys. 2019, 1217, 012138. [Google Scholar] [CrossRef]
- Abdullah, M.S.; Razak, A.F.A.; Sulaiman, M.S.; Abidin, M.Z.; Osman, M.S.; Razak, A.A.; Salleh, M.H. The utilization of Nypa fruticans palm sugar (gula apong) as an altervative sweetener in kaya and its effects on physicochemical and sensory properties. Int. J. Mechan. Eng. 2022, 7, 158–166. [Google Scholar]
- Hui-Yan, T.; Sarbini, S.R. The local indigenous food of Sarawak as potential functional food. Int. J. Food Sci. Technol. 2024, 59, 7692–7703. [Google Scholar] [CrossRef]
- Yahaya, S.F.R.; Samsuddin, N.; Mamat, S.; Hod, R.; Abdullah, N.Z.; Rahman, N.A.A.; Mat So’ad, S.Z. Determination of antioxidant compounds, proximate compositions and assessment of free radical scavenging activities of Nypa fruticans Wurmb. Sap. Pertanika J. Sci. Technol. 2021, 29, 2061–2071. [Google Scholar] [CrossRef]
- Jaraee, J.; Awg Adeni, D.S.; Bilung, L.M.; Azmin, P.A. Physicochemical and microbiological assessment of Nypa fruticans sap collected in Sarawak, Malaysia. Food Res. 2023, 6, 44–50. [Google Scholar] [CrossRef]
- Hidayat, Y.; Saleh, Y.; Cahyaningrum, H.; Hadiarto, A. Utilization of cassava (Manihot esculenta) as alternative local food source supporting food diversification in North Maluku. E3S Web Conf. 2023, 373, 04029. [Google Scholar] [CrossRef]
- Mohidin, S.R.N.S.P.; Moshawih, S.; Hermansyah, A.; Asmuni, M.I.; Shafqat, N.; Ming, L.C. Cassava (Manihot esculenta Crantz): A systematic review for the pharmacological activities, traditional uses, nutritional values, and phytochemistry. J. Evid. Based Integ. Med. 2023, 28, 2515690X231206227. [Google Scholar] [CrossRef]
- Wulandari, S.; Alami, E.N.; Khamidah, A.; Rizal, A.M.; Purbiati, T.; Yustina, I. Cassava as a local material source for some types of food products. E3S Web Conf. 2023, 373, 04025. [Google Scholar] [CrossRef]
- Bada, R. Mashed Cassava Leaves and Exploring Its Various Preparations in Borneo. Borneo Travel. 25 September 2024. Available online: https://www.borneotravel.id/2024/09/mashed-cassava-leaves-and-exploring-its.html (accessed on 30 December 2024).
- Rahayu, N.S. Gulai Daun Singkong: Coconut Curry with Cassava Leaves (Vegan). Cook Me Indonesian. 10 March 2021. Available online: https://www.cookmeindonesian.com/gulai-daun-singkong-coconut-curry-with-cassava-leaves-vegan/ (accessed on 30 December 2024).
- Latif, S.; Müller, J. Potential of cassava leaves in human nutrition: A review. Trends Food Sci. Technol. 2015, 44, 147–158. [Google Scholar] [CrossRef]
- Bunawan, H.; Dusik, L.; Bunawan, S.N.; Amin, N.M. Botany, traditional uses, phytochemistry and pharmacology of Archidendron jiringa: A review. Glob. J. Pharmacol. 2013, 7, 474–478. [Google Scholar]
- Chien, P. Mawang, and Other Exotic Fruits from Borneo. Borneo Post Online. 24 November 2024. Available online: https://www.theborneopost.com/2024/11/24/mawang-and-other-exotic-fruits-from-borneo/ (accessed on 29 December 2024).
- Herianto; Kusuma, Z.; Nihayati, E.; Prayogo, C. The plant wisdon of Dayak Ot Danum, Central Kalimantan. J. Trop. Life Sci. 2018, 8, 130–143. [Google Scholar] [CrossRef]
- Bunawan, N.C.; Rastegar, A.; White, K.P.; Wang, N.E. Djenkolism: Case report and literature review. Int. Med. Case Rep. J. 2014, 7, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Chien, P. Introducing Some Hardy Fruit Vegetables. Borneo Post Online. 11 March 2012. Available online: https://www.theborneopost.com/2012/03/11/introducing-some-hardy-fruit-vegetables/ (accessed on 30 December 2024).
- Islam, M.T.; Quispe, C.; El-Kersh, D.M.; Shill, M.C.; Bhardwaj, K.; Bhardwaj, P.; Sharifi-Rad, J.; Martorell, M.; Hossain, R.; Al-Harrasi, A.; et al. A literature-based update on Benincasa hispida (Thunb.) Cogn.: Traditional uses, nutraceutical, and phytopharmacological profiles. Oxid. Med. Cell. Longev. 2021, 2021, 6349041. [Google Scholar] [CrossRef] [PubMed]
- Fatariah, Z.; Zulkhairuazha, T.Y.T.; Wan Rosli, W.I. Quantitative HPLC analysis of gallic acid in Benincasa hispida prepared with different extraction techniques. Sains Malays. 2014, 43, 1181–1187. [Google Scholar]
- Singh, S.; Gohil, K.J.; Singh, M.P. Pharmacological update on Benincasa hispida (Thunb.): A review. Pharmacol. Res. Mod. Chin. Med. 2024, 12, 100478. [Google Scholar] [CrossRef]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. [Google Scholar] [CrossRef]
- Tuksitha, L.; Chen, Y.-L.S.; Chen, Y.-L.; Wong, K.-Y.; Peng, C.-C. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). J. Asia Pac. Entomol. 2018, 21, 563–570. [Google Scholar] [CrossRef]
- Benjamin, M.A.Z.; Abu Bakar, M.F.; Abu Bakar, F.I.; Sabran, S.F.; Kormin, F.; Fuzi, S.M. Development of bambangan (Mangifera pajang) carbonated drink. IOP Conf. Ser. Earth Environ. Sci. 2021, 736, 012010. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Soon, Y.; Shaarani Sharifudin, M.; Hasmadi, M.; Mansoor, A.H.; Zaidul, I.S.M.; Lee, J.S.; Ali, M.E.; Ghafoor, K.; Zzaman, W.; et al. Bambangan (Mangifera pajang) kernel fat: A potential new source of cocoa butter alternative. Int. J. Food Sci. Technol. 2018, 53, 1689–1697. [Google Scholar] [CrossRef]
- Parishay. Fruit spotlight: Durian. Youth in Food Systems. 26 August 2024. Available online: https://seeds.ca/schoolfoodgardens/fruit-spotlight-durian/ (accessed on 14 December 2024).
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/11f9288f-dc78-4171-8d02-92235b8d7dc7/content (accessed on 14 December 2024).
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef]
- Râpă, M.; Darie-Niță, R.N.; Coman, G. Valorization of fruit and vegetable waste into sustainable and value-added materials. Waste 2024, 2, 258–278. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef]
- Rathour, T.P.; Sinha, G.; Peideh NG, V.; Behera, S.D.; Paul, M.; Mohanta, R.; Karna, A.K.; Sarkar, N.S.; Das, J.; Lalchhuansanga, J. From waste to wealth: Exploring recent trends in tropical fruit waste utilization. Afr. J. Biol. Sci. 2024, 6, 3686–3706. [Google Scholar]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Beh, L.; Sharifudin, M.S.; Siddiquee, S.; Hasmadi, M.; Sahena, F.; Mansoor, A.H.; Lee, J.S.; Jinap, S. Valuable components of bambangan fruit (Mangifera pajang) and its co-products: A review. Food Res. Int. 2019, 115, 105–115. [Google Scholar] [CrossRef]
- Saelee, N.; Castro-Muñoz, R.; Panpipat, W.; Chaijan, M. Nutritional characterization of whole mangosteen pulp with seeds and its application as an alternate functional ingredient in crackers. Foods 2024, 13, 2987. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, I.A.; Oderinde, R.A.; Ogunkoya, B.O.; Egunyomi, A.; Taiwo, V.O. Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chem. 2007, 101, 999–1004. [Google Scholar] [CrossRef]
- Buhang, N.; Nuryanti, S.; Walanda, D. Antioxidant activity test of red spinach’s extract (Blitum rubrum) in ethanol solvent and water solvent with dpph. J. Akad. Kim. 2020, 8, 153–159. [Google Scholar] [CrossRef]
- Wahini, M.; Miranti, M.; Lukitasari, F.; Novela, L. Rambutan seed (Nephelium lappaceum L. ) optimization as raw material of high nutrition value processed food. IOP Conf. Ser. Mat. Sci. Eng. 2018, 306, 012089. [Google Scholar] [CrossRef]
- Azzatul, F.; Jahurul, M.H.A.; Norliza, J.; Norazlina, M.R.; Hasmadi, M.; Sharifudin, M.S.; Matanjun, P.; Lee, J.S. Characteristics of rambutan (Nephelium lappaceum L.) seed fat fractions and their potential application as cocoa butter improver. Food Res. 2020, 4, 852–859. [Google Scholar] [CrossRef]
- Abd Tahar, S.Z.; Surugau, N.; Eng, H.S.; Tan, W.-H.; Sam, L.M. Biostimulant effects of brown seaweed extract (Sargassum polycystum) on the growth and yield of pigmented upland rice (Oryza sativa cv Tadong). Trans. Sci. Technol. 2024, 11, 51–64. [Google Scholar]
- Hanry, E.L.; Surugau, N. Optimization of biomass-to-water ratio and glycerol content to develop antioxidant- enriched bioplastics from whole seaweed biomass of Kappaphycus sp. J. Appl. Phycol. 2024, 36, 917–934. [Google Scholar] [CrossRef]
- Bakar, F.; Khan, W.; Khan, I.; Magiman, M.; Rosli, Z.; Akram, S.; Ibrahim, F. Diversity and utilization of ethnomedicinal plants In Sarawak, Borneo. Malays. For. 2022, 86, 125–152. [Google Scholar]
- Amiri, M.H.; Nikzad, T.; Khairzad, A.Q. Fostering unity and leadership: Borneo’s cultural diversity and youth leadership. Cogniz. J. Multidisc. Stud. 2023, 3, 40–48. [Google Scholar] [CrossRef]
- Matanjun, D.; Bin Jeffree, M.S.; Kulip, J.; Rahman, M.S.; Shimmi, S.C. Traditional medicine in Sabah: A case study from the district of Kota Marudu. Borneo J. Med. Sci. 2018, 1, 73. [Google Scholar] [CrossRef]
- Rizvi, S.A.A.; Einstein, G.P.; Tulp, O.L.; Sainvil, F.; Branly, R. Introduction to traditional medicine and their role in prevention and treatment of emerging and re-emerging diseases. Biomolecules 2022, 12, 1442. [Google Scholar] [CrossRef]
- Adam, A.A.; Othman, N.; Halim, A.A. Indigenous knowledge transfer among Dusuns and Bajaus in Kota Belud, Sabah, Malaysia: Approaches and challenges. Int. J. Acad. Res. Bus. Soc. Sci. 2021, 11, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Awang-Kanak, F.; Matawali, A.; Jumat, N.R.; Bakri, S.N.S. A preliminary survey on edibles and medicinal plants used by Dusun of Kampung Pinolobu, Kadamaian, Kota Belud, Sabah, Malaysia. J. Trop. Biol. Conserv. 2021, 18, 21–30. [Google Scholar] [CrossRef]
- Kulip, J.; Indu, J.P.; Mision, R. Ethnobotanical survey of medical plants in the village of Kaingaran in Sabah, Malaysia. J. Trop. Biol. Conserv. 2016, 1, 71–77. [Google Scholar]
- Awang-Kanak, F.; Bakar, M.F.A.; Mohamed, M. Ethnobotanical survey on plants used as traditional salad food (ulam) in Kampung Taun Gusi, Kota Belud Sabah, Malaysia. AIP Conf. Proc. 2018, 2002, 020024. [Google Scholar] [CrossRef]
- Mahali, S.N.H.; Derak, R.; Aziz, Z.A.; Tobi, B. Short communication: Traditional medicinal plants and their uses from Sembirai Village, Kota Belud District, Sabah State, Malaysia Borneo. Biodiversitas 2023, 24, 5956–5961. [Google Scholar] [CrossRef]
- Awang-Kanak, F.; Abu Bakar, M.F.; Matawali, A. Ethnobotanical indices for traditional vegetable and herbal medicine species consumed in Kota Belud, Sabah, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2020, 549, 012028. [Google Scholar] [CrossRef]
- Tropical Fruit Season Brings People Together. Borneo Bulletin. 31 August 2024. Available online: https://borneobulletin.com.bn/tropical-fruit-season-brings-people-together/ (accessed on 14 December 2024).
- Miwil, O. The Season for Fruit Lovers in Sabah. New Straits Times. 21 January 2018. Available online: https://www.nst.com.my/news/nation/2018/01/327341/season-fruit-lovers-sabah#google_vignette (accessed on 14 December 2024).
- Ling, J. Fruit Season in Kapit Coming to an End. Borneo Post Online. 24 December 2023. Available online: https://www.theborneopost.com/2023/12/24/fruit-season-in-kapit-coming-to-an-end/ (accessed on 14 December 2024).
- Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon 2021, 7, e08539. [Google Scholar] [CrossRef] [PubMed]
- Yasminnajla, F.M.; Virtriana, R.; Harto, A.B. Identification of land cover changes and its impact on biodiversity in Kalimantan Island. IOP Conf. Ser. Earth Environ. Sci. 2023, 1276, 012029. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Deforestation in Borneo Is Slowing, But Regulation Remains Key; United Nations Environment Programme: Nairobi, Kenya, 2019; Available online: https://www.unep.org/news-and-stories/story/deforestation-borneo-slowing-regulation-remains-key (accessed on 15 December 2024).
- Tang, K.H.D.; Yap, P.-S. A systematic review of slash-and-burn agriculture as an obstacle to future-proofing climate change. Proc. Int. Conf. Clim. Change 2020, 4, 1–19. [Google Scholar] [CrossRef]
- Musa, D.N.S.; Huang, X. Challenges and Hopes Peat Fire Management in Borneo Island; International Association of Wildland Fire: Missoula, MN, USA, 2022; Available online: https://www.iawfonline.org/article/challenges-and-hopes-peat-fire-management-in-borneo-island/ (accessed on 15 December 2024).
- Ravindran, K.M.; Jones, P.J.; Rayment, M. Can underutilized tropical fruits meet the nutritional requirements of rural Indonesia? Indones. J. Innov. Appl. Sci. 2021, 1, 151–160. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Rebelo, K.S.; Bisconsin-Junior, A.; de Morais, J.S.; Magnani, M.; Maldonade, I.R.; Madeira, N.R.; Tiengo, A.; Maróstica, M.R.; Cazarin, C.B.B. The use of alternative food sources to improve health and guarantee access and food intake. Food Res. Int. 2021, 149, 110709. [Google Scholar] [CrossRef] [PubMed]
- Sani, S.A.; Osman, N.D.; Saari, E.M.; Idrus, W.A.R.W. A review on food security policy on agriculture and food in Sabah, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1103, 012023. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The White/Wiphala Paper on Indigenous Peoples’ Food Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://openknowledge.fao.org/items/f2db136c-b20f-4691-b337-04666c54df33 (accessed on 30 December 2024).
- Sundram, P. Food security in ASEAN: Progress, challenges and future. Front. Sustain. Food Syst. 2023, 7, 1260619. [Google Scholar] [CrossRef]
- Sha, S.P.; Modak, D.; Sarkar, S.; Roy, S.K.; Sah, S.P.; Ghatani, K.; Bhattacharjee, S. Fruit waste: A current perspective for the sustainable production of pharmacological, nutraceutical, and bioactive resources. Front. Microbiol. 2023, 14, 1260071. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, O.D.; Surugau, N.; Kansedo, J.; Panchal, S.K.; Brown, L. Plant-Based Functional Foods from Borneo. Nutrients 2025, 17, 200. https://doi.org/10.3390/nu17020200
John OD, Surugau N, Kansedo J, Panchal SK, Brown L. Plant-Based Functional Foods from Borneo. Nutrients. 2025; 17(2):200. https://doi.org/10.3390/nu17020200
Chicago/Turabian StyleJohn, Oliver Dean, Noumie Surugau, Jibrail Kansedo, Sunil K. Panchal, and Lindsay Brown. 2025. "Plant-Based Functional Foods from Borneo" Nutrients 17, no. 2: 200. https://doi.org/10.3390/nu17020200
APA StyleJohn, O. D., Surugau, N., Kansedo, J., Panchal, S. K., & Brown, L. (2025). Plant-Based Functional Foods from Borneo. Nutrients, 17(2), 200. https://doi.org/10.3390/nu17020200