Effect of Mediterranean Diet in Combination with Isokinetic Exercise Therapy on Body Composition and Cytokine Profile in Patients with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical–Demographic Characteristics
3.2. Cytokines
3.3. Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, A.C.T.; Delgado, V.; Borlaug, B.A.; Bax, J.J. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat. Rev. Cardiol. 2021, 18, 291–304. [Google Scholar] [CrossRef]
- Liang, X.; Or, B.; Tsoi, M.F.; Cheung, C.L.; Cheung, B.M.Y. Prevalence of metabolic syndrome in the United States National Health and Nutrition Examination Survey 2011-18. Postgrad. Med. J. 2023, 99, 985–992. [Google Scholar] [CrossRef]
- Medina-Lezama, J.; Zea-Diaz, H.; Morey-Vargas, O.L. Prevalence of metabolic syndrome in Peruvian Andean Hispanics: The PREVENCION study. Diabetes Res. Clin. Pract. 2007, 78, 270–281. [Google Scholar] [CrossRef]
- Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Amenta, F.; Tomassoni, D.; Tayebati, S.K. Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (CVD). Int. J. Mol. Sci. 2021, 22, 4798. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, C.P.; González-Torres, M.C.; Cruz-Bautista, I.; Nájera-Medina, O. Visceral obesity, skeletal muscle mass and resistin in metabolic syndrome development. Nutr. Hosp. 2019, 36, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Primo, D.; Izaola, O.; de Luis, D. Resistin/uric acid index as a marker of metabolic syndrome in females with obesity. Int. J. Obes. 2023, 47, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- Tuncay, C.; Ergoren, M.C. A systematic review of precision nutrition and Mediterranean Diet: A personalized nutrition approaches for prevention and management of obesity related disorders. Clin. Nutr. ESPEN 2020, 38, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Nabuco, H.C.G.; Tomeleri, C.M.; Fernandes, R.R.; Sugihara Junior, P.; Cavalcante, E.F.; Venturini, D.; Barbosa, D.S.; Silva, A.M.; Sardinha, L.B.; Cyrino, E.S. Effects of Protein Intake Beyond Habitual Intakes Associated With Resistance Training on Metabolic Syndrome-Related Parameters, Isokinetic Strength, and Body Composition in Older Women. J. Aging Phys. Act. 2019, 27, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; Grilli, A.; Patruno, A.; Franceschelli, S.; Felzani, G.; Pesce, M.; Vinciguerra, I.; De Lutiis, M.A.; Felaco, M. Plasmatic markers of muscular stress in isokinetic exercise. J. Biol. Regul. Homeost. Agents 2007, 21, 21–29. [Google Scholar] [PubMed]
- Grundy, S.M.; Hansen, B.; Smith, S.C., Jr.; Cleeman, J.I.; Kahn, R.A. Clinical management of metabolic syndrome: Report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Arterioscler. Thromb. Vasc. Biol. 2004, 24, e19–e24. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Casas, R.; Rimm, E.B.; Tresserra-Rimbau, A.; Romaguera, D.; Martínez, J.A.; Salas-Salvadó, J.; Martínez-González, M.A.; Vidal, J.; Ruiz-Canela, M.; et al. Loss of Visceral Fat is Associated with a Reduction in Inflammatory Status in Patients with Metabolic Syndrome. Mol. Nutr. Food Res. 2023, 67, e2200264. [Google Scholar] [CrossRef] [PubMed]
- Primo, D.; Izaola, O.; de Luis, D. Serum lipid and adiponectin/leptin ratio changes after a Mediterranean dietary pattern in non-g-allele carriers of the genetic variant of adiponectin gene rs822393. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3489–3498. [Google Scholar] [CrossRef] [PubMed]
- Jamurtas, A.Z.; Theocharis, V.; Koukoulis, G. The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur. J. Appl. Physiol. 2006, 97, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, Z.; Sharifi, G. Comparing the Effect of Resistance, Aerobic, and Concurrent Exercise Program on the Level of Resistin and High Reactive Protein C of Overweight and Obese Women. Int. Arch. Health Sci. 2017, 4, 7–12. [Google Scholar] [CrossRef]
- Tinsley, G.M.; Harty, P.S.; Moore, M.L.; Grgic, J.; Silva, A.M.; Sardinha, L.B. Changes in total and segmental bioelectrical resistance are correlated with whole-body and segmental changes in lean soft tissue following a resistance training intervention. J. Int. Soc. Sports Nutr. 2019, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, But Not Muscle Mass, Is Associated With Mortality in the Health, Aging and Body Composition Study Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Golbidi, S.; Laher, I. Exercise induced adipokine changes and the metabolic syndrome. J. Diabetes Res. 2014, 2014, 726861. [Google Scholar] [CrossRef]
- Numao, S.; Katayama, Y.; Hayashi, Y.; Matsuo, T.; Tanaka, K. Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men. Metabolism 2011, 60, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Saunders, T.J.; Palombella, A.; McGuire, K.A.; Janiszewski, P.M.; Després, J.P.; Ross, R. Acute exercise increases adiponectin levels in abdominally obese men. Nutr. Metab. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Tang, M. Exercise improves high fat diet-impaired vascular function. Biomed. Rep. 2017, 7, 337–342. [Google Scholar] [CrossRef]
- Llorente-Cantarero, F.J.; Aguilera, C.M.; Perez-Navero, J.L.; Gil, A.; Benitez-Sillero, J.D.; Gil-Campos, M. Fitness Levels and Gender Are Related With the Response of Plasma Adipokines and Inflammatory Cytokines in Prepubertal Children. Front. Nutr. 2022, 9, 883871. [Google Scholar] [CrossRef] [PubMed]
- Llorente-Cantarero, F.J.; Aguilar-Gómez, F.J.; Bueno-Lozano, G.; Anguita-Ruiz, A.; Rupérez, A.I.; Vázquez-Cobela, R.; Flores-Rojas, K.; Aguilera, C.M.; Moreno, L.A.; Gil, Á.; et al. Impact of Physical Activity Intensity Levels on the Cardiometabolic Risk Status of Children: The Genobox Study. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Babaei, P.; Hoseini, R. Exercise training modulates adipokine dysregulations in metabolic syndrome. Sports Med. Health Sci. 2022, 4, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Kim, J.W.; Kim, D.Y. Effects of yoga exercise on serum adiponectin and metabolic syndrome factors in obese postmenopausal women. Menopause 2012, 19, 296–301. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Geagea, A.G.; Mallat, S.; Matar, C.F.; Zerbe, R.; Filfili, E.; Francis, M.; Haidar, H.; Jurju, A. Adiponectin and Inflammation in Health and Disease: An Update . Open Med. J. 2018, 5, 20–32. [Google Scholar]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef]
- Trim, W.V.; Walhin, J.-P.; Koumanov, F.; Bouloumié, A.; Lindsay, M.A.; Travers, R.L.; Turner, J.E.; Thompson, D. The Impact of Long-term Physical Inactivity on Adipose Tissue Immunometabolism. J. Clin. Endocrinol. Metab. 2021, 107, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.A.; Singh, M.A.F. Effects of Exercise on Adiponectin: A Systematic Review. Obesity 2008, 16, 241–256. [Google Scholar] [CrossRef]
- Kazeminasab, F.; Fatemi, R.; Bagheri, R.; Santos, H.O.; Dutheil, F. Effects of plant-based diets combined with exercise training on leptin and adiponectin levels in adults with or without chronic diseases: A systematic review and meta-analysis of clinical studies. Front. Nutr. 2024, 11, 1465378. [Google Scholar] [CrossRef] [PubMed]
- Sirico, F.; Bianco, A.; D’Alicandro, G.; Castaldo, C.; Montagnani, S.; Spera, R.; Di Meglio, F.; Nurzynska, D. Effects of Physical Exercise on Adiponectin, Leptin, and Inflammatory Markers in Childhood Obesity: Systematic Review and Meta-Analysis. Child. Obes. 2018, 14, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Exercise-Induced Alternations of Adiponectin, Interleukin-8 and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. Biomolecules 2023, 13, 852. [Google Scholar] [CrossRef]
- Pojero, F.; Gervasi, F.; Fiore, S.D.; Aiello, A.; Bonacci, S.; Caldarella, R.; Attanzio, A.; Candore, G.; Caruso, C.; Ligotti, M.E.; et al. Anti-Inflammatory Effects of Nutritionally Relevant Concentrations of Oleuropein and Hydroxytyrosol on Peripheral Blood Mononuclear Cells: An Age-Related Analysis. Int. J. Mol. Sci. 2023, 24, 11029. [Google Scholar] [CrossRef] [PubMed]
- Root, M.; Collier, S.R.; Zwetsloot, K.A.; West, K.L.; McGinn, M.C. A randomized trial of fish oil omega-3 fatty acids on arterial health, inflammation, and metabolic syndrome in a young healthy population. Nutr. J. 2013, 12, 40. [Google Scholar] [CrossRef]
- Sureda, A.; Bibiloni, M.D.M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J.A. Adherence to the Mediterranean Diet and Inflammatory Markers. Nutrients 2018, 10, 62. [Google Scholar] [CrossRef]
- Zeraattalab-Motlagh, S.; Jayedi, A.; Shab-Bidar, S. The effects of resveratrol supplementation in patients with type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease: An umbrella review of meta-analyses of randomized controlled trials. Am. J. Clin. Nutr. 2021, 114, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
D + E (n = 12) | E (n = 8) | D (n = 14) | C (n = 8) | p-Value | |
---|---|---|---|---|---|
Age (years-old) | 54 (45–56.7) | 57 (48–60.7) | 56.7 (51–65) | 62 (54–67) | 0.34 |
Male Gender n (%) | 2 (20) | 3 (50) | 3 (21.4) | 1 (12.5) | 0.48 |
Comorbidities n(%) | |||||
Insulin Resistance | 9 (90) | 5 (83.3) | 10 (71.4) | 7 (87.5) | 0.75 |
Hypertriglyceridemia | 6 (60) | 5 (83.3) | 10 (71.4) | 4 (50) | 0.61 |
Hypercholesterolemia | 6 (60) | 4 (66.7) | 11(78.6) | 3 (37.5) | 0.29 |
High Blood Pressure | 5 (50) | 2 (33.3) | 11 (78.6) | 3 (37.5) | 0.14 |
Obesity | 9 (90) | 3 (50) | 12 (85.7) | 8 (100) | 0.09 |
Clinical, Anthropometry | |||||
SBP (mm/Hg) | 120 (110–122.5) | 110 (107.5–142.5) | 130 (117.5–130) | 120 (90–130) | 0.35 |
DBP (mm/Hg) | 80 (70–82.5) | 70 (67.5–82.5) | 80 (77.5–92) | 80 (80–90) | 0.26 |
Heart Rate (bpm) | 66 (64.7–82.2) | 62 (57–69) | 90 (80–90) | 80 (70–90) | 0.81 |
Weight (kg) | 90.1 ± 20.6 | 76.4 ±20.6 | 83.1 ± 16.2 | 72.7 +11.3 | 0.13 |
BMI (kg/m2) | 35.4 (28.5–40.3) | 28.2 (27.9–35) | 31.5 (27.9–37.4) | 29.8 (26.0–34.2) | 0.45 |
WC (cm) | 107.6 ± 15.3 | 99.8 ± 5.4 | 104.6 ± 13.7 | 97.7 ± 7.1 | 0.35 |
HC (cm) | 117.9 ± 18.1 | 106.8 ± 14.5 | 109.3 ± 12.2 | 107.7 ± 8.5 | 0.31 |
Muscular strength | 24.6 ± 6.4 | 25.6 ± 8 | 24.6 ± 7.3 | 19.8 ± 6.6 | 0.53 |
Pharmacologic therapy | |||||
Insulin | 4 (40) | 2 (33.3) | 5 (37.5) | 2 (25) | 0.93 |
Hypoglycemic | 7 (70) | 5 (83.3) | 9 (63.4) | 4 (50) | 0.66 |
Statins | 6 (60) | 2 (33.3) | 8 (57.1) | 2 (25) | 0.40 |
Fibrates | 2 (20) | 1 (16.7) | 5 (35.7) | 0 | 0.27 |
Diuretics | 2 (20) | 0 | 5 (35.7) | 0 | 0.13 |
Antihypertensive | 5 (59) | 3 (50) | 9 (64.3) | 2 (25) | 0.39 |
Aspirin | 2 (20) | 0 | 4 (28.6) | 0 | 0.25 |
Biochemical Profile | |||||
Fasting Glucose | 128 (121.5–151.5) | 100 (93–153) | 110 (93.5–147.5) | 125.5 (104–147) | 0.81 |
Triglycerides | 141.5 (107–176) | 115 (101–242) | 120 (104–130) | 134 (106–166) | 0.84 |
IL-1b | 215 (186–249) | 200.2 (173–237) | 223 (192–313) | 280 (220–297) | 0.30 |
Resistin | 854 (540–1200) | 1457 (966–1630) | 1020 (697–1248) | 933 (583–1220) | 0.21 |
IL-10 | 439 (150–481) | 419 (300–481) | 403 (140–475) | 283 (248–505) | 0.77 |
Adiponectin | 2.6 (2.1–3.5) | 4.2 (2.1–4.5) | 2.4 (2.1–5.1) | 2.4 (1.7–3.4) | 0.79 |
Sarcolipin | 0.38 (0.29–0.61) | 0.51 (0.30–0.72) | 0.38 (0.33–0.51) | 0.27 (0.25–0.58) | 0.54 |
D + E (n = 12) | E (n = 8) | D (n = 14) | C (n = 8) | |
---|---|---|---|---|
SBP (mm/Hg) | ||||
Basal | 120.0 (110.0, 130.0) | 125.0 (110.0, 147.5) | 130.0 (112.5, 130.0) | 115.0 (92.5, 127.5) |
Follow up | 120.0 (110.0, 120.0) | 110.0 (102.5, 132.5) | 120.0 (100.0, 130.0) | 115.0 (102.5, 135.0) |
% of change | −2.4 | 0.78 | 0.65 | −9.1 |
DBP (mm/Hg) | ||||
Basal | 80.0 (70.0, 80.0) | 70.0 (67.5, 82.5) | 80.0 (75.0, 90.0) | 75.0 (62.5, 87.5) |
Follow up | 70.0 (70.0, 80.0) | 80.0 (70.0, 80.0) | 70.0 (70.0, 80.0) | 75.0 (70.0, 87.5) |
% of change | −1.3 | −3.5 | 8.6 | −3.3 |
Weight (kg) | ||||
Basal | 86.8 (68.0, 107.0) | 75.4 (68.5, 83.1) | 85.5 (74.5, 95.7) | 73.7 (61.8, 82.9) |
Follow up | 84.9 (70.2, 107.5) | 75.2 (68.5, 80.5) | 70.0 (70.0, 80.0) | 82.2 (67.1, 84.9) |
% of change | 0.87 | 0.40 | 1.26 | −1.68 |
BMI (kg/m2) | ||||
Basal | 32.2 (27.9, 39.0) | 28.3 (27.9, 35.0) | 31.7 (28.8, 37.6) | 28.9 (26.3, 34.3) |
Follow up | 32.0 (27.4, 39.2) | 28.3 (28.1, 33.5) | 32.0 (28.9, 36.2) | 29.9 (27.1, 36.4) |
% of change | 0.87 | 0.45 | 1.27 | −1.69 |
WC (cm) | ||||
Basal | 108.8 (89.5, 119.8) | 103.0 (95.5, 118.0) | 103.5 (98.5, 114.9) | 94.4 (89.8, 104.3) |
Follow up | 102.3 (92.5, 116.5) | 98.0 (90.5, 116.0) | 104.5 (99.0, 110.0) | 94.2 (85.7, 105.5) |
% of change | 5.50 | 1.35 | −1.15 | 6.1 |
Muscular strength | ||||
Basal | 23.8 (20.0, 30.9) | 27.8 (17.3, 32.5) | 23.3 (20.3, 27.7) | 19.8 (15.8, 30.0) |
Follow up | 24.0 (20.6, 34.1) | 29.0 (18.0, 36.2) | 21.3 (19.0, 28.2) | 19.1 (13.7, 31.2) |
% of change (*) | −6.16 | −3.52 | 4.51 | 4.04 |
D + E (n = 12) | E (n = 8) | D (n = 14) | C (n = 8) | |
---|---|---|---|---|
Glucose | ||||
Basal | 128 (121.5–151.5) | 100 (93–153) | 110 (93.5–147.5) | 125.5 (104–147) |
Follow up | 128 (120–152) | 106 (103–183) | 114 (83–153.5) | 114.5 (86.7–114.5) |
% of change (95%CI) | 0 (−53.8, 83) | +6 (−19.3, 94.4) | +3.6 (−11.3, 15) * | −8.7 (−84.6, 0) |
Triglycerides | ||||
Basal | 141.5 (107–176) | 115 (101–242.5) | 120 (104–130.5) | 134.5 (106.5–166.5) |
Follow up | 139 (102–176) | 134 (120–150) | 107 (100.5–135.5) | 149 (145–206) |
% of change (95%CI) | −1.7 (−15.1, 9.8) | +16.5 (−19.1, 29.6) | −10.8 (−17.2, 22.0) | +10.7 (−5.7, 13.3) |
IL−1b | ||||
Basal | 215.8 (186.8–249.4) | 200.2 (173.4–237.6) | 223.5 (192.1–313.1) | 280.7 (220.1–297.7) |
Follow up | 210.6 (196.8–245.9) | 273.9 (251.1–296.6) | 204.9 (200.4–276.2) | 229.1 (204.5–295.9) |
% of change (95%CI) | −0.24 (−33.2, 8.5) | +36.8 (−14.8, 91.0) | −8.3 (−18.3, 79.2) | −18.4 (−25.0, 21.3) |
Resistin | ||||
Basal | 902.3 (603.0–1074.0) | 1213.0 (740.4–1939.0) | 1057.0 (750.1–1348.0) | 820.0 (521.4–1209.0) |
Follow up | 625.4 (519.8–754.8) * | 573.5 (408.5–832.4) * | 762.5 (491.0–790.8) | 650.9 (516.1–761.4) |
% of change (95%CI) | −16.7 (−53.5, 28.0) | −32.9 (−123.1, 92.6) | −1.7 (−23.1, 29.1) | −7.6 (−28.0, 38.1) |
IL-10 | ||||
Basal | 431.5 (197.0–477.3) | 172.4 (106.5–481.4) | 398.7 (120.6–466.5) | 283.6 (186.3–513.6) |
Follow up | 398.4 (148.4–458.7) | 239.9 (115.4–416.0) | 312.5 (186.0–397.2) | 382.6 (197.4–465.5) |
% of change (95%CI) | −2.37 (−24.6, 26.9) ** | +0.97 (−13.5, 37.9) | −11.89 (−31.3, 50.5) ** | +9.2 (−37.3, 9.8) |
Adiponectin | ||||
Basal | 3.4 (2.3–5.4) | 4.5 (3.4–5.6) | 2.5 (2.1–5.3) | 2.4 (1.7–3.4) |
Follow up | 5.4 (1.6–6.8) | 7.2 (5.7–7.7) * | 4.8 (1.5–6.5) | 2.5 (1.6–5.5) |
% of change (95%CI) | +39.6 (−18.5, 71.1) | +17.8 (−9.7, 67.1) | +9.7 (−37.8, 45.8) | +3.1 (−74.1, 46.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Cuenca, J.A.; Díaz-Jiménez, D.E.; Pineda-Juárez, J.A.; Mendoza-Mota, A.G.; Valencia-Aldana, O.D.; Núñez-Angeles, S.; Vera-Gómez, E.; Hernández-Patricio, A.; Loeza-Magaña, P.; Lara-Vargas, J.A.; et al. Effect of Mediterranean Diet in Combination with Isokinetic Exercise Therapy on Body Composition and Cytokine Profile in Patients with Metabolic Syndrome. Nutrients 2025, 17, 256. https://doi.org/10.3390/nu17020256
Suárez-Cuenca JA, Díaz-Jiménez DE, Pineda-Juárez JA, Mendoza-Mota AG, Valencia-Aldana OD, Núñez-Angeles S, Vera-Gómez E, Hernández-Patricio A, Loeza-Magaña P, Lara-Vargas JA, et al. Effect of Mediterranean Diet in Combination with Isokinetic Exercise Therapy on Body Composition and Cytokine Profile in Patients with Metabolic Syndrome. Nutrients. 2025; 17(2):256. https://doi.org/10.3390/nu17020256
Chicago/Turabian StyleSuárez-Cuenca, Juan A., Diana Elisa Díaz-Jiménez, Juan A. Pineda-Juárez, Alondra Gissel Mendoza-Mota, Ofelia Dinora Valencia-Aldana, Said Núñez-Angeles, Eduardo Vera-Gómez, Alejandro Hernández-Patricio, Pavel Loeza-Magaña, Jorge Antonio Lara-Vargas, and et al. 2025. "Effect of Mediterranean Diet in Combination with Isokinetic Exercise Therapy on Body Composition and Cytokine Profile in Patients with Metabolic Syndrome" Nutrients 17, no. 2: 256. https://doi.org/10.3390/nu17020256
APA StyleSuárez-Cuenca, J. A., Díaz-Jiménez, D. E., Pineda-Juárez, J. A., Mendoza-Mota, A. G., Valencia-Aldana, O. D., Núñez-Angeles, S., Vera-Gómez, E., Hernández-Patricio, A., Loeza-Magaña, P., Lara-Vargas, J. A., Arteaga-Martínez, J. R., Garduño-Pérez, Á. A., Montoya-Ramírez, J., Díaz-Aranda, M. A., Chaparro-Hernández, R. C., Melchor-López, A., García, S., Gutiérrez-Salinas, J., & Mondragón-Terán, P. (2025). Effect of Mediterranean Diet in Combination with Isokinetic Exercise Therapy on Body Composition and Cytokine Profile in Patients with Metabolic Syndrome. Nutrients, 17(2), 256. https://doi.org/10.3390/nu17020256