Associations of the Intake of Individual and Multiple Flavonoids with Metabolic Dysfunction Associated Steatotic Liver Disease in the United States
Highlights
- Higher dietary flavonoid intake is associated with a reduced risk of MASLD;
- Anthocyanidins, flavones, flavanones, naringenin, apigenin, delphinidin, and myricetin contributed most to the beneficial effects of flavonoids;
- People with MASLD are advised to select foods that contain flavonoids with the strongest effects.
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Definition of MASLD
2.3. Assessment of Dietary Flavonoid Intake
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Measurement of Flavonoid Intake and Their Correlation
3.3. Association Between Total Dietary Flavonoid Intake and MASLD
3.4. Interaction Between Total Flavonoid Intake and Selected Covariates
3.5. Combined Effects of Dietary Flavonoid Intake on MASLD
3.6. Individual Effects of Dietary Flavonoid Intake on MASLD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zheng, W.; Qiu, K.; Kong, W.; Zeng, T. Changing from NAFLD to MASLD: The new definition can more accurately identify individuals at higher risk for diabetes. J. Hepatol. 2023, 80, e85–e87. [Google Scholar] [CrossRef]
- Lekakis, V.; Papatheodoridis, G.V. Natural history of metabolic dysfunction-associated steatotic liver disease. Eur. J. Intern. Med. 2023, 122, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Kalligeros, M.; Vassilopoulos, A.; Vassilopoulos, S.; Victor, D.W.; Mylonakis, E.; Noureddin, M. Prevalence of Steatotic Liver Disease (MASLD, MetALD and ALD) in the United States: NHANES 2017-2020. Clin. Gastroenterol. Hepatol. 2023, 22, 1330–1332.e4. [Google Scholar] [CrossRef]
- Le, M.H.; Yeo, Y.H.; Zou, B.; Barnet, S.; Henry, L.; Cheung, R.; Nguyen, M.H. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach. Clin. Mol. Hepatol. 2022, 28, 841–850. [Google Scholar] [CrossRef]
- Suarez, M.; Boque, N.; Del Bas, J.M.; Mayneris-Perxachs, J.; Arola, L.; Caimari, A. Mediterranean Diet and Multi-Ingredient-Based Interventions for the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 1052. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Corey, K.E.; Lim, J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2021, 160, 912–918. [Google Scholar] [CrossRef]
- Diehl, A.M.; Day, C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2017, 377, 2063–2072. [Google Scholar] [CrossRef]
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef]
- Burger, K.; Jung, F.; Baumann, A.; Brandt, A.; Staltner, R.; Sanchez, V.; Bergheim, I. TNFalpha is a key trigger of inflammation in diet-induced non-obese MASLD in mice. Redox Biol. 2023, 66, 102870. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, M. Non-alcoholic Fatty Liver Disease: Beneficial Effects of Flavonoids. Phytother. Res. 2016, 30, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Jin, L.; Qin, X.; He, B. Natural flavonoids: Potential therapeutic strategies for non-alcoholic fatty liver disease. Front. Pharmacol. 2022, 13, 1005312. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.W.; Wu, Y.Y.; Xiong, F.; Liu, M.; Liu, Y.P.; Wang, C.; Chen, Y.M. Higher flavonoid intake is associated with a lower progression risk of non-alcoholic fatty liver disease in adults: A prospective study. Br. J. Nutr. 2021, 125, 460–470. [Google Scholar] [CrossRef]
- Kim, M.H.; Park, J.S.; Jung, J.W.; Byun, K.W.; Kang, K.S.; Lee, Y.S. Daidzein supplementation prevents non-alcoholic fatty liver disease through alternation of hepatic gene expression profiles and adipocyte metabolism. Int. J. Obes. 2011, 35, 1019–1030. [Google Scholar] [CrossRef]
- Cremonini, E.; Iglesias, D.E.; Matsukuma, K.E.; Hester, S.N.; Wood, S.M.; Bartlett, M.; Fraga, C.G.; Oteiza, P.I. Supplementation with cyanidin and delphinidin mitigates high fat diet-induced endotoxemia and associated liver inflammation in mice. Food Funct. 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Ding, S.B.; Chu, X.L.; Jin, Y.X.; Jiang, J.J.; Zhao, X.; Yu, M. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis. Front. Pharmacol. 2023, 14, 1148814. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Choi, M.S. Dietary Eriodictyol Alleviates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obese Mice. Int. J. Mol. Sci. 2019, 20, 1227. [Google Scholar] [CrossRef]
- Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a modulator of PPARgamma, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol. 2017, 136, 136–149. [Google Scholar] [CrossRef]
- Porras, D.; Nistal, E.; Martinez-Florez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; Gonzalez-Gallego, J.; Garcia-Mediavilla, M.V.; Sanchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med. 2017, 102, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Rahimlou, M.; Baghdadi, G.; Khodi, A.; Rahimi, Z.; Saki, N.; Banaei Jahromi, N.; Cheraghian, B.; Tavasolian, R.; Hosseini, S.A. Polyphenol consumption and Nonalcoholic fatty liver disease risk in adults. Sci. Rep. 2024, 14, 6752. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ji, K.; Du, F.; Jin, N.; Boesch, C.; Farag, M.A.; Li, H.; Liu, X.; Xiao, J. Does Flavonoid Supplementation Alleviate Non-Alcoholic Fatty Liver Disease? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mol. Nutr. Food Res. 2023, 67, e2300480. [Google Scholar] [CrossRef] [PubMed]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- National Health and Nutrition Examination Survey (NHANES) 2017–2018 Procedure Manuals: Centers for Disease Control and Prevention. 2020. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/manuals.aspx?BeginYear=2017 (accessed on 9 December 2024).
- National Health and Nutrition Examination Survey (NHANES) 2017–2018 Laboratory Methods: Centers for Disease Control and Prevention. Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/labmethods.aspx?Cycle=2017-2018 (accessed on 9 December 2024).
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef]
- Wu, W.K.K.; Zhang, L.; Chan, M.T.V. Autophagy, NAFLD and NAFLD-Related HCC. Adv. Exp. Med. Biol. 2018, 1061, 127–138. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Geng, J.; Li, L.; Feng, X. An overview of ferroptosis in non-alcoholic fatty liver disease. Biomed. Pharmacother. 2022, 153, 113374. [Google Scholar] [CrossRef]
- Khan, R.S.; Bril, F.; Cusi, K.; Newsome, P.N. Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology 2019, 70, 711–724. [Google Scholar] [CrossRef]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Klisic, A.; Kavaric, N.; Ninic, A.; Kotur-Stevuljevic, J. Oxidative stress and cardiometabolic biomarkers in patients with non-alcoholic fatty liver disease. Sci. Rep. 2021, 11, 18455. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabres, M.; Abbate, M.; Montemayor, S.; Mascaro, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; et al. Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2020, 9, 759. [Google Scholar] [CrossRef] [PubMed]
- Swiderska, M.; Maciejczyk, M.; Zalewska, A.; Pogorzelska, J.; Flisiak, R.; Chabowski, A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Oxidative stress biomarkers in NAFLD patients. Free Radic. Res. 2019, 53, 841–850. [Google Scholar] [CrossRef]
- Mahata, T.; Sengar, A.S.; Basak, M.; Das, K.; Pramanick, A.; Verma, S.K.; Singh, P.K.; Biswas, S.; Sarkar, S.; Saha, S.; et al. Hepatic Regulator of G Protein Signaling 6 (RGS6) drives non-alcoholic fatty liver disease by promoting oxidative stress and ATM-dependent cell death. Redox Biol. 2021, 46, 102105. [Google Scholar] [CrossRef]
- Quetglas-Llabres, M.M.; Monserrat-Mesquida, M.; Bouzas, C.; Llompart, I.; Mateos, D.; Casares, M.; Ugarriza, L.; Martinez, J.A.; Tur, J.A.; Sureda, A. Mediterranean Diet Improves Plasma Biomarkers Related to Oxidative Stress and Inflammatory Process in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2023, 12, 833. [Google Scholar] [CrossRef]
- Montemayor, S.; Mascaro, C.M.; Ugarriza, L.; Casares, M.; Llompart, I.; Abete, I.; Zulet, M.A.; Martinez, J.A.; Tur, J.A.; Bouzas, C. Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 3186. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Wang, X.; Zhu, Y.; Jiao, Y.; Bao, Y.; Shi, W. Cuscuta chinensis flavonoids reducing oxidative stress of the improve sperm damage in bisphenol A exposed mice offspring. Ecotoxicol. Environ. Saf. 2023, 255, 114831. [Google Scholar] [CrossRef]
- Li, R.L.; Wang, L.Y.; Duan, H.X.; Qian, D.; Zhang, Q.; He, L.S.; Li, X.P. Natural flavonoids derived from herbal medicines are potential anti-atherogenic agents by inhibiting oxidative stress in endothelial cells. Front. Pharmacol. 2023, 14, 1141180. [Google Scholar] [CrossRef]
- Chen, C.; Chen, F.; Gu, L.; Jiang, Y.; Cai, Z.; Zhao, Y.; Chen, L.; Zhu, Z.; Liu, X. Discovery and validation of COX2 as a target of flavonoids in Apocyni Veneti Folium: Implications for the treatment of liver injury. J. Ethnopharmacol. 2024, 326, 117919. [Google Scholar] [CrossRef]
- Yan, J.B.; Nie, Y.M.; Xu, S.M.; Zhang, S.; Chen, Z.Y. Pure total flavonoids from citrus alleviate oxidative stress and inflammation in nonalcoholic fatty liver disease by regulating the miR-137-3p/NOXA2/NOX2 pathway. Phytomedicine 2023, 118, 154944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lai, L.; Tan, Y.; Liang, Q.; Bai, F.; Mai, W.; Huang, Q.; Ye, Y. Hepatoprotective effect of total flavonoids of Mallotus apelta (Lour.) Muell.Arg. leaf against carbon tetrachloride-induced liver fibrosis in rats via modulation of TGF-beta1/Smad and NF-kappaB signaling pathways. J. Ethnopharmacol. 2020, 254, 112714. [Google Scholar] [CrossRef]
- Mo, J.; Tong, Y.; Ma, J.; Wang, K.; Feng, Y.; Wang, L.; Jiang, H.; Jin, C.; Li, J. The mechanism of flavonoids from Cyclocarya paliurus on inhibiting liver cancer based on in vitro experiments and network pharmacology. Front. Pharmacol. 2023, 14, 1049953. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Katsiki, N.; Banach, M. A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: Results from a multiethnic study. J. Nutr. Biochem. 2019, 65, 66–71. [Google Scholar] [CrossRef]
- Naselli, F.; Bellavia, D.; Costa, V.; De Luca, A.; Raimondi, L.; Giavaresi, G.; Caradonna, F. Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids. Nutrients 2023, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhang, Y. Associations between dietary flavonoid intake with hepatic steatosis and fibrosis quantified by VCTE: Evidence from NHANES and FNDDS. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Zeng, Y.; Xie, J.; Xiao, K.; Li, M.; Cong, L. Association between flavonoid and subclasses intake and metabolic associated fatty liver disease in U.S. adults: Results from National Health and Nutrition Examination Survey 2017–2018. Front. Nutr. 2022, 9, 1074494. [Google Scholar] [CrossRef]
Characteristics | Total (n = 2581) | T1 (n = 861) | T2 (n = 860) | T3 (n = 860) | p-Value |
---|---|---|---|---|---|
Age (year) | 47.92 (0.92) | 45.65 (1.32) | 49.71 (1.18) | 48.45 (1.04) | 0.056 |
Sex, n (%) | <0.001 | ||||
Male | 1212 (46.96) | 480 (54.57) | 346 (38.86) | 386 (46.38) | |
Female | 1369 (53.04) | 381 (45.43) | 514 (61.14) | 474 (53.62) | |
Ethnicity, n (%) | 0.008 | ||||
Mexican American | 308 (11.93) | 114 (9.94) | 128 (10.51) | 66 (5.48) | |
Non-Hispanic White | 922 (35.72) | 332 (62.58) | 273 (59.41) | 317 (65.60) | |
Non-Hispanic Black | 590 (22.86) | 229 (13.86) | 207 (11.38) | 154 (7.16) | |
Other race | 761 (29.48) | 186 (13.62) | 252 (18.71) | 323 (21.76) | |
Smoking status, n (%) | 0.004 | ||||
Never | 1587 (61.49) | 453 (54.02) | 536 (66.57) | 598 (70.52) | |
Ever | 624 (24.18) | 225 (28.28) | 226 (23.00) | 173 (19.27) | |
Current | 370 (14.34) | 183 (17.70) | 98 (10.43) | 89 (10.21) | |
Alcohol drinking status, n (%) | 0.010 | ||||
Non-drinker | 298 (11.55) | 53 (5.35) | 117 (10.81) | 128 (11.82) | |
Low to moderate drinker | 2283 (88.45) | 808 (94.65) | 743 (89.19) | 732 (88.18) | |
Education level, n (%) | 0.009 | ||||
Less than high school | 425 (16.47) | 154 (10.81) | 168 (10.78) | 103 (6.96) | |
High school or equivalent | 584 (22.63) | 236 (34.18) | 194 (24.27) | 154 (23.86) | |
College or above | 1572 (60.91) | 471 (55.02) | 498 (64.95) | 603 (69.18) | |
Diagnosed with cardiovascular disease, n (%) | 0.022 | ||||
Yes | 286 (11.08) | 100 (7.13) | 105 (9.92) | 81 (6.03) | |
No | 2295 (88.92) | 761 (92.87) | 755 (90.08) | 779 (93.97) | |
Metabolic syndrome score | 1.95 (0.07) | 1.99 (0.11) | 1.99 (0.07) | 1.88 (0.10) | 0.439 |
Regular physical activity, n (%) | 0.016 | ||||
Yes | 1251 (48.47) | 325 (48.09) | 441 (59.66) | 485 (59.12) | |
No | 1330 (51.53) | 536 (51.91) | 419 (40.34) | 375 (40.88) | |
Healthy Eating Index 2015 score | 52.75 (0.79) | 46.60 (0.64) | 55.12 (1.05) | 56.34 (0.99) | <0.001 |
Sleep quality, n (%) | 0.819 | ||||
Low | 94 (3.64) | 29 (3.09) | 36 (4.11) | 29 (3.38) | |
Moderate | 761 (29.48) | 268 (29.25) | 269 (30.24) | 224 (27.28) | |
High | 1726 (66.87) | 564 (67.66) | 555 (65.65) | 607 (69.34) | |
Family income-to-poverty ratio, n (%) | 0.004 | ||||
<1.0 | 388 (15.03) | 142 (13.23) | 142 (11.32) | 104 (8.88) | |
1.0–3.0 | 1194 (46.26) | 470 (43.10) | 398 (36.24) | 326 (31.62) | |
>3.0 | 999 (38.71) | 249 (43.67) | 320 (52.44) | 430 (59.50) |
OR (95% CI) | p-Value | |
---|---|---|
Model 1 | ||
T1 | 1.00 (Ref.) | |
T2 | 0.96 (0.64, 1.44) | 0.825 |
T3 | 0.67 (0.45, 1.00) | 0.050 |
Model 2 | ||
T1 | 1.00 (Ref.) | |
T2 | 1.10 (0.76, 1.59) | 0.598 |
T3 | 0.71 (0.51, 0.97) | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, M.; Zhang, J.; Li, H.; Li, Y.; Huang, S.; Zhu, H.; Liu, Z. Associations of the Intake of Individual and Multiple Flavonoids with Metabolic Dysfunction Associated Steatotic Liver Disease in the United States. Nutrients 2025, 17, 205. https://doi.org/10.3390/nu17020205
Wang C, Li M, Zhang J, Li H, Li Y, Huang S, Zhu H, Liu Z. Associations of the Intake of Individual and Multiple Flavonoids with Metabolic Dysfunction Associated Steatotic Liver Disease in the United States. Nutrients. 2025; 17(2):205. https://doi.org/10.3390/nu17020205
Chicago/Turabian StyleWang, Chen, Mengchu Li, Jiali Zhang, Hongguang Li, Yue Li, Siyu Huang, Huilian Zhu, and Zhaoyan Liu. 2025. "Associations of the Intake of Individual and Multiple Flavonoids with Metabolic Dysfunction Associated Steatotic Liver Disease in the United States" Nutrients 17, no. 2: 205. https://doi.org/10.3390/nu17020205
APA StyleWang, C., Li, M., Zhang, J., Li, H., Li, Y., Huang, S., Zhu, H., & Liu, Z. (2025). Associations of the Intake of Individual and Multiple Flavonoids with Metabolic Dysfunction Associated Steatotic Liver Disease in the United States. Nutrients, 17(2), 205. https://doi.org/10.3390/nu17020205