Measuring Dietary Intake of Pregnant Women Post-Bariatric Surgery: Do Women Meet Recommendations?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Collection Methods
2.3. Determination of Dietary Intake and Nutrient Requirements
- For participants who scored “low” on the IPAQ, the equation for an “inactive” PAL was applied.
- For those with a “moderate” activity level, the “active” PAL equation was used.
- Finally, for participants with a “high” IPAQ score, the equation for a “very active” PAL was applied.
2.4. Determination of Micronutrient Supplementation
2.5. Data Analysis
3. Results
3.1. Macronutrient Intake
3.2. Micronutrient Intake
3.3. Dietitian Care
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obesity Evidence Hub. The Disease Burden of Overweight, Obesity and Poor Diet 2021. Available online: https://www.obesityevidencehub.org.au/collections/impacts/disease-burden-overweight-obesity-poor-diet (accessed on 13 July 2022).
- National Health Service. Health Survey for England, 2019: Data Tables 2020. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2019/health-survey-for-england-2019-data-tables (accessed on 30 November 2022).
- Centre for Disease Control. Women’s Health. 2019. Available online: https://www.cdc.gov/nchs/data/hus/2019/026-508.pdf (accessed on 30 November 2022).
- Dağ, Z.; Dilbaz, B. Impact of obesity on infertility in women. J. Turk. Ger. Gynecol. Assoc. 2015, 16, 111–117. [Google Scholar] [PubMed]
- Santos, S.; Voerman, E.; Amiano, P.; Barros, H.; Beilin, L.J.; Bergström, A.; Charles, M.A.; Chatzi, L.; Chevrier, C.; Chrousos, G.P.; et al. Impact of maternal body mass index and gestational weight gain on pregnancy complications: An individual participant data meta-analysis of European, North American and Australian cohorts. BJOG 2019, 126, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Langley-Evans, S.C. Nutrition in early life and the programming of adult disease: A review. J. Hum. Nutr. Diet. 2015, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.A.; Partridge, S.R.; Sainsbury, A. Does weight loss in overweight or obese women improve fertility treatment outcomes? A systematic review. Obes. Rev. 2014, 15, 839–850. [Google Scholar] [CrossRef]
- Price, S.A.L.; Sumithran, P.; Nankervis, A.J.; Permezel, M.; Prendergast, L.A.; Proietto, J. Impact of preconception weight loss on fasting glucose and pregnancy outcomes in women with obesity: A randomized trial. Obesity 2021, 29, 1445–1457. [Google Scholar] [CrossRef]
- Colquitt, J.L.; Pickett, K.; Loveman, E.; Frampton, G.K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 2014, 2014, CD003641. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Weight Loss Surgery in Australia 2014–15: Australian Hospital Statistics; Australian Institute of Health and Welfare: Canberra, ACT, Australia, 2017.
- Gulliford, M.C.; Charlton, J.; Booth, H.P.; Fildes, A.; Khan, O.; Reddy, M.; Ashworth, M.; Littlejohns, P.; Prevost, A.T.; Rudsill, C. Costs and outcoms of increasing access to bariatric surgery for obesity: Cohort study and cost-effectiveness analysis using electronic health records. Health Serv. Deliv. Res. 2016, 4, 1–120. [Google Scholar] [CrossRef]
- American Society for Metabolic and Bariatric Surgery. Estimate of Bariatric Surgery Numbers, 2011–2019, 2021. Available online: https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers (accessed on 20 October 2021).
- Edison, E.; Whyte, M.; Van Vlymen, J.; Jones, S.; Gatenby, P.; De Lusignan, S.; Shawe, J. Bariatric Surgery in Obese Women of Reproductive Age Improves Conditions That Underlie Fertility and Pregnancy Outcomes: Retrospective Cohort Study of UK National Bariatric Surgery Registry (NBSR). Obes. Surg. 2016, 26, 2837–2842. [Google Scholar] [CrossRef]
- Bariatric Surgery Registry. Registry Data as at 31 December 2019. 2019. Available online: https://www.monash.edu/__data/assets/pdf_file/0010/2158939/Bariatric-Surgery-Registry-Semi_Annual-Report_2019.pdf (accessed on 20 October 2021).
- Mechanic, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffe, A.M.; Kim, J.; Kusher, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic and nonsurgical support of patients undergoing bariatric procedures—2019 update. Endocr. Pract. 2019, 25, 1346–1359. [Google Scholar]
- Shawe, J.; Ceulemans, D.; Akhter, Z.; Neff, K.; Hart, K.; Hesleherst, N.; Stotl, I.; Agrawal, S.; Steegers-Theunissen, R.; Taheri, S.; et al. Pregnancy after bariatric surgery: Consensus recommendations for periconception, antenatal and postnatal care. Bariatr. Surg./Pregnancy 2019, 20, 1507–1522. [Google Scholar] [CrossRef]
- Ionut, V.; Bergman, R.N. Mechanisms responsible for excess weight loss after bariatric surgery. J. Diabetes Sci. Technol. 2011, 5, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Zarshenas, N.; Tapsell, L.C.; Neale, E.P.; Batterham, M.; Talbot, M.L. The Relationship Between Bariatric Surgery and Diet Quality: A Systematic Review. Obes. Surg. 2020, 30, 1768–1792. [Google Scholar] [CrossRef] [PubMed]
- Alkerwi, A. Diet quality concept. Nutrition 2014, 30, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Elder, K.A.; Wolfe, B.M. Bariatric Surgery: A Review of Procedures and Outcomes. Gastroenterology 2007, 132, 2253–2271. [Google Scholar] [CrossRef]
- Banerjee, A.; Ding, Y.; Mikami, D.J.; Needleman, B.J. The role of dumping syndrome in weight loss after gastric bypass surgery. Surg. Endosc. 2013, 27, 1573–1578. [Google Scholar] [CrossRef]
- Papamargaritis, D.; Koukoulis, G.; Sioka, E.; Zachari, E.; Bargiota, A.; Zacharoulis, D.; Tzovaras, G. Dumping Symptoms and Incidence of Hypoglycaemia After Provocation Test at 6 and 12 Months After Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2012, 22, 1600–1606. [Google Scholar] [CrossRef]
- Chakhtoura, M.T.; Nakhoul, N.N.; Shawwa, K.; Mantzoros, C.; El Hajj Fuleihan, G.A. Hypovitaminosis D in bariatric surgery: A systematic review of observational studies. Metabolism 2016, 65, 574–585. [Google Scholar] [CrossRef]
- Lewis, C.A.; de Jersey, S.; Hopkins, G.; Hickman, I.; Osland, E. Does bariatric surgery cause vitamin A, B1, C or E deficiency? A systematic review. Obes. Surg. 2018, 28, 3640–3657. [Google Scholar] [CrossRef]
- O’Kane, M.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obes. Rev. 2020, 21, e13087. [Google Scholar] [CrossRef]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef]
- Institute of Medicine. Weight Gain During Pregnancy: Reexamining the Guidelines; National Academic Press: Washington, DC, USA, 2009. [Google Scholar]
- Thompson, A.M.; Thompson, J.A. An evaluation of whether a gestational weight gain of 5 to 9 kg for obese women optimizes maternal and neonatal health risks. BMC Pregnancy Childbirth 2019, 19, 126. [Google Scholar] [CrossRef] [PubMed]
- Akhter, Z.; Rankin, J.; Ceulemans, D.; Ngongalah, L.; Ackroyd, R.; Devlieger, R.; Vieira, R.; Heslehurst, N. Pregnancy after bariatric surgery and adverse perinatal outcomes: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002866. [Google Scholar] [CrossRef] [PubMed]
- Al-Nimr, R.I.; Hakeem, R.; Moreschi, J.M.; Gallo, S.; McDermid, J.M.; Pari-Keener, M.; Stahnke, B.; Papoutsakis, C.; Handu, D.; Cheng, F.W. Effects of Bariatric Surgery on Maternal and Infant Outcomes of Pregnancy—An Evidence Analysis Center Systematic Review. J. Acad. Nutr. Diet. 2019, 119, 1921–1943. [Google Scholar] [CrossRef] [PubMed]
- Galazis, N.; Docheva, N.; Simillis, C.; Nicolaides, K.H. Maternal and neonatal outcomes in women undergoing bariatric surgery: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 181, 45–53. [Google Scholar] [CrossRef]
- Kjaer, M.M.; Nilas, L. Pregnancy after bariatric surgery—A review of benefits and risks. Acta Obstet. Gynecol. Scand. 2013, 92, 264–271. [Google Scholar] [CrossRef]
- Kwong, W.; Tomlinson, G.; Feig, D.S. Maternal and neonatal outcomes after bariatric surgery; a systematic review and meta-analysis: Do the benefits outweigh the risks? Am. J. Obstet. Gynecol. 2018, 218, 573–580. [Google Scholar] [CrossRef]
- Maggard, M.A.; Yermilov, I.; Li, Z.; Maglione, M.; Newberry, S.; Suttorp, M.; Hilton, L.; Santry, H.P.; Morton, J.M.; Livingston, E.H. Pregnancy and Fertility Following Bariatric Surgery. JAMA 2008, 300, 2286. [Google Scholar] [CrossRef]
- Price, S.A.; Sumithran, P.; Nankervis, A.; Permezel, M.; Proietto, J. Preconception management of women with obesity: A systematic review. Obes. Rev. 2018, 20, 510–526. [Google Scholar] [CrossRef]
- Yi, X.; Li, Q.; Zhang, J.; Wang, Z. A meta-analysis of maternal and fetal outcomes of pregnancy after bariatric surgery. Int. J. Obestetrics Gynaecol. 2015, 130, 3–9. [Google Scholar] [CrossRef]
- Guthrie, T.M.; Dix, C.F.; Truby, H.; Kumar, S.; de Jersey, S.J. A Systematic Review Investigating Maternal Nutrition During Pregnancy After Bariatric Surgery. Obes. Surg. 2023, 33, 1857–1865. [Google Scholar] [CrossRef]
- Coupaye, M.; Legardeur, H.; Sami, O.; Calabrese, D.; Mandelbrot, L.; Ledoux, S. Impact of roux-en-Y gastric bypass and sleeve gastrectomy on fetal growth and relationship with maternal nutrition status. Surg. Obes. Relat. Dis. 2018, 14, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Queensland Clinical Guidelines, Obesity and Pregnancy (Including Post Bariatric Surgery); Department of Health: Brisbane, QLD, Australia, 2021.
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [PubMed]
- Svarstad, B.L.; Chewning, B.A.; Sleath, B.L.; Claesson, C. The brief medication questionnaire: A tool for screening patient adherence and barriers to adherence. Patient Educ. Couns. 1999, 37, 113–124. [Google Scholar] [CrossRef]
- Sanda, B.; Vistad, I.; Haakstad, L.A.H.; Bernsten, S.; Sagedal, L.R.; Lohne-Seiler, H.; Torstveit, M.K. Reliability and concurrent validity of the International Physical Activity Questionnaire short form among pregnant women. BMC Sports Sci. Med. Rehabil. 2017, 9, 7. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- National Academies of Sciences; Medicine, Health and Medicine Division; Food and Nutrition Board; Committee on the Dietary Reference Intakes for Energy. Dietary Reference Intakes for Energy; National Academies Press (US): Washington, DC, USA, 2005. [Google Scholar]
- International Physical Activity Questionnaire. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ). 2005. Available online: https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/ipaq_analysis.pdf (accessed on 1 February 2021).
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; Australian Government Department of Health and Ageing, Ed.; National Health and Medical Research Council: Canberra, ACT, Australia, 2006. [Google Scholar]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-Hour Dietary Recall (ASA24): A Resource for Researchers, Clinicians, and Educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef]
- Blumfield, M.L.; Hure, A.J.; Macdonald-Wicks, L.; Smith, R.; Collins, C.E. Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr. Rev. 2012, 70, 322–336. [Google Scholar] [CrossRef]
- Butte, N.F.; King, J.C. Energy requirements during pregnancy and lactation. Public Health Nutr. 2005, 8, 1010–1027. [Google Scholar] [CrossRef]
- Most, J.; Dervis, S.; Haman, F.; Adamo, K.B.; Redman, L.M. Energy Intake Requirements in Pregnancy. Nutrients 2019, 11, 1812. [Google Scholar] [CrossRef]
- Khaire, A.; Wadhwani, N.; Madiwale, S.; Joshi, S. Maternal fats and pregnancy complications: Implications for long-term health. Prostaglandins Leukot. Essent. Fat. Acids 2020, 157, 102098. [Google Scholar] [CrossRef] [PubMed]
- Crume, T.L.; Brinton, J.T.; Shapiro, A.; Kaar, J.; Glueck, D.H.; Siega-Riz, A.M.; Dabelea, D. Maternal dietary intake during pregnancy and offspring body composition: The Healthy Start Study. Am. J. Obstet. Gynecol. 2016, 215, 609.e1–609.e8. [Google Scholar] [CrossRef] [PubMed]
- Maslova, E.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Olsen, S.F.; Halldorsson, T.I. Maternal intake of fat in pregnancy and offspring metabolic health—A prospective study with 20 years of follow-up. Clin. Nutr. 2016, 35, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Hilaire, M.J.; Babcock, A.; White, G.; Masson, C.F.; Salem, R.M.; Reddy, U.M.; Gallagher, D.; LeDuc, C.A.; Thaker, V.V. The association of higher offspring early-childhood weight gain with prepregnancy metabolic and bariatric surgery. Obesity 2024, 32, 2012–2023. [Google Scholar] [CrossRef]
- Moradi, R.; Navaee, M.; Zamaninour, N.; Setaredan, A.; Pazouki, A.; Kabir, A. The Effect of Maternal Bariatric Surgery on Offspring Anthropometry: A Mixed Cohort. Obes. Surg. 2024, 34, 3229–3235. [Google Scholar] [CrossRef]
- Reijonen, J.K.; Tihtonen, K.M.H.; Luukkaala, T.H.; Uotila, J.T. Association of dietary fiber, liquid intake and lifestyle characteristics with gastrointestinal symptoms and pregnancy outcome. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2022, 16, 100168. [Google Scholar] [CrossRef]
- De-Regil, L.M.; Peña-Rosas, J.P.; Fernández-Gaxiola, A.C.; Rayco-Solon, P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2015, 2015, CD007950. [Google Scholar] [CrossRef]
- McGuire, E. Nutritional consequences of bariatric surgery for pregnancy and breastfeeding. Breastfeed. Rev. 2018, 26, 19–26. [Google Scholar]
- Palacios, C.; Kostiuk, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 7, CD008873. [Google Scholar] [CrossRef]
- Chan, L.; Zheng, Q.; Colovos, T. Assessing micronutrient adherence after bariatric surgery: An exploratory study. J. Obes. Bariatr. 2015, 2, 8. [Google Scholar]
- Elder-Robinson, E.C.; de Jersey, S.; Porteous, H.; Huxtable, S.L.; Palmer, M.A. Survey of Australian clinicians’ antenatal care and management practices in pregnant women with a history of bariatric surgery. Obstet. Med. 2023, 16, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Sweet, L.; Vasilevski, V. Women’s experiences of pregnancy and lactation after bariatric surgery: A scoping review. Midwifery 2022, 110, 103338. [Google Scholar] [CrossRef] [PubMed]
- Vasilevski, V.; Angel, G.; Mathison, A.; Teale, G.; Sweet, L. Experiences and information needs of women who become pregnant after bariatric surgery: An interpretive descriptive qualitative study. Midwifery 2023, 121, 103652. [Google Scholar] [CrossRef] [PubMed]
- Smid, M.C.; Dotters-Katz, S.K.; McElwain, C.-A.; Volckmann, E.T.; Schulkin, J.; Stuebe, A.M. Pregnancy After Bariatric Surgery: National Survey of Obstetrician’s Comfort, Knowledge, and Practice Patterns. Obes. Surg. 2017, 27, 2354–2359. [Google Scholar] [CrossRef] [PubMed]
- Black, A.E.; Cole, T.J. Biased Over- Or Under-Reporting is Characteristic of Individuals Whether Over Time or by Different Assessment Methods. J. Am. Diet. Assoc. 2001, 101, 70–80. [Google Scholar] [CrossRef]
- Poslusna, K.; Ruprich, J.; De Vries, J.H.M.; Jakubikova, M.; Van’T Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. 2009, 101, S73–S85. [Google Scholar] [CrossRef]
Variable | Mean ± SD | Range |
---|---|---|
Maternal age at conception (years) | 31.2 ± 4.8 | 22–42 |
Gravida status | 3 (2) * | 1–10 |
Parity | 1 (2) * | 0–4 |
Pre-bariatric surgery BMI (kg/m2) | 45.1 (12.7) * | 32.7–73.1 |
Pre-pregnancy BMI (kg/m2) BMI Category, % (n=) BMI < 18.5 BMI 18.5–24.9 BMI 25–29.9 BMI > 30 | 30.4 (7.3) * 6 (n = 4) 13 (n = 9) 26 (n = 18) 55 (n = 38) | 18.4–50.4 |
Gestational weight gain (kg) Adherence to IOM recommendations, %(n=) † Below recommendations Within recommendations Above recommendations | 7.4 ± 7.3 37 (n = 18) 31 (n = 15) 33 (n = 16) | −12–22 |
Bariatric-surgery-to-conception interval (months) <12 months, % (n=) | 30 (51) * 19 (n = 13) | 0–186 |
Bariatric surgery type, %, (n=) Gastric band Gastric sleeve Gastric bypass Revisional surgery % (n=) | 1 (n = 1) 68 (n = 47) 30 (n = 21) 7 (n = 5) | |
Ethnicity, %(n=) ‡ Caucasian Aboriginal or Torres Strait Islander Pacific Islander Other | 78 (n = 53) 10 (n = 7) 3 (n = 2) 9 (n = 6) | |
Marital status, %(n=) ‡ Married or de facto Never married Divorced or separated | 65 (n = 44) 27 (n = 18) 9 (n = 6) | |
Education attainment, %(n=) ‡ Postgraduate qualification Undergraduate degree Trade, technical certificate or diploma Completed grade 12 Completed grade 10 Other | 6 (n = 4) 18 (n = 12) 38 (n = 26) 28 (n = 19) 9 (n = 6) 6 (n = 1) |
Physical Activity Level | Enrolment (<Week 23) | Week 28 | Week 36 |
---|---|---|---|
Low activity, % (n=) | 41 (n = 28) | 40 (n = 26) | 55 (n = 30) |
Moderate activity, % (n=) | 48 (n = 33) | 54 (n = 35) | 38 (n = 21) |
High activity, % (n=) | 12 (n = 8) | 6 (n = 4) | 7 (n = 4) |
Total n= | n = 69 | n = 65 | n = 55 |
Macronutrient | Mean ± SD | Macronutrient Proportion (%) of Total Energy Intake | Recommended Daily Intake |
---|---|---|---|
Energy (kJ) kJ/kg * | 7495 ± 1816 89.2 ± 31.1 | - | 11,685 ± 1115 ‡ |
Protein (g) g/kg * | 73.0 (21.3) † 0.84 (0.41) † | 17 (3.5) † | 15% energy intake § |
Carbohydrate (g) | 184.9 ± 52.7 | 42 ± 6.1 | 45–65% energy intake § |
Fat (g) | 80.0 ± 23.8 | 40 ± 5.2 | <30% energy intake § |
Saturated fat (g) | 33.4 ± 10.2 | 17 ± 2.8 | <10% energy intake § |
Supplement Type | Enrolment (<Week 23) % Doses Missed/Week | Week 28 % Doses Missed/Week | Week 36 % Doses Missed/Week | |||
---|---|---|---|---|---|---|
Median (IQR) | Range | Median (IQR) | Range | Median (IQR) | Range | |
Multivitamin multimineral | 0 (14) | 0–86% | 0 (14) | 0–57% | 0 (19) | 0–75% |
Iron only | 0 (27) | 0–100% | 0 (23) | 0–67% | 0 (14.3) | 0–57% |
Calcium and/or vitamin D | 0 (18.5) | 0–86% | 0 (26.8) | 0–75% | 0 (0) | 0–29% |
Folic acid only | 0 (28.6) | 0–75% | 0 (22.6) | 0–75% | 0 (0) | 0–40% |
Micronutrient | Dietary intake per Day | Intake per Day from Dietary Sources Plus Supplements | Australian RDI for Pregnancy | ||
---|---|---|---|---|---|
Median (IQR) | % RDI | Median (IQR) | % RDI | ||
Fiber (g) | 15 (6.4) | 53 (23) † | NA | NA | 28 g † |
Iron (mg) | 8.0 (3.0) | 29 (11.2) | 119 (182.3) | 442 (675) | 27 mg |
Calcium (mg) | 762 (305) | 76 (30.5) | 1077 (508.8) | 108 (50.9) | 1000 mg |
Selenium (mcg) | 71 (18.5) | 109 (28.5) | 194 ± 89.3 * | 299 ± 196 | 65 mcg |
Zinc (mg) | 9 ± 2.4 * | 78 ± 22.2 * | 35 (26.8) | 314 (243) | 11 mg |
Vitamin A (IU) | 2082 (1411.6) | 78 (52.9) | 2954 (2435.9) | 111 (91.3) | 2667 IU |
Folate (mcg) | 365 (139.2) | 61 (23.2) | 2146 (1470.4) | 358 (245) | 600 mcg |
Vitamin B12 (mcg) | 4 (1.4) | 137 (53.3) | 12 (37.5) | 448.6 (1443.0) | 2.6 mcg |
Vitamin E (mcg) | 8 (2.9) | 118 (41.8) | 22 (25.7) | 315 (367.7) † | 7 mcg † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guthrie, T.M.; Lee, S.; Kothari, A.; Kumar, S.; Truby, H.; de Jersey, S. Measuring Dietary Intake of Pregnant Women Post-Bariatric Surgery: Do Women Meet Recommendations? Nutrients 2025, 17, 285. https://doi.org/10.3390/nu17020285
Guthrie TM, Lee S, Kothari A, Kumar S, Truby H, de Jersey S. Measuring Dietary Intake of Pregnant Women Post-Bariatric Surgery: Do Women Meet Recommendations? Nutrients. 2025; 17(2):285. https://doi.org/10.3390/nu17020285
Chicago/Turabian StyleGuthrie, Taylor M., Sandra Lee, Alka Kothari, Sailesh Kumar, Helen Truby, and Susan de Jersey. 2025. "Measuring Dietary Intake of Pregnant Women Post-Bariatric Surgery: Do Women Meet Recommendations?" Nutrients 17, no. 2: 285. https://doi.org/10.3390/nu17020285
APA StyleGuthrie, T. M., Lee, S., Kothari, A., Kumar, S., Truby, H., & de Jersey, S. (2025). Measuring Dietary Intake of Pregnant Women Post-Bariatric Surgery: Do Women Meet Recommendations? Nutrients, 17(2), 285. https://doi.org/10.3390/nu17020285