Decrease in Facial Bone Density with Aging and Maintenance Effect of Calcium Maltobionate Ingestion in Japanese Adult Women: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Sample Size
2.3. Selection, Randomization, and Blinding
2.4. Intervention Foods
2.5. Nutritional Survey
2.6. Outcome Measures
2.6.1. Calcaneal Bone Density
2.6.2. Facial Bone Density
2.6.3. Bone Resorption Marker
2.7. Statistical Analysis
3. Results
3.1. Study Setup and Participant Demographics
3.2. Nutritional Survey
3.3. Efficacy Assessment
3.3.1. Calcaneal Bone Density
3.3.2. Facial Bone Density
3.3.3. Bone Resorption Marker
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raggatt, L.J.; Partridge, N.C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 2010, 285, 25103–25108. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells 2020, 9, 2073. [Google Scholar] [CrossRef] [PubMed]
- Da, W.; Tao, L.; Zhu, Y. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis. Front. Endocrinol. 2021, 12, 675385. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Burley, G.; Lin, S.; Shi, Y.C. Osteoporosis pathogenesis and treatment: Existing and emerging avenues. Cell Mol. Biol. Lett. 2022, 27, 72. [Google Scholar] [CrossRef]
- Weitzmann, M.N.; Pacifici, R. Estrogen deficiency and bone loss: An inflammatory tale. J. Clin. Investig. 2006, 116, 1186–1194. [Google Scholar] [CrossRef]
- Cheng, C.H.; Chen, L.R.; Chen, K.H. Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef] [PubMed]
- Avis, N.E.; Brockwell, S.; Colvin, A. A universal menopausal syndrome? Am. J. Med. 2005, 118, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Delamater, L.; Santoro, N. Management of the perimenopause. Clin. Obstet. Gynecol. 2018, 61, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Hodges, J.K.; Cao, S.; Cladis, D.P.; Weaver, C.M. Lactose intolerance and bone health: The challenge of ensuring adequate calcium intake. Nutrients 2019, 11, 718. [Google Scholar] [CrossRef]
- Takaishi, Y.; Arita, S.; Honda, M.; Sugishita, T.; Kamada, A.; Ikeo, T.; Miki, T.; Fujita, T. Assessment of alveolar bone mineral density as a predictor of lumbar fracture probability. Adv. Ther. 2013, 30, 487–502. [Google Scholar] [CrossRef]
- Shaw Jr, R.B.; Katzel, E.B.; Koltz, P.F.; Kahn, D.M.; Puzas, E.J.; Langstein, H.N. Facial bone density: Effects of aging and impact on facial rejuvenation. Aesthet. Surg. J. 2012, 32, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, D.; Okada, M.; Fukami, K.; Nakagawa, T.; Hayakawa, T. Maltobionic acid enhances intestinal absorption of calcium and magnesium in rats. Biosci. Biotechnol. Biochem. 2019, 83, 1766–1773. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, D.; Kawase, H.; Uehara, S.; Kawase, R.; Fukami, K.; Nakagawa, T.; Shimada, M.; Hayakawa, T. Maltobionic acid accelerates recovery from iron deficiency-induced anemia in rats. Biosci. Biotechnol. Biochem. 2020, 84, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, D.; Fukami, K.; Takara, T. Maltobionic acid enhances absorption of minerals in healthy humans —A randomized double-blind placebo-controlled crossover study (part 1). Jpn. Pharmacol. Ther. 2020, 48, 643–653. [Google Scholar]
- Nishio, A.; Suehiro, D.; Nakamura, H.; Moriwaki, Y.; Nakagawa, H.; Ukai, Y.; Watanabe, A.; Yonezawa, T.; Woo, J.T.; Fukami, K.; et al. Maltobionic acid protects against ovariectomy-induced osteoporosis by suppressing bone resorption. JSFA Rep. 2024, 4, 384–393. [Google Scholar] [CrossRef]
- Suehiro, D.; Nishio, A.; Kawai, J.; Fukami, K.; Ohnishi, M. Effects of corn syrup solids containing maltobionic acid (maltobionic acid calcium salt) on bone resorption in healthy Japanese adult women: A randomized double-blind placebocontrolled crossover study. Food Sci. Nutr. 2020, 8, 1030–1037. [Google Scholar] [CrossRef]
- Fukami, K.; Suehiro, D.; Takara, T. Safety evaluation of long-term intake and effects on bone mineral density of corn syrup solids containing maltobionic acid (maltobionic acid calcium salt) in healthy Japanese women ―A randomized double-blind placebo-controlled study. Jpn. Pharmacol. Ther. 2019, 47, 229–245. [Google Scholar]
- Tai, V.; Leung, W.; Grey, A.; Reid, I.R.; Bolland, M.J. Calcium intake and bone mineral density: Systematic review and meta-analysis. BMJ 2015, 351, h4183. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Kim, S.A.; Lim, K.; Shin, S. The association of potassium intake with bone mineral density and the prevalence of osteoporosis among older Korean adults. Nutr. Res. Pract. 2020, 14, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An update on magnesium and bone health. Biometals 2021, 34, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Vorland, C.J.; Stremke, E.R.; Moorthi, R.N.; Hill Gallant, K.M. Effects of excessive dietary phosphorus intake on bone health. Curr. Osteoporos. Rep. 2017, 15, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, N.; Shiraki, M. Vitamin K nutrition and bone health. Nutrients 2020, 12, 1909. [Google Scholar] [CrossRef]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults. Public Health Nutr. 2011, 14, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuchi, H.; Tadano, S.; Todoh, M.; Nakatsuchi, Y.; Mori, S.; Endo, M. Finite element modeling of the cortical bone region using clinical CT images. J. Biomech. Sci. Eng. 2006, 1, 316–326. [Google Scholar] [CrossRef]
- Oo, W.M.; Naganathan, V.; Bo, M.T.; Hunter, D.J. Clinical utilities of quantitative ultrasound in osteoporosis associated with inflammatory rheumatic diseases. Quant. Imaging Med. Surg. 2018, 8, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Anna, U.M.; Maria, S.; Kerstin, B. Comparison of quantitative ultrasound of calcaneus and dual energy X-ray absorptiometry in measuring bone density and predicting fractures in patients with diabetic polyneuropathy: A prospective cohort study. Diabetes Res. Clin. Pract. 2021, 180, 109064. [Google Scholar] [CrossRef]
- Kushwaha, N.S.; Singh, A.; Kumar, S.; Kumar, D.; Bharat, A. Validation of quantitative ultrasonography for osteoporosis diagnosis in postmenopausal women compared to dual-energy X-ray absorptiometry (DEXA). Cureus 2023, 4, e38562. [Google Scholar] [CrossRef]
- The Japanese Society for Bone and Mineral Research. Guidelines for the Prevention and Treatment of Osteoporosis, 2011th ed.; Life Science Publishing: Tokyo, Japan, 2011; pp. 1–167. (In Japanese) [Google Scholar]
- Fukunaga, M.; Miki Takami. QUS standardization. Osteoporosis Japan. 2009, 17, 1–23. (In Japanese) [Google Scholar]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Sasaki, S.; Yanagibori, R. Association between current nutrient intakes and bone mineral density at calcaneus in pre- and postmenopausal Japanese women. J. Nutr. Sci. Vitaminol. 2001, 47, 289–294. [Google Scholar] [CrossRef]
- Ahmad, A.; Crawford 3rd, C.H.; Glassman, S.D.; Dimar 2nd, J.R.; Gum, J.L.; Carreon, L.Y. Correlation between bone density measurements on CT or MRI versus DEXA scan: A systematic review. N. Am. Spine Soc. J. 2023, 14, 100204. [Google Scholar] [CrossRef]
- Iplikçioğlu, H.; Akça, K.; Cehreli, M.C. The use of computerized tomography for diagnosis and treatment planning in implant dentistry. J. Oral. Implantol. 2002, 28, 29–36. [Google Scholar] [CrossRef]
- Morishita, T.; Wada, Y.; Matsuzawa, Y.; Kanbayashi, T.; Itabashi, M.; Cho, T.; Maeda, D.; Yoshimura, H. A questionnaire survey concerning complications in maxilla implant treatment and dental clinic facility targeted certifying and supervisory doctors of the Japanese Society of Oral Implantology (JSOI) in Hokkaido. J. Jpn. Soc. Oral. Implantol. 2020, 33, 213–221. (In Japanese) [Google Scholar] [CrossRef]
- Qutbi, M.; Soltanshahi, M.; Shiravand, Y.; Gorzi, S.K.; Shafiei, B.; Asli, I.N. Technical and patient-related sources of error and artifacts in bone mineral densitometry using dual-energy X-ray absorptiometry: A pictorial review. Indian. J. Radiol. Imaging 2020, 30, 362–371. [Google Scholar] [CrossRef]
- Genant, H.K.; Engelke, K.; Prevrhal, S. Advanced CT bone imaging in osteoporosis. Rheumatology 2008, 47, iv9–iv16. [Google Scholar] [CrossRef]
- Han, C.S.; Kim, H.K.; Kim, S. Effects of adolescents’ lifestyle habits and body composition on bone mineral density. Int. J. Environ. Res. Public Health 2021, 18, 6170. [Google Scholar] [CrossRef]
- Shaw Jr, R.B.; Kahn, D.M. Aging of the midface bony elements: A three-dimensional computed tomographic study. Plast. Reconstr. Surg. 2007, 119, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzade-Ardakani, M.; Ashabi, F.; Pezeshkian, F.; Ghaniei, A.; Sahaf, A.S.; Ahramiyanpour, N. A cross-sectional study of the relationship between facial wrinkles and osteoporosis among individuals referred for bone densitometry. J. Pak. Assoc. Dermatol. 2023, 33, 846–851. [Google Scholar]
- Windhager, S.; Mitteroecker, P.; Rupić, I.; Lauc, T.; Polašek, O.; Schaefer, K. Facial aging trajectories: A common shape pattern in male and female faces is disrupted after menopause. Am. J. Phys. Anthropol. 2019, 169, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Swift, A.; Liew, S.; Weinkle, S.; Garcia, J.K.; Silberberg, M.B. The facial aging process from the “Inside Out”. Aesthet. Surg. J. 2021, 41, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, B.; Wong, C.H. Changes in the facial skeleton with aging: Implications and clinical applications in facial rejuvenation. Aesthetic Plast. Surg. 2012, 36, 753–760. [Google Scholar] [CrossRef]
- Uebelhart, D.; Schlemmer, A.; Johansen, J.S.; Gineyts, E.; Christiansen, C.; Delmas, P.D. Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J. Clin. Endocrinol. Metab. 1991, 72, 367–373. [Google Scholar] [CrossRef]
- Daly, R.M.; Ebeling, P.R. Is excess calcium harmful to health? Nutrients 2010, 2, 505–522. [Google Scholar] [CrossRef] [PubMed]
Test Food | Placebo Food | |
---|---|---|
Glucose | 3.434 g | 3.434 g |
Calcium maltobionate | 1.100 g | ― |
Maltose | ― | 0.955 g |
Calcium carbonate | ― | 0.145 g |
Citric acid | 0.182 g | 0.182 g |
Magnesium oxide | 0.080 g | 0.080 g |
Ferric pyrophosphate | 0.006 g | 0.006 g |
Silicon dioxide | 0.052 g | 0.052 g |
Calcium stearate | 0.103 g | 0.103 g |
Perfume | 0.037 g | 0.037 g |
High-intensity sweetener | 0.006 g | 0.006 g |
Energy | 15.6 kcal | 18.4 kcal |
Carbohydrate | 4.48 g | 4.39 g |
Protein | <0.005 g | <0.005 g |
Fat | 0.12 g | 0.12 g |
Calcium | 73 mg | 73 mg |
Magnesium | 48 mg | 48 mg |
Analysis Population | Test Food Group | Placebo Food Group | ||||||
---|---|---|---|---|---|---|---|---|
Overall | n | 24 | 24 | |||||
Age | 52.5 | ± | 1.4 | 54.0 | ± | 1.3 | ||
Body height | Cm | 156.9 | ± | 0.9 | 159.2 | ± | 5.6 | |
Body weight | Kg | 50.6 | ± | 1.1 | 53.6 | ± | 1.4 | |
BMI | kg/m2 | 20.5 | ± | 0.4 | 21.2 | ± | 0.6 | |
Post-menopausal | N | 16 | 16 | |||||
Age | 56.2 | ± | 1.0 | 56.9 | ± | 1.0 | ||
Body height | Cm | 155.4 | ± | 1.0 | 158.6 | ± | 1.3 | |
Body weight | Kg | 48.2 | ± | 1.2 | 53.4 | ± | 1.2 | |
BMI | kg/m2 | 20.0 | ± | 0.5 | 21.3 | ± | 0.5 | |
Pre-menopausal | N | 8 | 8 | |||||
Age | 45.1 | ± | 2.0 | 48.3 | ± | 2.1 | ||
Body height | Cm | 160.1 | ± | 1.5 | 160.6 | ± | 2.4 | |
Body weight | Kg | 55.3 | ± | 1.4 | 53.9 | ± | 3.4 | |
BMI | kg/m2 | 21.6 | ± | 0.5 | 21.0 | ± | 1.5 |
Analysis Population | Item | Group | n | Pre-Ingestion | Post-24W | |||||
---|---|---|---|---|---|---|---|---|---|---|
Post-menopausal | Calories | kcal/day | Test food | 16 | 1598 | ± | 82 | 1717 | ± | 87 |
Placebo food | 16 | 1658 | ± | 63 | 1713 | ± | 83 | |||
Carbohydrate | g/day | Test food | 16 | 192 | ± | 11 | 216 | ± | 16 | |
Placebo food | 16 | 204 | ± | 12 | 215 | ± | 14 | |||
Protein | g/day | Test food | 16 | 68.9 | ± | 5.5 | 66.3 | ± | 5.4 | |
Placebo food | 16 | 68.1 | ± | 3.3 | 68.8 | ± | 3.6 | |||
Fat | g/day | Test food | 16 | 55.9 | ± | 4.0 | 54.3 | ± | 3.2 | |
Placebo food | 16 | 56.6 | ± | 2.4 | 59.0 | ± | 2.9 | |||
Calcium | mg/day | Test food | 16 | 617 | ± | 32 | 613 | ± | 52 | |
Placebo food | 16 | 549 | ± | 19 | 547 | ± | 28 | |||
Magnesium | mg/day | Test food | 16 | 241 | ± | 28 | 277 | ± | 30 | |
Placebo food | 16 | 250 | ± | 26 | 262 | ± | 24 | |||
Phosphorus | mg/day | Test food | 16 | 832 | ± | 53 | 840 | ± | 52 | |
Placebo food | 16 | 867 | ± | 51 | 848 | ± | 51 | |||
Potassium | mg/day | Test food | 16 | 2732 | ± | 175 | 2638 | ± | 181 | |
Placebo food | 16 | 2459 | ± | 121 | 2476 | ± | 144 | |||
Vitamin D | µg/day | Test food | 16 | 13.3 | ± | 1.8 | 12.9 | ± | 2.3 | |
Placebo food | 16 | 13.1 | ± | 1.4 | 12.2 | ± | 1.4 | |||
Vitamin K | µg/day | Test food | 16 | 316 | ± | 23 | 309 | ± | 26 | |
Placebo food | 16 | 296 | ± | 22 | 314 | ± | 26 | |||
Pre-menopausal | Calories | kcal/day | Test food | 8 | 1690 | ± | 133 | 1540 | ± | 81 |
Placebo food | 8 | 1608 | ± | 121 | 1635 | ± | 86 | |||
Carbohydrate | g/day | Test food | 8 | 219 | ± | 18 | 206 | ± | 18 | |
Placebo food | 8 | 198 | ± | 16 | 189 | ± | 13 | |||
Protein | g/day | Test food | 8 | 59.8 | ± | 5.6 | 52.8 | ± | 4.4 | |
Placebo food | 8 | 63.3 | ± | 7.5 | 69.0 | ± | 9.0 | |||
Fat | g/day | Test food | 8 | 55.4 | ± | 5.1 | 46.8 | ± | 2.9 | |
Placebo food | 8 | 53.1 | ± | 7.3 | 54.2 | ± | 6.2 | |||
Calcium | mg/day | Test food | 8 | 525 | ± | 47 | 478 | ± | 26 | |
Placebo food | 8 | 549 | ± | 47 | 570 | ± | 49 | |||
Magnesium | mg/day | Test food | 8 | 293 | ± | 29 | 301 | ± | 22 | |
Placebo food | 8 | 281 | ± | 26 | 295 | ± | 24 | |||
Phosphorus | mg/day | Test food | 8 | 855 | ± | 50 | 879 | ± | 55 | |
Placebo food | 8 | 854 | ± | 49 | 863 | ± | 53 | |||
Potassium | mg/day | Test food | 8 | 2359 | ± | 192 | 2287 | ± | 147 | |
Placebo food | 8 | 2891 | ± | 314 | 2696 | ± | 243 | |||
Vitamin D | µg/day | Test food | 8 | 8.9 | ± | 0.8 | 8.2 | ± | 1.2 | |
Placebo food | 8 | 13.4 | ± | 2.9 | 15.6 | ± | 3.0 | |||
Vitamin K | µg/day | Test food | 8 | 254 | ± | 26 | 246 | ± | 48 | |
Placebo food | 8 | 270 | ± | 59 | 300 | ± | 48 |
Analysis Population | Group | n | Pre-Intervention | Post-24W | Pre-Intervention vs. Post-24W | Pre-Intervention vs. Post-24W | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amount of Change | Amount of Change (%) | ||||||||||||||||||
Post-menopausal | SOS | m/s | Test food | 16 | 1521 | ± | 12 | 1523 | ± | 14 | 2.92 | ± | 1.15 | # (p < 0.01) | 0.19 | ± | 0.49 | ||
Placebo food | 16 | 1521 | ± | 15 | 1519 | ± | 14 | −2.03 | ± | 2.40 | −0.13 | ± | 0.11 | ||||||
YAM value | % | Test food | 16 | 77.87 | ± | 0.62 | 79.36 | ± | 0.74 | # (p = 0.044) | 1.49 | ± | 0.40 | # (p < 0.01) | 1.91 | ± | 0.52 | # (p < 0.01) | |
Placebo food | 16 | 78.09 | ± | 0.77 | 77.06 | ± | 0.71 | −1.04 | ± | 0.36 | −1.31 | ± | 0.44 | ||||||
Pre-menopausal | SOS | m/s | Test food | 8 | 1529 | ± | 20 | 1532 | ± | 22 | 3.31 | ± | 2.83 | 0.22 | ± | 0.25 | |||
Placebo food | 8 | 1529 | ± | 20 | 1529 | ± | 20 | 0.00 | ± | 2.31 | 0.00 | ± | 0.47 | ||||||
YAM value | % | Test food | 8 | 82.04 | ± | 1.07 | 83.73 | ± | 1.19 | 1.69 | ± | 0.83 | 2.08 | ± | 1.04 | ||||
Placebo food | 8 | 82.04 | ± | 1.07 | 82.04 | ± | 1.08 | 0.00 | ± | 0.31 | 0.00 | ± | 0.37 |
A. | |||||||||||||||||||
Analysis population | Group | n | Pre-intervention | Post-24W | Pre-intervention vs. Post-24W | Pre-intervention vs. Post-24W | |||||||||||||
Amount of change | Amount of change (%) | ||||||||||||||||||
Post-menopausal | Mandible (7-6) | HU value | Test food | 16 | 1173 | ± | 15 | 1185 | ± | 13 | # (p = 0.018) | 11.2 | ± | 4.4 | # (p < 0.01) | 1.50 | ± | 0.38 | # (p < 0.01) |
Placebo food | 16 | 1165 | ± | 12 | 1121 | ± | 18 | −44.1 | ± | 8.2 | −3.07 | ± | 0.72 | ||||||
Mandible (4-3) | HU value | Test food | 16 | 1053 | ± | 15 | 1068 | ± | 13 | 15.3 | ± | 3.3 | # (p < 0.01) | 1.49 | ± | 0.31 | # (p < 0.01) | ||
Placebo food | 16 | 1067 | ± | 16 | 1032 | ± | 15 | −35.2 | ± | 7.1 | −3.25 | ± | 0.65 | ||||||
Mandible (1-1) | HU value | Test food | 16 | 927 | ± | 14 | 940 | ± | 13 | 13.8 | ± | 2.9 | # (p < 0.01) | 1.50 | ± | 0.31 | # (p < 0.01) | ||
Placebo food | 16 | 939 | ± | 17 | 910 | ± | 16 | −29.2 | ± | 6.8 | −3.07 | ± | 0.70 | ||||||
Mandible (3-4) | HU value | Test food | 16 | 1074 | ± | 16 | 1083 | ± | 15 | # (p = 0.035) | 8.2 | ± | 5.1 | # (p < 0.01) | 0.80 | ± | 0.47 | # (p < 0.01) | |
Placebo food | 16 | 1060 | ± | 17 | 1030 | ± | 17 | −30.1 | ± | 6.9 | −2.84 | ± | 0.65 | ||||||
Mandible (6-7) | HU value | Test food | 16 | 1184 | ± | 20 | 1196 | ± | 22 | 11.4 | ± | 3.6 | # (p < 0.01) | 0.93 | ± | 0.30 | # (p < 0.01) | ||
Placebo food | 16 | 1175 | ± | 14 | 1134 | ± | 15 | −41.8 | ± | 10.3 | −3.52 | ± | 0.86 | ||||||
Maxilla (supraorbital) | HU value | Test food | 16 | 828 | ± | 14 | 839 | ± | 13 | 10.3 | ± | 3.4 | # (p < 0.01) | 1.30 | ± | 0.43 | # (p < 0.01) | ||
Placebo food | 16 | 829 | ± | 14 | 802 | ± | 15 | −26.8 | ± | 4.9 | −3.26 | ± | 0.60 | ||||||
Maxilla (suborbital) | HU value | Test food | 16 | 978 | ± | 13 | 1001 | ± | 15 | # (p = 0.029) | 22.8 | ± | 5.6 | # (p < 0.01) | 2.32 | ± | 0.57 | # (p < 0.01) | |
Placebo food | 16 | 978 | ± | 12 | 952 | ± | 12 | −25.9 | ± | 4.7 | −2.62 | ± | 0.47 | ||||||
Mandible (mental) | HU value | Test food | 16 | 954 | ± | 9 | 966 | ± | 10 | # (p = 0.020) | 11.3 | ± | 3.6 | # (p < 0.01) | 1.17 | ± | 0.38 | # (p < 0.01) | |
Placebo food | 16 | 957 | ± | 9 | 929 | ± | 10 | −27.8 | ± | 4.4 | −2.91 | ± | 0.47 | ||||||
Pre-menopausal | Mandible (7-6) | HU value | Test food | 8 | 1213 | ± | 23 | 1228 | ± | 21 | 15.4 | ± | 7.3 | # (p < 0.01) | 1.30 | ± | 0.60 | # (p < 0.01) | |
Placebo food | 8 | 1230 | ± | 22 | 1192 | ± | 28 | −38.5 | ± | 16.2 | −3.15 | ± | 1.32 | ||||||
Mandible (4-3) | HU value | Test food | 8 | 1155 | ± | 24 | 1167 | ± | 24 | 12.5 | ± | 8.0 | # (p < 0.01) | 1.10 | ± | 0.70 | # (p < 0.01) | ||
Placebo food | 8 | 1138 | ± | 34 | 1104 | ± | 34 | −33.3 | ± | 9.4 | −2.95 | ± | 0.85 | ||||||
Mandible (1-1) | HU value | Test food | 8 | 1016 | ± | 29 | 1051 | ± | 29 | # (p = 0.041) | 35.0 | ± | 19.0 | # (p < 0.01) | 3.58 | ± | 1.96 | # (p < 0.01) | |
Placebo food | 8 | 968 | ± | 38 | 935 | ± | 38 | −32.9 | ± | 8.1 | −3.40 | ± | 0.88 | ||||||
Mandible (3-4) | HU value | Test food | 8 | 1123 | ± | 18 | 1142 | ± | 20 | 18.3 | ± | 5.4 | # (p < 0.01) | 1.61 | ± | 0.49 | # (p < 0.01) | ||
Placebo food | 8 | 1130 | ± | 28 | 1092 | ± | 29 | −38.5 | ± | 11.9 | −3.40 | ± | 1.07 | ||||||
Mandible (6-7) | HU value | Test food | 8 | 1233 | ± | 34 | 1242 | ± | 33 | 9.3 | ± | 7.3 | # (p < 0.01) | 0.79 | ± | 0.60 | # (p < 0.01) | ||
Placebo food | 8 | 1246 | ± | 18 | 1217 | ± | 23 | −28.3 | ± | 8.7 | −2.30 | ± | 0.72 | ||||||
Maxilla (supraorbital) | HU value | Test food | 8 | 947 | ± | 26 | 965 | ± | 22 | 18.0 | ± | 6.0 | # (p < 0.01) | 2.01 | ± | 0.69 | # (p < 0.01) | ||
Placebo food | 8 | 936 | ± | 25 | 916 | ± | 24 | −19.6 | ± | 7.7 | −2.06 | ± | 0.84 | ||||||
Maxilla (suborbital) | HU value | Test food | 8 | 1081 | ± | 18 | 1101 | ± | 17 | 20.7 | ± | 6.4 | # (p < 0.01) | 1.94 | ± | 0.60 | # (p < 0.01) | ||
Placebo food | 8 | 1063 | ± | 22 | 1047 | ± | 21 | −16.0 | ± | 8.6 | −1.48 | ± | 0.82 | ||||||
Mandible (mental) | HU value | Test food | 8 | 1039 | ± | 18 | 1050 | ± | 18 | 10.8 | ± | 5.1 | # (p < 0.01) | 1.06 | ± | 0.49 | # (p < 0.01) | ||
Placebo food | 8 | 1027 | ± | 18 | 1005 | ± | 18 | −22.1 | ± | 8.5 | −2.13 | ± | 0.79 | ||||||
B. | |||||||||||||||||||
Analysis population | Group | n | Pre-intervention | Post-24W | Pre-intervention vs. Post-24W | Pre-intervention vs. Post-24W | |||||||||||||
Amount of change | Amount of change (%) | ||||||||||||||||||
Post-menopausal | Mandible (7-6) | HU value | Test food | 16 | 251 | ± | 6 | 254 | ± | 6 | 2.5 | ± | 1.0 | # (p < 0.01) | 0.97 | ± | 0.36 | # (p < 0.01) | |
Placebo food | 16 | 253 | ± | 4 | 244 | ± | 4 | −9.2 | ± | 2.2 | −3.59 | ± | 0.85 | ||||||
Mandible (4-3) | HU value | Test food | 16 | 325 | ± | 5 | 328 | ± | 5 | 3.1 | ± | 1.5 | # (p < 0.01) | 0.98 | ± | 0.45 | # (p < 0.01) | ||
Placebo food | 16 | 322 | ± | 6 | 312 | ± | 7 | −10.5 | ± | 2.1 | −3.26 | ± | 0.64 | ||||||
Mandible (1-1) | HU value | Test food | 16 | 459 | ± | 8 | 465 | ± | 7 | 6.3 | ± | 1.2 | # (p < 0.01) | 1.40 | ± | 0.29 | # (p < 0.01) | ||
Placebo food | 16 | 462 | ± | 8 | 444 | ± | 7 | −17.5 | ± | 3.0 | −3.74 | ± | 0.64 | ||||||
Mandible (3-4) | HU value | Test food | 16 | 331 | ± | 5 | 333 | ± | 5 | # (p = 0.028) | 1.5 | ± | 1.7 | # (p < 0.01) | 0.50 | ± | 0.50 | # (p < 0.01) | |
Placebo food | 16 | 324 | ± | 7 | 312 | ± | 6 | −12.1 | ± | 2.3 | −3.70 | ± | 0.70 | ||||||
Mandible (6-7) | HU value | Test food | 16 | 245 | ± | 6 | 247 | ± | 7 | 2.2 | ± | 1.6 | # (p < 0.01) | 0.82 | ± | 0.67 | # (p < 0.01) | ||
Placebo food | 16 | 242 | ± | 5 | 235 | ± | 5 | −7.0 | ± | 1.9 | −2.92 | ± | 0.76 | ||||||
Maxilla (supraorbital) | HU value | Test food | 16 | 347 | ± | 6 | 350 | ± | 6 | 2.8 | ± | 1.5 | # (p < 0.01) | 0.80 | ± | 0.43 | # (p < 0.01) | ||
Placebo food | 16 | 346 | ± | 8 | 341 | ± | 8 | −4.9 | ± | 1.4 | −1.43 | ± | 0.40 | ||||||
Maxilla (suborbital) | HU value | Test food | 16 | 313 | ± | 5 | 315 | ± | 6 | 2.1 | ± | 1.1 | # (p < 0.01) | 0.66 | ± | 0.35 | # (p < 0.01) | ||
Placebo food | 16 | 315 | ± | 7 | 307 | ± | 7 | −8.2 | ± | 1.3 | −2.66 | ± | 0.44 | ||||||
Mandible (mental) | HU value | Test food | 16 | 393 | ± | 7 | 396 | ± | 7 | 2.5 | ± | 1.4 | # (p < 0.01) | 0.64 | ± | 0.35 | # (p < 0.01) | ||
Placebo food | 16 | 390 | ± | 8 | 384 | ± | 7 | −6.6 | ± | 1.4 | −1.68 | ± | 0.36 | ||||||
Pre-menopausal | Mandible (7-6) | HU value | Test food | 8 | 260 | ± | 10 | 263 | ± | 10 | 3.1 | ± | 1.1 | # (p < 0.01) | 1.13 | ± | 0.37 | # (p < 0.01) | |
Placebo food | 8 | 270 | ± | 11 | 261 | ± | 11 | −9.9 | ± | 2.1 | −3.75 | ± | 0.89 | ||||||
Mandible (4-3) | HU value | Test food | 8 | 357 | ± | 10 | 360 | ± | 10 | 3.3 | ± | 2.6 | # (p < 0.01) | 0.98 | ± | 0.72 | # (p < 0.01) | ||
Placebo food | 8 | 347 | ± | 10 | 335 | ± | 11 | −12.4 | ± | 3.8 | −3.60 | ± | 1.09 | ||||||
Mandible (1-1) | HU value | Test food | 8 | 513 | ± | 10 | 507 | ± | 11 | −5.6 | ± | 1.9 | # (p < 0.01) | −1.11 | ± | 0.37 | # (p < 0.01) | ||
Placebo food | 8 | 510 | ± | 10 | 494 | ± | 10 | −16.7 | ± | 5.2 | −3.23 | ± | 1.00 | ||||||
Mandible (3-4) | HU value | Test food | 8 | 356 | ± | 8 | 360 | ± | 8 | 3.9 | ± | 2.5 | # (p < 0.01) | 1.14 | ± | 0.70 | # (p < 0.01) | ||
Placebo food | 8 | 354 | ± | 9 | 346 | ± | 10 | −7.8 | ± | 2.9 | −2.27 | ± | 0.84 | ||||||
Mandible (6-7) | HU value | Test food | 8 | 270 | ± | 9 | 272 | ± | 9 | 2.3 | ± | 2.0 | # (p < 0.01) | 0.85 | ± | 0.71 | # (p < 0.01) | ||
Placebo food | 8 | 277 | ± | 8 | 271 | ± | 9 | −6.3 | ± | 2.1 | −2.37 | ± | 0.87 | ||||||
Maxilla (supraorbital) | HU value | Test food | 8 | 406 | ± | 7 | 411 | ± | 7 | # (p = 0.040) | 5.0 | ± | 2.1 | # (p < 0.01) | 1.26 | ± | 0.52 | # (p < 0.01) | |
Placebo food | 8 | 393 | ± | 8 | 385 | ± | 9 | −7.3 | ± | 2.2 | −1.86 | ± | 0.58 | ||||||
Maxilla (suborbital) | HU value | Test food | 8 | 372 | ± | 6 | 376 | ± | 7 | 3.6 | ± | 2.3 | # (p < 0.01) | 0.96 | ± | 0.63 | # (p < 0.01) | ||
Placebo food | 8 | 362 | ± | 8 | 355 | ± | 7 | −7.3 | ± | 1.9 | −2.00 | ± | 0.54 | ||||||
Mandible (mental) | HU value | Test food | 8 | 465 | ± | 13 | 468 | ± | 13 | 2.1 | ± | 2.3 | # (p < 0.01) | 0.44 | ± | 0.48 | # (p < 0.01) | ||
Placebo food | 8 | 442 | ± | 16 | 433 | ± | 16 | −8.8 | ± | 2.0 | −2.00 | ± | 0.43 |
Analysis Population | Group | n | Pre-Intervention | Post-24W | Pre-Intervention vs. Post-24W | Pre-Intervention vs. Post-24W | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amount of Change | Amount of Change (%) | |||||||||||||||||
Post-menopausal | nmol/mmol·Cr | Test food | 16 | 5.13 | ± | 0.31 | 5.32 | ± | 0.40 | 0.20 | ± | 0.27 | # (p = 0.047) | 3.82 | ± | 5.23 | # (p < 0.01) | |
Placebo food | 16 | 4.53 | ± | 0.23 | 5.50 | ± | 0.34 | * (p = 0.024) | 0.97 | ± | 0.33 | 24.32 | ± | 8.47 | ||||
Pre-menopausal | nmol/mmol·Cr | Test food | 8 | 4.31 | ± | 0.16 | 4.08 | ± | 0.23 | −0.23 | ± | 0.30 | −4.31 | ± | 7.02 | |||
Placebo food | 8 | 4.50 | ± | 0.38 | 5.04 | ± | 0.32 | 0.54 | ± | 0.39 | 15.91 | ± | 9.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suehiro, D.; Ikeda, N.; Hirooka, K.; Ihara, A.; Fukami, K.; Ohnishi, M. Decrease in Facial Bone Density with Aging and Maintenance Effect of Calcium Maltobionate Ingestion in Japanese Adult Women: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial. Nutrients 2025, 17, 262. https://doi.org/10.3390/nu17020262
Suehiro D, Ikeda N, Hirooka K, Ihara A, Fukami K, Ohnishi M. Decrease in Facial Bone Density with Aging and Maintenance Effect of Calcium Maltobionate Ingestion in Japanese Adult Women: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial. Nutrients. 2025; 17(2):262. https://doi.org/10.3390/nu17020262
Chicago/Turabian StyleSuehiro, Daiki, Nami Ikeda, Kiyoto Hirooka, Akinori Ihara, Ken Fukami, and Motoko Ohnishi. 2025. "Decrease in Facial Bone Density with Aging and Maintenance Effect of Calcium Maltobionate Ingestion in Japanese Adult Women: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial" Nutrients 17, no. 2: 262. https://doi.org/10.3390/nu17020262
APA StyleSuehiro, D., Ikeda, N., Hirooka, K., Ihara, A., Fukami, K., & Ohnishi, M. (2025). Decrease in Facial Bone Density with Aging and Maintenance Effect of Calcium Maltobionate Ingestion in Japanese Adult Women: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial. Nutrients, 17(2), 262. https://doi.org/10.3390/nu17020262