The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming
Abstract
:1. Introduction
2. Methodology
3. Breastfeeding, Breast Milk Composition, the Impact of Geographic Regions, and Maternal Dietary Habits on Breast Milk Composition
4. Chronic Inflammation
5. Chronic Inflammatory Conditions in the Mother, Their Impact on Breast Milk Composition, and Possible Role in Nursling Programming
5.1. Obesity
5.2. Diabetes
5.3. Hypercholesterolemia
5.4. Hypertension
5.5. Metabolic Syndrome
6. Epigenetic Programming Effects of Breast Milk Extracellular Vesicles on Infant Metabolic and Immunological Development
7. Projections
Funding
Conflicts of Interest
References
- Kalarikkal, S.; Pfleghaar, J. Breastfeeding. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Eisha, S.; Joarder, I.; Wijenayake, S.; McGowan, P.O. Non-Nutritive Bioactive Components in Maternal Milk and Offspring Development: A Scoping Review. J. Dev. Orig. Health Dis. 2022, 13, 665–673. [Google Scholar] [CrossRef]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human Breast Milk: A Review on Its Composition and Bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Monaco, M.H.; Kim, J.; Donovan, S.M. Human Milk: Composition and Nutritional Value. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 357–362. [Google Scholar]
- Fields, D.A.; Schneider, C.R.; Pavela, G. A Narrative Review of the Associations between Six Bioactive Components in Breast Milk and Infant Adiposity. Obesity 2016, 24, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Skibiel, A.L.; Hood, W.R. Milk Matters: Offspring Survival in Columbian Ground Squirrels Is Affected by Nutrient Composition of Mother’s Milk. Front. Ecol. Evol. 2015, 3, 111. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yi, D.Y. Components of Human Breast Milk: From Macronutrient to Microbiome and MicroRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Boylan, M.; Hart, S.L.; Román-Shriver, C.; Spallholz, J.E.; Pence, B.C.; Sawyer, B.G. Glucose and Insulin Levels Are Increased in Obese and Overweight Mothers’ Breast-Milk. Food Nutr. Sci. 2011, 2, 201–206. [Google Scholar] [CrossRef]
- Newburg, D.S.; Woo, J.G.; Morrow, A.L. Characteristics and Potential Functions of Human Milk Adiponectin. J. Pediatr. 2010, 156, S41–S46. [Google Scholar] [CrossRef]
- Houghton, M.R.; Gracey, M.; Burke, V.; Bottrell, C.; Spargo, R.M. Breast Milk Lactoferrin Levels in Relation to Maternal Nutritional Status. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 230–233. [Google Scholar] [CrossRef]
- Panagos, P.G.; Vishwanathan, R.; Penfield-Cyr, A.; Matthan, N.R.; Shivappa, N.; Wirth, M.D.; Hebert, J.R.; Sen, S. Breastmilk from Obese Mothers Has Pro-Inflammatory Properties and Decreased Neuroprotective Factors. J. Perinatol. 2016, 36, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Enstad, S.; Cheema, S.; Thomas, R.; Fichorova, R.N.; Martin, C.R.; O’Tierney-Ginn, P.; Wagner, C.L.; Sen, S. The Impact of Maternal Obesity and Breast Milk Inflammation on Developmental Programming of Infant Growth. Eur. J. Clin. Nutr. 2021, 75, 180. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, K.M.; Marino, R.C.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R.; Fontaine, P.L.; McGovern, P.M.; Schoenfuss, T.C.; et al. Associations of Maternal Weight Status Before, During, and After Pregnancy with Inflammatory Markers in Breast Milk. Obesity 2017, 25, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Gorski, J.N.; Dunn-Meynell, A.A.; Hartman, T.G.; Levin, B.E. Postnatal Environment Overrides Genetic and Prenatal Factors Influencing Offspring Obesity and Insulin Resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R768–R778. [Google Scholar] [CrossRef] [PubMed]
- Oben, J.A.; Mouralidarane, A.; Samuelsson, A.M.; Matthews, P.J.; Morgan, M.L.; Mckee, C.; Soeda, J.; Fernandez-Twinn, D.S.; Martin-Gronert, M.S.; Ozanne, S.E.; et al. Maternal Obesity during Pregnancy and Lactation Programs the Development of Offspring Non-Alcoholic Fatty Liver Disease in Mice. J. Hepatol. 2010, 52, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Yang, M.; Lee, S.; Behrendt, C.L.; Hooper, L.V.; Saghatelian, A.; Wan, Y. Maternal Western Diet Causes Inflammatory Milk and TLR2/4-Dependent Neonatal Toxicity. Genes Dev. 2012, 26, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- World Health Organization. Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding#tab=tab_1 (accessed on 19 January 2025).
- Hossain, S.; Mihrshahi, S. Exclusive Breastfeeding and Childhood Morbidity: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 14804. [Google Scholar] [CrossRef]
- Russo, J.; Russo, I.H. Hormonal Control of Breast Development. Endocrinol. Adult Pediatr. 2015, 2, 2216–2230.e3. [Google Scholar] [CrossRef]
- Sorrentino, E.; Sarkadi, L.S.; Zhang, M.; Muránszky, G.; Vass, R.A.; Matsyura, O.; Benes, E.; Vari, S.G. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life 2022, 12, 1093. [Google Scholar] [CrossRef] [PubMed]
- Zurutuza, J.I.; Gonzalez, S.; Calderón, A.L.; Caba, M.; Ramos, F.R.; Zurutuza, J.I.; Gonzalez, S.; Calderón, A.; Caba, M.; Ramos, F.R. Changes in the Immunology of Breast Milk from Obese or Overweight Women: A Brief Review. Cureus 2024, 16, e52207. [Google Scholar] [CrossRef]
- Christian, P.; Smith, E.R.; Lee, S.E.; Vargas, A.J.; Bremer, A.A.; Raiten, D.J. The Need to Study Human Milk as a Biological System. Am. J. Clin. Nutr. 2021, 113, 1063–1072. [Google Scholar] [CrossRef]
- Erick, M. Breast Milk Is Conditionally Perfect. Med. Hypotheses 2018, 111, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, H.; Tuzun, F.; Taheri, S.; Korhan, P.; Akokay, P.; Yılmaz, O.; Duman, N.; Özer, E.; Tufan, E.; Kumral, A.; et al. Epigenetic Programming Through Breast Milk and Its Impact on Milk-Siblings Mating. Front. Genet. 2020, 11, 569232. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yi, D.Y. Analysis of the Human Breast Milk Microbiome and Bacterial Extracellular Vesicles in Healthy Mothers. Exp. Mol. Med. 2020, 52, 1288–1297. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2017, 69, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Demmelmair, H.; Koletzko, B. Lipids in Human Milk. Best. Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Martinat, M.; Rossitto, M.; Di Miceli, M.; Layé, S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021, 13, 1185. [Google Scholar] [CrossRef]
- Gibson, R.A.; Makrides, M. Long-Chain Polyunsaturated Fatty Acids in Breast Milk: Are They Essential? Adv. Exp. Med. Biol. 2001, 501, 375–383. [Google Scholar] [CrossRef] [PubMed]
- German, J.B.; Dillard, C.J. Composition, Structure and Absorption of Milk Lipids: A Source of Energy, Fat-Soluble Nutrients and Bioactive Molecules. Crit. Rev. Food Sci. Nutr. 2006, 46, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Thai, J.D.; Gregory, K.E. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients 2020, 12, 581. [Google Scholar] [CrossRef]
- Gonzalez-Becerra, K.; Barron-Cabrera, E.; Muñoz-Valle, J.F.; Torres-Castillo, N.; Rivera-Valdes, J.J.; Rodriguez-Echevarria, R.; Martinez-Lopez, E. A Balanced Dietary Ratio of N-6:N-3 Polyunsaturated Fatty Acids Exerts an Effect on Total Fatty Acid Profile in RBCs and Inflammatory Markers in Subjects with Obesity. Healthcare 2023, 11, 2333. [Google Scholar] [CrossRef]
- Hassiotou, F.; Geddes, D.T. Immune Cell-Mediated Protection of the Mammary Gland and the Infant during Breastfeeding. Adv. Nutr. 2015, 6, 267–275. [Google Scholar] [CrossRef]
- Lewis, E.D.; Richard, C.; Larsen, B.M.; Field, C.J. The Importance of Human Milk for Immunity in Preterm Infants. Clin. Perinatol. 2017, 44, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Cabinian, A.; Sinsimer, D.; Tang, M.; Zumba, O.; Mehta, H.; Toma, A.; Sant’Angelo, D.; Laouar, Y.; Laouar, A. Transfer of Maternal Immune Cells by Breastfeeding: Maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer’s Patches of the Nursed Infant. PLoS ONE 2016, 11, e0156762. [Google Scholar] [CrossRef]
- Witkowska-Zimny, M.; Kaminska-El-Hassan, E. Cells of Human Breast Milk. Cell Mol. Biol. Lett. 2017, 22, 11. [Google Scholar] [CrossRef]
- Trend, S.; De Jong, E.; Lloyd, M.L.; Kok, C.H.; Richmond, P.; Doherty, D.A.; Simmer, K.; Kakulas, F.; Strunk, T.; Currie, A. Leukocyte Populations in Human Preterm and Term Breast Milk Identified by Multicolour Flow Cytometry. PLoS ONE 2015, 10, e0135580. [Google Scholar] [CrossRef] [PubMed]
- Dawod, B.; Marshall, J.S. Cytokines and Soluble Receptors in Breast Milk as Enhancers of Oral Tolerance Development. Front. Immunol. 2019, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Kielbasa, A.; Gadzala-Kopciuch, R.; Buszewski, B. Cytokines-Biogenesis and Their Role in Human Breast Milk and Determination. Int. J. Mol. Sci. 2021, 22, 6238. [Google Scholar] [CrossRef]
- Kverka, M.; Burianova, J.; Lodinova-Zadnikova, R.; Kocourkova, I.; Cinova, J.; Tuckova, L.; Tlaskalova-Hogenova, H. Cytokine Profiling in Human Colostrum and Milk by Protein Array. Clin. Chem. 2007, 53, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Bardanzellu, F.; Peroni, D.G.; Fanos, V. Human Breast Milk: Bioactive Components, from Stem Cells to Health Outcomes. Curr. Nutr. Rep. 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Camacho-Morales, A.; Caba, M.; García-Juárez, M.; Caba-Flores, M.D.; Viveros-Contreras, R.; Martínez-Valenzuela, C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front. Pediatr. 2021, 9, 744104. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Haro, M.Y.; Camacho-Pacheco, R.T.; Brito-Pérez, Y.; Mancilla-Herrera, I. The Hormonal Physiology of Immune Components in Breast Milk and Their Impact on the Infant Immune Response. Mol. Cell Endocrinol. 2023, 572, 111956. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. Impact of Maternal Diet on Human Milk Composition and Neurological Development of Infants. Am. J. Clin. Nutr. 2014, 99, 734S–741S. [Google Scholar] [CrossRef]
- Lönnerdal, B. Effects of Maternal Dietary Intake on Human Milk Composition. J. Nutr. 1986, 116, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of Maternal Nutrition on Breast-Milk Composition: A Systematic Review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef]
- Petersohn, I.; Hellinga, A.H.; van Lee, L.; Keukens, N.; Bont, L.; Hettinga, K.A.; Feskens, E.J.M.; Brouwer-Brolsma, E.M. Maternal Diet and Human Milk Composition: An Updated Systematic Review. Front. Nutr. 2024, 10, 1320560. [Google Scholar] [CrossRef] [PubMed]
- Insull, W.; Hirsch, J.; James, T.; Ahrens, E.H. The fatty acids of human milk. II. Alterations produced by manipulation of caloric balance and exchange of dietary fats. J. Clin. Investig. 1959, 38, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Karmarkar, M.G.; Rajalakshmf, R.; Ramakrishnan, C.V. Studies on Human Lactation. Acta Paediatr. 1963, 52, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; McGuire, M.K.; Behr, R.; McGuire, M.A.; Evans, M.A.; Shultz, T.D. High-fat Dairy Product Consumption Increases Δ9 c’ 11 t −18:2 (Rumenic Acid) and Total Lipid Concentrations of Human Milk. Lipids 1999, 34, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.A.; Sunehag, A.L.; Haymond, M.W. Effect of Dietary Macronutrient Composition under Moderate Hypocaloric Intake on Maternal Adaptation during Lactation. Am. J. Clin. Nutr. 2009, 89, 1821–1827. [Google Scholar] [CrossRef]
- Ward, E.; Yang, N.; Muhlhausler, B.S.; Leghi, G.E.; Netting, M.J.; Elmes, M.J.; Langley-Evans, S.C. Acute Changes to Breast Milk Composition Following Consumption of High-fat and High-sugar Meals. Matern. Child. Nutr. 2021, 17, e13168. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kang, S.; Jung, B.-M.; Yi, H.; Jung, J.A.; Chang, N. Breast Milk Fatty Acid Composition and Fatty Acid Intake of Lactating Mothers in South Korea. Br. J. Nutr. 2017, 117, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, X.; Wang, L. The Investigation of Fatty Acid Composition of Breast Milk and Its Relationship with Dietary Fatty Acid Intake in 5 Regions of China. Medicine 2019, 98, e15855. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Andersons, J.; Volkovs, V.; Ceļmalniece, K. Impact of Maternal Diet on Human Milk Composition Among Lactating Women in Latvia. Medicina 2019, 55, 173. [Google Scholar] [CrossRef]
- Armand, M.; Bernard, J.Y.; Forhan, A.; Heude, B.; Charles, M.-A.; Annesi-Maesano, I.; Bernard, J.Y.; Botton, J.; Charles, M.-A.; Dargent-Molina, P.; et al. Maternal Nutritional Determinants of Colostrum Fatty Acids in the EDEN Mother-Child Cohort. Clin. Nutr. 2018, 37, 2127–2136. [Google Scholar] [CrossRef] [PubMed]
- Mazurier, E.; Rigourd, V.; Perez, P.; Buffin, R.; Couedelo, L.; Vaysse, C.; Belcadi, W.; Sitta, R.; Nacka, F.; Lamireau, D.; et al. Effects of Maternal Supplementation with Omega-3 Precursors on Human Milk Composition. J. Human. Lact. 2017, 33, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Puca, D.; Estay, P.; Valenzuela, C.; Muñoz, Y. Effect of Omega-3 Supplementation during Pregnancy and Lactation on the Fatty Acid Composition of Breast Milk in the First Months of Life: A Narrative Review. Nutr. Hosp. 2021, 38, 848–870. [Google Scholar] [CrossRef]
- Ay, E.; Büyükuslu, N.; Batırel, S.; İlktaç, H.Y.; Garipağaoğlu, M. The Effects of Maternal Omega-3 Fatty Acid Supplementation on Breast Milk Fatty Acid Composition. Acta Pharm. Sci. 2018, 56, 27. [Google Scholar] [CrossRef]
- Bortolozo, E.A.F.Q.; Sauer, E.; Santos, M.D.S.; Baggio, S.R.; Santos Junior, G.D.; Farago, P.V.; Cândido, L.M.B.; Pilatti, L.A. Supplementation with the Omega-3 Docosahexaenoic Acid: Influence on the Lipid Composition and Fatty Acid Profile of Human Milk. Rev. Nutr. 2013, 26, 27–36. [Google Scholar] [CrossRef]
- Schwab, U.; Reynolds, A.N.; Sallinen, T.; Rivellese, A.A.; Risérus, U. Dietary Fat Intakes and Cardiovascular Disease Risk in Adults with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2021, 60, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-L.; Gong, Y.; Qi, Y.-J.; Shao, Z.-M.; Jiang, Y.-Z. Effects of Dietary Intervention on Human Diseases: Molecular Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Kumar Verma, M.; Tripathi, M.; Kumar Singh, B. Dietary Determinants of Metabolic Syndrome: Focus on the Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). In Metabolic Syndrome—Lifestyle and Biological Risk Factors; IntechOpen: London, UK, 2024. [Google Scholar]
- Monda, A.; de Stefano, M.I.; Villano, I.; Allocca, S.; Casillo, M.; Messina, A.; Monda, V.; Moscatelli, F.; Dipace, A.; Limone, P.; et al. Ultra-Processed Food Intake and Increased Risk of Obesity: A Narrative Review. Foods 2024, 13, 2627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Yang, X.; Cheng, Y.; Zhang, H.; Xu, X.; Zhou, J.; Chen, H.; Su, M.; Yang, Y.; et al. Human Milk Lipid Profiles around the World: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 2519–2536. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; du Toit, E.; Kulkarni, A.; Aakko, J.; Linderborg, K.M.; Zhang, Y.; Nicol, M.P.; Isolauri, E.; Yang, B.; Collado, M.C.; et al. Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations. Front. Microbiol. 2016, 7, 1619. [Google Scholar] [CrossRef]
- Yuhas, R.; Pramuk, K.; Lien, E.L. Human Milk Fatty Acid Composition from Nine Countries Varies Most in DHA. Lipids 2006, 41, 851–858. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Barreda, D.R. Acute Inflammation in Tissue Healing. Int. J. Mol. Sci. 2022, 24, 641. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.; Basit, H.; Zubair, M.; Burns, B. Pathology, Inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rust, C.; Malan-Muller, S.; van den Heuvel, L.L.; Tonge, D.; Seedat, S.; Pretorius, E.; Hemmings, S.M.J. Platelets Bridging the Gap between Gut Dysbiosis and Neuroinflammation in Stress-Linked Disorders: A Narrative Review. J. Neuroimmunol. 2023, 382, 578155. [Google Scholar] [CrossRef]
- Austermann, J.; Roth, J.; Barczyk-Kahlert, K. The Good and the Bad: Monocytes’ and Macrophages’ Diverse Functions in Inflammation. Cells 2022, 11, 1979. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S.L. Early Nutrition as a Major Determinant of ‘Immune Health’: Implications for Allergy, Obesity and Other Noncommunicable Diseases; Karger Publishers: Basel, Switzerland, 2016; pp. 1–17. [Google Scholar]
- Cinicola, B.; Conti, M.G.; Terrin, G.; Sgrulletti, M.; Elfeky, R.; Carsetti, R.; Fernandez Salinas, A.; Piano Mortari, E.; Brindisi, G.; De Curtis, M.; et al. The Protective Role of Maternal Immunization in Early Life. Front. Pediatr. 2021, 9, 638871. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Liguori, S.A. Update on Breast Milk Hormones: Leptin, Ghrelin and Adiponectin. Clin. Nutr. 2008, 27, 42–47. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 January 2025).
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of Body Mass Index to Detect Obesity and Predict Body Composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Seagle, H.M.; Wyatt, H.R.; Hill, J.O. Obesity: Overview of Treatments and Interventions. In Nutrition in the Prevention and Treatment of Disease, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 445–464. [Google Scholar] [CrossRef]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell Death and Inflammation during Obesity: “Know My Methods, WAT(Son)”. Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalán, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and Maternal Obesity: Epidemiology and Health Consequences. Lancet Diabetes Endocrinol. 2016, 4, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xu, X.; Yan, Y. Estimated Global Overweight and Obesity Burden in Pregnant Women Based on Panel Data Model. PLoS ONE 2018, 13, e0202183. [Google Scholar] [CrossRef]
- Spencer, L.; Rollo, M.; Hauck, Y.; MacDonald-Wicks, L.; Wood, L.; Hutchesson, M.; Giglia, R.; Smith, R.; Collins, C. The Effect of Weight Management Interventions That Include a Diet Component on Weight-Related Outcomes in Pregnant and Postpartum Women: A Systematic Review Protocol. JBI Database Syst. Rev. Implement. Rep. 2015, 13, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Shankar, K. State of the Art Review: Obesity and Pregnancy: Mechanisms of Short Term and Long Term Adverse Consequences for Mother and Child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef]
- Catalano, P.M.; Farrell, K.; Thomas, A.; Huston-Presley, L.; Mencin, P.; de Mouzon, S.H.; Amini, S.B. Perinatal Risk Factors for Childhood Obesity and Metabolic Dysregulation. Am. J. Clin. Nutr. 2009, 90, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Penfield-Cyr, A.; Hollis, B.W.; Wagner, C.L. Maternal Obesity, 25(OH)D Concentration and Bone Density in Breastfeeding Dyads. J. Pediatr. 2017, 187, 147. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, D.; Muñoz, Y.; Ortiz, M.; Maliqueo, M.; Chouinard-Watkins, R.; Valenzuela, R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, M.; França, E.L.; Fiorin, V.; Morais, T.C.; Honorio-França, A.C.; de Abreu, L.C. Changes in the Biochemical and Immunological Components of Serum and Colostrum of Overweight and Obese Mothers. BMC Pregnancy Childbirth 2015, 15, 166. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, M.; França, E.L.; Morais, T.C.; Fiorin, V.; de Abreu, L.C.; Honório-França, A.C. Cytokine and Adipokine Are Biofactors Can Act in Blood and Colostrum of Obese Mothers. BioFactors 2017, 43, 243–250. [Google Scholar] [CrossRef]
- Young, B.E.; Patinkin, Z.W.; Pyle, L.; de la Houssaye, B.; Davidson, B.S.; Geraghty, S.; Morrow, A.L.; Krebs, N. Markers of Oxidative Stress in Human Milk Do Not Differ by Maternal BMI But Are Related to Infant Growth Trajectories. Matern. Child Health J. 2017, 21, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E. Maternal Weight and Excessive Weight Gain during Pregnancy Modify the Immunomodulatory Potential of Breast Milk. Pediatr. Res. 2012, 72, 77–85. [Google Scholar] [CrossRef]
- Piñeiro-Salvador, R.; Vazquez-Garza, E.; Cruz-Cardenas, J.A.; Licona-Cassani, C.; García-Rivas, G.; Moreno-Vásquez, J.; Alcorta-García, M.R.; Lara-Diaz, V.J.; Brunck, M.E.G. A Cross-Sectional Study Evidences Regulations of Leukocytes in the Colostrum of Mothers with Obesity. BMC Med. 2022, 20, 388. [Google Scholar] [CrossRef] [PubMed]
- Colleluori, G.; Perugini, J.; Barbatelli, G.; Cinti, S. Mammary Gland Adipocytes in Lactation Cycle, Obesity and Breast Cancer. Rev. Endocr. Metab. Disord. 2021, 22, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Denizli, M.; Capitano, M.L.; Kua, K.L. Maternal Obesity and the Impact of Associated Early-Life Inflammation on Long-Term Health of Offspring. Front. Cell Infect. Microbiol. 2022, 12, 940937. [Google Scholar] [CrossRef]
- Amaro, A.; Baptista, F.I.; Matafome, P. Programming of Future Generations during Breastfeeding: The Intricate Relation between Metabolic and Neurodevelopment Disorders. Life Sci. 2022, 298, 120526. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Trujillo, A.; Huff, K.; Ramires Ferreira, C.; Paschoal Sobreira, T.J.; Buhman, K.K.; Casey, T. High-Fat-Diet Induced Obesity Increases the Proportion of Linoleic Acyl Residues in Dam Serum and Milk and in Suckling Neonate Circulation. Biol. Reprod. 2020, 103, 736–749. [Google Scholar] [CrossRef]
- Wijenayake, S.; Martz, J.; Lapp, H.E.; Storm, J.A.; Champagne, F.A.; Kentner, A.C. The Contributions of Parental Lactation on Offspring Development: It’s Not Udder Nonsense! Horm. Behav. 2023, 153, 105375. [Google Scholar] [CrossRef] [PubMed]
- Howie, G.J.; Sloboda, D.M.; Kamal, T.; Vickers, M.H. Maternal Nutritional History Predicts Obesity in Adult Offspring Independent of Postnatal Diet. J. Physiol. 2009, 587, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Schmid, D.; Zang, K.; Much, D.; Knoeferl, B.; Kratzsch, J.; Amann-Gassner, U.; Bader, B.L.; Hauner, H. Breast Milk Leptin and Adiponectin in Relation to Infant Body Composition up to 2 Years. Pediatr. Obes. 2015, 10, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, M.; Hellmuth, C.; Demmelmair, H.; Koletzko, B. Excessive Weight Gain during Full Breast-Feeding. Ann. Nutr. Metab. 2014, 64, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Sapra, A.; Bhandari, P. Diabetes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Patel, N.; Hameed, A.; Banerjee, A. Pre-Existing Type I and Type II Diabetes in Pregnancy. Obstet. Gynaecol. Reprod. Med. 2014, 24, 129–134. [Google Scholar] [CrossRef]
- Peila, C.; Gazzolo, D.; Bertino, E.; Cresi, F.; Coscia, A. Influence of Diabetes during Pregnancy on Human Milk Composition. Nutrients 2020, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Mellitus, G.D. ACOG Practice Bulletin No. 201: Pregestational Diabetes Mellitus. Obstet. Gynecol. 2018, 132, e228–e248. [Google Scholar] [CrossRef]
- Modzelewski, R.; Stefanowicz-Rutkowska, M.M.; Matuszewski, W.; Bandurska-Stankiewicz, E.M. Gestational Diabetes Mellitus—Recent Literature Review. J. Clin. Med. 2022, 11, 5736. [Google Scholar] [CrossRef] [PubMed]
- Korkut, S.; Köse Çetinkaya, A.; Işık, Ş.; Özel, Ş.; Gökay, N.; Şahin, A.; Alyamaç Dizdar, E. Macronutrient Composition of Colostrum in Mothers with Gestational Diabetes Mellitus. Breastfeed. Med. 2022, 17, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Dritsakou, K.; Liosis, G.; Valsami, G.; Polychronopoulos, E.; Skouroliakou, M. The Impact of Maternal- and Neonatal-Associated Factors on Human Milk’s Macronutrients and Energy. J. Matern. Fetal Neonatal Med. 2017, 30, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Avellar, A.C.D.S.; Oliveira, M.N.; Caixeta, F.; Souza, R.C.V.E.; Teixeira, A.; Faria, A.M.C.; Silveira-Nunes, G.; Faria, E.S.; Maioli, T.U. Gestational Diabetes Mellitus Changes Human Colostrum Immune Composition. Front. Immunol. 2022, 13, 910807. [Google Scholar] [CrossRef]
- Suwaydi, M.A.; Zhou, X.; Perrella, S.L.; Wlodek, M.E.; Lai, C.T.; Gridneva, Z.; Geddes, D.T. The Impact of Gestational Diabetes Mellitus on Human Milk Metabolic Hormones: A Systematic Review. Nutrients 2022, 14, 3620. [Google Scholar] [CrossRef]
- Smilowitz, J.T.; Totten, S.M.; Huang, J.; Grapov, D.; Durham, H.A.; Lammi-Keefe, C.J.; Lebrilla, C.; German, J.B. Human Milk Secretory Immunoglobulin a and Lactoferrin N-Glycans Are Altered in Women with Gestational Diabetes Mellitus. J. Nutr. 2013, 143, 1906–1912. [Google Scholar] [CrossRef]
- Jackson, M.; Lammi-Keefe, C.; Jensen, R.; Couch, S.; Ferris, A. Total Lipid and Fatty Acid Composition of Milk from Women with and without Insulin-Dependent Diabetes Mellitus. Am. J. Clin. Nutr. 1994, 60, 353–361. [Google Scholar] [CrossRef]
- Butte, N.F.; Garza, C.; Burr, R.; Goldman, A.S.; Kennedy, K.; Kitzmiller, J.L. Milk Composition of Insulin-Dependent Diabetic Women. J. Pediatr. Gastroenterol. Nutr. 1987, 6, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Elbeltagi, R.; Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S. Cardiometabolic Effects of Breastfeeding on Infants of Diabetic Mothers. World J. Diabetes 2023, 14, 617–631. [Google Scholar] [CrossRef]
- Plagemann, A.; Harder, T.; Franke, K.; Kohlhoff, R. Long-Term Impact of Neonatal Breast-Feeding on Body Weight and Glucose Tolerance in Children of Diabetic Mothers. Diabetes Care 2002, 25, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Asuka, E.; Jialal, I. Hypercholesterolemia; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- World Health Organization. The Global Health Observatory. Available online: https://www.who.int/data/gho (accessed on 19 January 2025).
- Cho, S.; Han, E. Association of Breastfeeding Duration with Dyslipidemia in Women Aged over 20 Years: Korea National Health and Nutrition Examination Survey 2010–2014. J. Clin. Lipidol. 2018, 12, 437–446. [Google Scholar] [CrossRef]
- Martin, R.M.; Ebrahim, S.; Griffin, M.; Smith, G.D.; Nicolaides, A.N.; Georgiou, N.; Watson, S.; Frankel, S.; Holly, J.M.P.; Gunnell, D. Breastfeeding and Atherosclerosis: Intima-Media Thickness and Plaques at 65-Year Follow-up of the Boyd Orr Cohort. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.P.; Lewis, C.E.; Wei, G.S.; Whitmer, R.A.; Quesenberry, C.P.; Sidney, S. Lactation and Changes in Maternal Metabolic Risk Factors. Obstet. Gynecol. 2007, 109, 729–738. [Google Scholar] [CrossRef]
- Magnus, M.C.; Wallace, M.K.; Demirci, J.R.; Catov, J.M.; Schmella, M.J.; Fraser, A. Breastfeeding and Later-Life Cardiometabolic Health in Women with and Without Hypertensive Disorders of Pregnancy. J. Am. Heart Assoc. 2023, 12, e026696. [Google Scholar] [CrossRef]
- Perrine, C.G.; Nelson, J.M.; Corbelli, J.; Scanlon, K.S. Lactation and Maternal Cardio-Metabolic Health. Annu. Rev. Nutr. 2016, 36, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Kallio, M.J.T.; Siimes, M.A.; Perheentupa, J.; Salmenperä, L.; Miettinen, T.A. Serum Cholesterol and Lipoprotein Concentrations in Mothers during and after Prolonged Exclusive Lactation. Metabolism 1992, 41, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.; Kenneth, F. Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2023. [Google Scholar]
- O’Higgins, A.C.; O’Dwyer, V.; O’Connor, C.; Daly, S.F.; Kinsley, B.T.; Turner, M.J. Postpartum Dyslipidaemia in Women Diagnosed with Gestational Diabetes Mellitus. Ir. J. Med. Sci. 2017, 186, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Xiao, H.; Lai, F.; Li, Z.; Li, Z.; Yue, S.; Chen, H.; Li, Y.; Cao, X. Early Postpartum Dyslipidemia and Its Potential Predictors during Pregnancy in Women with a History of Gestational Diabetes Mellitus. Lipids Health Dis. 2020, 19, 220. [Google Scholar] [CrossRef] [PubMed]
- Chodick, G.; Tenne, Y.; Barer, Y.; Shalev, V.; Elchalal, U. Gestational Diabetes and Long-Term Risk for Dyslipidemia: A Population-Based Historical Cohort Study. BMJ Open Diabetes Res. Care 2020, 8, e000870. [Google Scholar] [CrossRef] [PubMed]
- Leiva, A.; de Medina, C.D.; Guzmán-Gutierrez, E.; Pardo, F.; Sobrevia, L. Maternal Hypercholesterolemia in Gestational Diabetes and the Association with Placental Endothelial Dysfunction. In Gestational Diabetes—Causes, Diagnosis and Treatment; InTech: London, UK, 2013; pp. 103–134. [Google Scholar]
- Montes, A.; Walden, C.E.; Knopp, R.H.; Cheung, M.; Chapman, M.B.; Albers, J.J. Physiologic and Supraphysiologic Increases in Lipoprotein Lipids and Apoproteins in Late Pregnancy and Postpartum. Possible Markers for the Diagnosis of “Prelipemia”. Arteriosclerosis 1984, 4, 407–417. [Google Scholar] [CrossRef]
- Liguori, A.; D’Armiento, F.P.; Palagiano, A.; Palinski, W.; Napoli, C. Maternal C-Reactive Protein and Developmental Programming of Atherosclerosis. Am. J. Obstet. Gynecol. 2008, 198, 281.e1–281.e5. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; D’Armiento, F.P.; Mancini, F.P.; Postiglione, A.; Witztum, J.L.; Palumbo, G.; Palinski, W. Fatty Streak Formation Occurs in Human Fetal Aortas and Is Greatly Enhanced Maternal, Hypercholesterolemia. J. Clin. Investig. 1997, 100, 2680–2690. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Witztum, J.L.; De Nigris, F.; Palumbo, G.; D’Armiento, F.P.; Palinski, W. Intracranial Arteries of Human Fetuses Are More Resistant to Hypercholesterolemia-Induced Fatty Streak Formation than Extracranial Arteries. Circulation 1999, 99, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.M.; Nestel, P.J. The Hyperlipidemia of Pregnancy in Normal and Complicated Pregnancies. Am. J. Obstet. Gynecol. 1979, 133, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Stiphout, W.A.H.J.V.; Hofman, A.; Bruijn, A.M.D. Serum Lipids in Young Women before, during, and after Pregnancy. Am. J. Epidemiol. 1987, 126, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.M.; Pocovi, M.; Ramon-Cajal, J.; Romero, M.A.; Martinez, H.; Grande, F. Longitudinal Study of Plasma Lipids and Lipoprotein Cholesterol in Normal Pregnancy and Puerperium. Gynecol. Obstet. Investig. 1988, 25, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Loke, D.F.M.; Viegas, O.A.C.; Kek, L.P.; Rauff, M.; Thai, A.C.; Ratnam, S.S. Lipid Profiles during and after Normal Pregnancy. Gynecol. Obstet. Investig. 1991, 32, 144–147. [Google Scholar] [CrossRef] [PubMed]
- An-Na, C.; Man-Li, Y.; Jeng-Hsiu, H.; Pesus, C.; Shin-Kuo, S.; Heung-Tat, N. Alterations of Serum Lipid Levels and Their Biological Relevances during and after Pregnancy. Life Sci. 1995, 56, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Desoye, G.; Schweditsch, M.O.; Pfeiffer, K.P.; Zechner, R.; Kostner, G.M. Correlation of Hormones with Lipid and Lipoprotein Levels during Normal Pregnancy and Postpartum. J. Clin. Endocrinol. Metab. 1987, 64, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Koukkou, E.; Watts, G.F.; Lowy, C. Serum Lipid, Lipoprotein and Apolipoprotein Changes in Gestational Diabetes Mellitus: A Cross-Sectional and Prospective Study. J. Clin. Pathol. 1996, 49, 634–637. [Google Scholar] [CrossRef]
- Van Dam, R.M.; Schuit, A.J.; Schouten, E.G.; Vader, H.L.; Pop, V.J.M. Serum Cholesterol Decline and Depression in the Postpartum Period. J. Psychosom. Res. 1999, 46, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Troisi, A.; Moles, A.; Panepuccia, L.; Lo Russo, D.; Palla, G.; Scucchi, S. Serum Cholesterol Levels and Mood Symptoms in the Postpartum Period. Psychiatry Res. 2002, 109, 213–219. [Google Scholar] [CrossRef]
- Wiznitzer, A.; Mayer, A.; Novack, V.; Sheiner, E.; Gilutz, H.; Malhotra, A.; Novack, L. Association of Lipid Levels During Gestation With Preeclampsia and Gestational Diabetes Mellitus: A Population-Based Study. Am. J. Obstet. Gynecol. 2009, 201, 482.e1–482.e8. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Qi, Y.; Connelly, P.W.; Sermer, M.; Hanley, A.J.; Zinman, B. The Graded Relationship between Glucose Tolerance Status in Pregnancy and Postpartum Levels of Low-Density-Lipoprotein Cholesterol and Apolipoprotein B in Young Women: Implications for Future Cardiovascular Risk. J. Clin. Endocrinol. Metab. 2010, 95, 4345–4353. [Google Scholar] [CrossRef] [PubMed]
- Prairie, B.A.; Wisniewski, S.R.; Luther, J.F.; Sit, D.; Wisner, K.L. Postpartum Lipid Levels in Women with Major Depression. J. Womens Health 2012, 21, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Nouhjah, S.; Shahbazian, H.; Jahanfar, S.; Shahbazian, N.; Jahanshahi, A.; Cheraghian, B.; Hardanipasand, L.; Moradi, M. Early Postpartum Lipid Profile in Women with and without Gestational Diabetes Mellitus: Results of a Prospective Cohort Study. Iran. Red. Crescent Med. J. 2017, 19, e13097. [Google Scholar] [CrossRef]
- Wen, C.; Metcalfe, A.; Anderson, T.J.; Johnson, J.A.; Sigal, R.J.; Nerenberg, K.A. Measurement of Lipid Profiles in the Early Postpartum Period after Hypertensive Disorders of Pregnancy. J. Clin. Lipidol. 2019, 13, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Mendieta-Zerón, H. Dyslipidemia Is a Persistent Problem in Puerperium with or Without Preeclampsia. Available online: https://pubmed.ncbi.nlm.nih.gov/23971245/ (accessed on 7 October 2024).
- Lin, C.-H.; Wen, S.-F.; Wu, Y.-H.; Huang, Y.-Y.; Huang, M.-J. The Postpartum Metabolic Outcome of Women with Previous Gestational Diabetes Mellitus. Change Gung Med. J. 2005, 28, 794–800. [Google Scholar]
- Troisi, A.; Croce Nanni, R. Normal Cholesterol Levels in the Immediate Postpartum Period: A Risk Factor for Depressive and Anxiety Symptoms? Psychiatry Res. 2018, 269, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Harrison, C.; Callander, E.; Walker, R.; Teede, H.; Moran, L. Addressing Obesity in Preconception, Pregnancy, and Postpartum: A Review of the Literature. Curr. Obes. Rep. 2022, 11, 405–414. [Google Scholar] [CrossRef]
- Kyle, E.M.; Miller, H.B.; Schueler, J.; Clinton, M.; Alexander, B.M.; Hart, A.M.; Larson-Meyer, D.E. Changes in Bone Mineral Density and Serum Lipids across the First Postpartum Year: Effect of Aerobic Fitness and Physical Activity. Nutrients 2022, 14, 703. [Google Scholar] [CrossRef]
- Mizuno, O.; Toriumi, T.; Tsutsumi, N. The Influence of Weight Changes in Pregnancy and Postpartum on Serum Total Cholesterol or Triglyceride. Acta Obstet. Gynaecol. Jpn. 1984, 36, 736–740. [Google Scholar]
- Puhkala, J.; Luoto, R.; Ahotupa, M.; Raitanen, J.; Vasankari, T. Postpartum Weight Retention Is Associated with Elevated Ratio of Oxidized LDL Lipids to HDL-Cholesterol. Lipids 2013, 48, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Wahabi, H.A.; Fayed, A.A.; Tharkar, S.; Esmaeil, S.A.; Bakhsh, H. Postpartum Weight Retention and Cardiometabolic Risk among Saudi Women: A Follow-Up Study of RAHMA Subcohort. Biomed. Res. Int. 2019, 2019, 2957429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, L.; Wu, X.; Chen, Y.; Tian, F.Y.; Yin, A.; Hu, F.; Tong, J.; Huang, X.; Wan, Y.; et al. Maternal BMI Changes from the Prepregnancy to Postpartum Period Are Associated with Postpartum Cardiometabolic Risk Factors: A Longitudinal Study. Arch. Gynecol. Obstet. 2023, 1, 2591–2603. [Google Scholar] [CrossRef]
- Hong, D.K.; Cho, H.Y.; Kim, J.Y.; Park, H.J.; Cha, D.H.; Shim, S.S.; Yun, B.S. Intrapartum Factors Affecting Abnormal Lipid Profiles in Early Postpartum Period. J. Pers. Med. 2023, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Deslypere, J.P.; Van Trappen, Y.; Thiery, M. Influence of Parity on Plasma Lipid Levels. Eur. J. Obstet. Gynecoioa Reprod. Biol. 1990, 35, 1–6. [Google Scholar] [CrossRef]
- Gaillard, R.; Rurangirwa, A.A.; Williams, M.A.; Hofman, A.; MacKenbach, J.P.; Franco, O.H.; Steegers, E.A.P.; Jaddoe, V.W.V. Maternal Parity, Fetal and Childhood Growth, and Cardiometabolic Risk Factors. Hypertension 2014, 64, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Knopp, R.H.; Walden, C.E.; Wahl, P.W.; Bergelin, R.; Chapman, M.; Irvine, S.; Albers, J.J. Effect of Postpartum Lactation on Lipoprotein Lipids and Apoproteins. J. Clin. Endocrinol. Metab. 1985, 60, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.B.; Brown, J.S.; Creasman, J.M.; Stuebe, A.; McClure, C.K.; Van Den Eeden, S.K.; Thom, D. Lactation and Maternal Risk of Type 2 Diabetes: A Population-Based Study. Am. J. Med. 2010, 123, e1–e863. [Google Scholar] [CrossRef]
- Tørris, C.; Thune, I.; Emaus, A.; Finstad, S.E.; Bye, A.; Furberg, A.S.; Barrett, E.; Jasienska, G.; Ellison, P.; Hjartåker, A. Duration of Lactation, Maternal Metabolic Profile, and Body Composition in the Norwegian EBBA I-Study. Breastfeed. Med. 2013, 8, 8–15. [Google Scholar] [CrossRef]
- Niu, Z.; Naya, C.H.; Reynaga, L.; Toledo-Corral, C.M.; Johnson, M.; Yang, T.; Grubbs, B.; Lurvey, N.; Lerner, D.; Dunton, G.F.; et al. Association of Breastfeeding Duration with 12-Month Postpartum Blood Lipids in a Predominately Lower-Income Hispanic Pregnancy Cohort in Los Angeles. Int. J. Environ. Res. Public Health 2022, 19, 3008. [Google Scholar] [CrossRef] [PubMed]
- Rymer, J.; Constable, S.; Lumb, P.; Crook, M. Serum Lipoprotein (A) and Apolipoproteins during Pregnancy and Postpartum in Normal Women. J. Obstet. Gynaecol. 2002, 22, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Liang, X.; Hill, B.; Teede, H.; Moran, L.J.; O’Reilly, S. A Systematic Review and Meta-Analysis of Intervention Characteristics in Postpartum Weight Management Using the TIDieR Framework: A Summary of Evidence to Inform Implementation. Obes. Rev. 2019, 20, 1045–1056. [Google Scholar] [CrossRef]
- Shalowitz, M.U.; Schetter, C.D.; Hillemeier, M.M.; Chinchilli, V.M.; Adam, E.K.; Hobel, C.J.; Ramey, S.L.; Vance, M.R.; O’Campo, P.; Thorp, J.M.; et al. Cardiovascular and Metabolic Risk in Women in the First Year Postpartum: Allostatic Load as a Function of Race, Ethnicity and Poverty Status. Am. J. Perinatol. 2019, 36, 1079. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, R.; Li, H.; Wang, J.; Duan, Y.; Pang, X.; Jiang, S.; Bi, Y.; Zhang, H.; Wang, S.; et al. Human Milk Cholesterol Is Associated with Lactation Stage and Maternal Plasma Cholesterol in Chinese Populations. Pediatr. Res. 2021, 91, 970–976. [Google Scholar] [CrossRef]
- Tinius, R.A.; Yoho, K.; Blankenship, M.M.; Maples, J.M. Postpartum Metabolism: How Does It Change from Pregnancy and What Are the Potential Implications? Int. J. Womens Health 2021, 13, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, B.; Alikhani, A.; Mokhtari, H.; Rasouli, M. The Ratio of Unesterified/Esterified Cholesterol Is the Major Determinant of Atherogenicity of Lipoprotein Fractions. Med. Arch. 2018, 72, 103. [Google Scholar] [CrossRef]
- Qureshi, I.A. Hyperlipidaemia During Normal Pregnancy, Parturition and Lactation. Available online: https://pubmed.ncbi.nlm.nih.gov/10497670/ (accessed on 7 October 2024).
- Clark, R.M.; Ferris, A.M.; Fey, M.; Brown, P.B.; Hundrieser, K.E.; Jensen, R.G. Changes in the Lipids of Human Milk from 2 to 16 Weeks Postpartum. J. Pediatr. Gastron. Nutr. 1982, 1, 311–315. [Google Scholar]
- Hromadnikova, I.; Dvorakova, L.; Kotlabova, K.; Krofta, L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC MicroRNAs. Int. J. Mol. Sci. 2019, 20, 2972. [Google Scholar] [CrossRef]
- Jensen, R.G. Lipids in Human Milk. Lipids 1999, 34, 1243–1271. [Google Scholar] [CrossRef] [PubMed]
- Hromadová, M.; Ponec, J.; Macková, M. Cholesterol and Triacylglycerols in Human Breast Milk before and after Nursing. Endocr. Regul. 1991, 25, 70–73. [Google Scholar]
- Donda, K.; Maheshwari, A. Human Milk Lipids Induce Important Metabolic and Epigenetic Changes in Neonates. Clin. Perinatol. 2022, 49, 331. [Google Scholar] [CrossRef] [PubMed]
- Kallio, M.J.T.; Siimes, M.A.; Perheentupa, J.; Salmenpera, L.; Miettinen, T.A. Cholesterol and Its Precursors in Human Milk during Prolonged Exclusive Breast-Feeding. Am. J. Clin. Nutr. 1989, 50, 782–785. [Google Scholar] [CrossRef]
- World Health Organization. Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 19 January 2025).
- Xavier, I.M.; Simões, A.C.Z.; Oliveira, R.D.; Barros, Y.E.; Sarmento, A.C.A.; Medeiros, K.S.D.; Costa, A.P.F.; Korkes, H.; Gonçalves, A.K. Maternal-Fetal Outcomes of Women with Hypertensive Disorders of Pregnancy. Rev. Assoc. Med. Bras. 2023, 69, e20230060. [Google Scholar] [CrossRef]
- Yang, Q. Literature Overview of Association Between Preeclampsia and Cardiovascular Risk. Anatol. J. Cardiol. 2023, 27, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Wenger, N.K. Hypertension During Pregnancy. Curr. Hypertens. Rep. 2020, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Lugobe, H.M.; Kayondo, M.; Mceniery, C.M.; Catov, J.M.; Wilkinson, I.B.; Wylie, B.J.; Vaught, A.J.; Muhindo, R.; Boatin, A.A. Persistent Hypertension at 3 Months Postpartum among Women with Hypertensive Disorders of Pregnancy at a Tertiary Hospital in Southwestern Uganda. AJOG Glob. Rep. 2023, 3, 100163. [Google Scholar] [CrossRef] [PubMed]
- Ishaku, S.M.; Jamilu, T.; Innocent, A.P.; Gbenga, K.A.; Lamaran, D.; Lawal, O.; Warren, C.E.; Olorunfemi, O.O.; Abubakar, H.D.; Karima, T.; et al. Persistent Hypertension Up to One Year Postpartum among Women with Hypertensive Disorders in Pregnancy in a Low-Resource Setting: A Prospective Cohort Study. Glob. Heart 2021, 16, 62. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Zhang, H.Y.; Liu, H.H.; Li, H.J.; Wang, J.S. Breastfeeding and Maternal Hypertension and Diabetes: A Population-Based Cross-Sectional Study. Breastfeed. Med. 2015, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Bonifacino, E.; Schwartz, E.B.; Jun, H.; Wessel, C.B.; Corbelli, J.A. Effect of Lactation on Maternal Hypertension: A Systematic Review. Breastfeed. Med. 2018, 13, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Countouris, M.E.; Schwarz, E.B.; Rossiter, B.C.; Althouse, A.D.; Berlacher, K.L.; Jeyabalan, A.; Catov, J.M. Effects of Lactation on Postpartum Blood Pressure among Women with Gestational Hypertension and Preeclampsia. Am. J. Obstet. Gynecol. 2016, 215, e1–e241.e8. [Google Scholar] [CrossRef]
- Murase, M.; Nommsen-Rivers, L.; Morrow, A.L.; Hatsuno, M.; Mizuno, K.; Taki, M.; Miyazawa, T.; Nakano, Y.; Aizawa, M.; Itabashi, K. Predictors of Low Milk Volume among Mothers Who Delivered Preterm. J. Hum. Lact. 2014, 30, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Horsley, K.; Chaput, K.; Da Costa, D.; Nguyen, T.V.; Dayan, N.; Tomfohr-Madsen, L.; Tough, S. Hypertensive Disorders of Pregnancy and Breastfeeding Practices: A Secondary Analysis of Data from the All Our Families Cohort. Acta Obstet. Gynecol. Scand. 2022, 101, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Strapasson, M.R.; Ferreira, C.F.; Ramos, J.G.L. Feeding Practices in the First 6 months after Delivery: Effects of Gestational Hypertension. Pregnancy Hypertens. 2018, 13, 254–259. [Google Scholar] [CrossRef]
- Amaral, Y.; Marano, D.; Oliveira, E.; Moreira, M.E. Impact of Pre-Pregnancy Excessive Body Weight on the Composition of Polyunsaturated Fatty Acids in Breast Milk: A Systematic Review. Int. J. Food Sci. Nutr. 2020, 71, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Sokołowska, E.M.; Jassem-Bobowicz, J.M.; Drążkowska, I.; Świąder, Z.; Domżalska-Popadiuk, I. Gestational Hypertension and Human Breast Milk Composition in Correlation with the Assessment of Fetal Growth-A Pilot Study. Nutrients 2023, 15, 2404. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.E.L.; Lucena, S.L.; De Magalhães, P.S.C.; Rocha, A.D.; Costa, A.C.C.; Soares, F.V.M. Macronutrients of mothers’ milk of very low birth weight infants: Analysis according to gestational age and maternal variables. Rev. Paul. Pediatr. 2021, 39, e2019097. [Google Scholar] [CrossRef]
- Beser, E.; Kose Cetinkaya, A.; Kucukoglu Keser, M.; Okman, E.; Sari, F.N.; Alyamac Dizdar, E. Evaluation of Breast Milk Macronutrient Content in Preeclamptic Mothers. Breastfeed. Med. 2022, 17, 318–321. [Google Scholar] [CrossRef]
- Dangat, K.; Upadhyay, D.; Kilari, A.; Sharma, U.; Kemse, N.; Mehendale, S.; Lalwani, S.; Wagh, G.; Joshi, S.; Jagannathan, N.R. Altered Breast Milk Components in Preeclampsia; An in-Vitro Proton NMR Spectroscopy Study. Clin. Chim. Acta 2016, 463, 75–83. [Google Scholar] [CrossRef]
- Bardanzellu, F.; Puddu, M.; Peroni, D.G.; Fanos, V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front. Immunol. 2020, 11, 1533. [Google Scholar] [CrossRef] [PubMed]
- Dangat, K.D.; Mehendale, S.S.; Yadav, H.R.; Kilari, A.S.; Kulkarni, A.V.; Taralekar, V.S.; Joshi, S.R. Long-Chain Polyunsaturated Fatty Acid Composition of Breast Milk in Pre-Eclamptic Mothers. Neonatology 2010, 97, 190–194. [Google Scholar] [CrossRef]
- Dangat, K.; Kilari, A.; Mehendale, S.; Lalwani, S.; Joshi, S. Preeclampsia Alters Milk Neurotrophins and Long Chain Polyunsaturated Fatty Acids. Int. J. Devl. Neurosci. 2014, 33, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic Syndrome: Pathophysiology, Management, and Modulation by Natural Compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic Syndrome—A New World-wide Definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Wang, S.; Zhang, L.; Zhang, Y.; Ma, J. Gender Differences in Prevalence and Associated Factors of Metabolic Syndrome in First-Treatment and Drug-Naïve Schizophrenia Patients. Ann. Gen. Psychiatry 2023, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, I.U.; Agampodi, T.C.; Dissanayake, A.K.; Agampodi, S.B. Early Pregnancy Metabolic Syndrome and Risk for Adverse Pregnancy Outcomes: Findings from Rajarata Pregnancy Cohort (RaPCo) in Sri Lanka. BMC Pregnancy Childbirth 2023, 23, 231. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Bianco-Miotto, T.; Grzeskowiak, L.E.; Leemaqz, S.Y.; Poston, L.; McCowan, L.M.; Kenny, L.C.; Myers, J.E.; Walker, J.J.; Dekker, G.A.; et al. Metabolic Syndrome in Pregnancy and Risk for Adverse Pregnancy Outcomes: A Prospective Cohort of Nulliparous Women. PLoS Med. 2018, 15, e1002710. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Ventura, V.; Li, Y.; Pasupuleti, V.; Roman, Y.M.; Hernandez, A.V.; Pérez-López, F.R. Effects of Preeclampsia and Eclampsia on Maternal Metabolic and Biochemical Outcomes in Later Life: A Systematic Review and Meta-Analysis. Metabolism 2020, 102, 154012. [Google Scholar] [CrossRef] [PubMed]
- Vernini, J.M.; Nicolosi, B.F.; Arantes, M.A.; Costa, R.A.; Magalhães, C.G.; Corrente, J.E.; Lima, S.A.M.; Rudge, M.V.; Calderon, I.M. Metabolic Syndrome Markers and Risk of Hyperglycemia in Pregnancy: A Cross-Sectional Cohort Study. Sci. Rep. 2020, 10, 21042. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Jin, Q.; Naimi, A.I.; Simhan, H.N.; Catov, J.M.; Parisi, S.M.; Kirkpatrick, S.I. Periconceptional Dietary Quality and Metabolic Syndrome at 3 Years Postpartum. J. Am. Heart Assoc. 2024, 13, 35555. [Google Scholar] [CrossRef]
- Tørris, C.; Bjørnnes, A.K. Duration of Lactation and Maternal Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2718. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Kadomatsu, Y.; Tsukamoto, M.; Kubo, Y.; Okada, R.; Nagayoshi, M.; Tamura, T.; Hishida, A.; Takezaki, T.; Shimoshikiryo, I.; et al. Associations of Breastfeeding History with Metabolic Syndrome and Cardiovascular Risk Factors in Community-Dwelling Parous Women: The Japan Multi-Institutional Collaborative Cohort Study. PLoS ONE 2022, 17, e0262252. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, E.S.; Lee, H.; Son, S.; Lee, K.S.; Ahn, K.H. Machine Learning Analysis for the Association between Breast Feeding and Metabolic Syndrome in Women. Sci. Rep. 2024, 14, 4138. [Google Scholar] [CrossRef]
- Farahmand, M.; Rahmati, M.; Azizi, F.; Ramezani Tehrani, F. Lactation Duration and Lifetime Progression to Metabolic Syndrome in Women According to Their History of Gestational Diabetes: A Prospective Longitudinal Community-Based Cohort Study. J. Transl. Med. 2023, 21, 177. [Google Scholar] [CrossRef]
- Picó, C.; Reis, F.; Egas, C.; Mathias, P.; Matafome, P. Lactation as a Programming Window for Metabolic Syndrome. Eur. J. Clin. Investig. 2021, 51, e13482. [Google Scholar] [CrossRef]
- Zempleni, J.; Aguilar-Lozano, A.; Sadri, M.; Sukreet, S.; Manca, S.; Wu, D.; Zhou, F.; Mutai, E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J. Nutr. 2017, 147, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Lozano, E.; Sebastián-Valles, F.; Knott-Torcal, C. Circulating MicroRNAs in Breast Milk and Their Potential Impact on the Infant. Nutrients 2020, 12, 3066. [Google Scholar] [CrossRef]
- Chutipongtanate, S.; Morrow, A.L.; Newburg, D.S. Human Milk Extracellular Vesicles: A Biological System with Clinical Implications. Cells 2022, 11, 2345. [Google Scholar] [CrossRef]
- Melnik, B.C.; Stremmel, W.; Weiskirchen, R.; John, S.M.; Schmitz, G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021, 11, 851. [Google Scholar] [CrossRef]
- Karlsson, O.; Rodosthenous, R.S.; Jara, C.; Brennan, K.J.; Wright, R.O.; Baccarelli, A.A.; Wright, R.J. Detection of Long Non-Coding RNAs in Human Breastmilk Extracellular Vesicles: Implications for Early Child Development. Epigenetics 2016, 11, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.; Liao, Y.; Du, X.; Xu, W.; Li, J.; Lönnerdal, B. Exosomal MicroRNAs in Milk from Mothers Delivering Preterm Infants Survive In Vitro Digestion and Are Taken Up by Human Intestinal Cells. Mol. Nutr. Food Res. 2018, 62, 1701050. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, S.; Rani, P.; Onteru, S.K.; Singh, D. Small Interfering RNA in Milk Exosomes Is Resistant to Digestion and Crosses the Intestinal Barrier In Vitro. J. Agric. Food Chem. 2017, 65, 9506–9513. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Du, X.; Li, J.; Lönnerdal, B. Human Milk Exosomes and Their MicroRNAs Survive Digestion in Vitro and Are Taken up by Human Intestinal Cells. Mol. Nutr. Food Res. 2017, 61, 1700082. [Google Scholar] [CrossRef]
- Gialeli, G.; Panagopoulou, O.; Liosis, G.; Siahanidou, T. Potential Epigenetic Effects of Human Milk on Infants’ Neurodevelopment. Nutrients 2023, 15, 3614. [Google Scholar] [CrossRef] [PubMed]
- Alsaweed, M.; Hartmann, P.; Geddes, D.; Kakulas, F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int. J. Environ. Res. Public Health 2015, 12, 13981–14020. [Google Scholar] [CrossRef] [PubMed]
- Kupsco, A.; Prada, D.; Valvi, D.; Hu, L.; Petersen, M.S.; Coull, B.; Grandjean, P.; Weihe, P.; Baccarelli, A.A. Human Milk Extracellular Vesicle MiRNA Expression and Associations with Maternal Characteristics in a Population-Based Cohort from the Faroe Islands. Sci. Rep. 2021, 11, 5840. [Google Scholar] [CrossRef]
- Alsaweed, M.; Lai, C.T.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Human Milk Cells and Lipids Conserve Numerous Known and Novel MiRNAs, Some of Which Are Differentially Expressed during Lactation. PLoS ONE 2016, 11, e0152610. [Google Scholar] [CrossRef]
- Xi, Y.; Jiang, X.; Li, R.; Chen, M.; Song, W.; Li, X. The Levels of Human Milk MicroRNAs and Their Association with Maternal Weight Characteristics. Eur. J. Clin. Nutr. 2016, 70, 445–449. [Google Scholar] [CrossRef]
- Hatmal, M.M.; Al-Hatamleh, M.A.I.; Olaimat, A.N.; Alshaer, W.; Hasan, H.; Albakri, K.A.; Alkhafaji, E.; Issa, N.N.; Al-Holy, M.A.; Abderrahman, S.M.; et al. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022, 10, 1219. [Google Scholar] [CrossRef]
- Mirza, A.H.; Kaur, S.; Nielsen, L.B.; Størling, J.; Yarani, R.; Roursgaard, M.; Mathiesen, E.R.; Damm, P.; Svare, J.; Mortensen, H.B.; et al. Breast Milk-Derived Extracellular Vesicles Enriched in Exosomes from Mothers With Type 1 Diabetes Contain Aberrant Levels of MicroRNAs. Front. Immunol. 2019, 10, 2543. [Google Scholar] [CrossRef]
- Shah, K.B.; Fields, D.A.; Pezant, N.P.; Kharoud, H.K.; Gulati, S.; Jacobs, K.; Gale, C.A.; Kharbanda, E.O.; Nagel, E.M.; Demerath, E.W.; et al. Gestational Diabetes Mellitus Is Associated with Altered Abundance of Exosomal MicroRNAs in Human Milk. Clin. Ther. 2022, 44, 172–185.e1. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.B.; Chernausek, S.D.; Garman, L.D.; Pezant, N.P.; Plows, J.F.; Kharoud, H.K.; Demerath, E.W.; Fields, D.A. Human Milk Exosomal MicroRNA: Associations with Maternal Overweight/Obesity and Infant Body Composition at 1 Month of Life. Nutrients 2021, 13, 1091. [Google Scholar] [CrossRef]
- Słyk-Gulewska, P.; Kondracka, A.; Kwaśniewska, A. MicroRNA as a New Bioactive Component in Breast Milk. Noncoding RNA Res. 2023, 8, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Munch, E.M.; Harris, R.A.; Mohammad, M.; Benham, A.L.; Pejerrey, S.M.; Showalter, L.; Hu, M.; Shope, C.D.; Maningat, P.D.; Gunaratne, P.H.; et al. Transcriptome Profiling of MicroRNA by Next-Gen Deep Sequencing Reveals Known and Novel MiRNA Species in the Lipid Fraction of Human Breast Milk. PLoS ONE 2013, 8, e50564. [Google Scholar] [CrossRef] [PubMed]
Reference | Period, n, Variable | Maternal Lipid (mg/dL) Levels | ||||
---|---|---|---|---|---|---|
TC | TG | LDL | HDL | Topic of the Study | ||
Potter J et al., 1979 [136] | Nonpregnant, n = 15 | 202 ± 5 | 95 ± 10 | 129 ± 4 | 63 ± 4 | Lipids levels during gestation and postpartum |
<8 weeks pregnancy, n = 6 | 200 ± 13 | 96 ± 12 | - | - | ||
9–12 weeks pregnancy, n = 5 | 198 ± 6 | 123 ± 13 | - | - | ||
13–18 weeks pregnancy, n = 9 | 223 ± 13 | 113 ± 9 | 137 ± 13 | 76 ± 4 | ||
19–24 weeks pregnancy, n = 10 | 279 ± 10 | 168 ± 21 | 179 ± 9 | 81 ± 5 | ||
25–30 weeks pregnancy, n = 13 | 274 ± 15 | 208 ± 18 | 176 ± 13 | 79 ± 11 | ||
31–36 weeks pregnancy, n = 23 | 297 ± 15 | 294 ± 24 | 189 ± 13 | 67 ± 4 | ||
37–40 weeks pregnancy, n = 25 | 317 ± 17 | 312 ± 23 | 214 ± 16 | 66 ± 3 | ||
Labor, n = 20 | 303 ± 17 | 306 ± 24 | 190 ± 14 | 75 ± 4 | ||
Delivery, n = 35 | 312 ± 14 | 296 ± 16 | 192 ± 11 | 82 ± 5 | ||
1 day postpartum, n = 23 | 268 ± 15 | 224 ± 19 | 168 ± 14 | 75 ± 4 | ||
5 days postpartum, n = 43 | 283 ± 11 | 174 ± 9 | 189 ± 11 | 73 ± 3 | ||
6 months postpartum, n = 30 | 257 ± 13 | 123 ± 8 | 184 ± 13 | 61 ± 4 | ||
12 months postpartum, n = 14 | 204 ± 12 | 117 ± 13 | 141 ± 11 | 52 ± 4 | ||
Mizuno O et al., 1984 [155] | Pregnancy, n = 25 | >300 | - | - | - | Weight loss during postpartum and lipid levels |
Between 1 day and 8 weeks postpartum, n = 22 | <250 | - | - | - | ||
Montes A et al., 1984 [132] | Nonpregnant, n = 23 | 171 ± 26 | 59 ± 19 | 104 ± 23 | 56 ± 12 | Lipids levels in gestation and postpartum |
34–38 weeks pregnancy, n = 23 | 251 ± 32 | 222 ± 60 | 161 ± 39 | 64 ± 9 | ||
6 weeks postpartum, n = 23 | 205 ± 23 | 71 ± 23 | 124 ± 21 | 64 ± 12 | ||
20 weeks postpartum, n = 23 | 190 ± 28 | 66 ± 18 | 120 ± 24 | 56 ± 11 | ||
Knopp R et al., 1985 [162] | 36 weeks pregnancy, n = 16, Antepartum no lactating | 239 ± 41 | 228 ± 64 | 142 ± 35 | 64 ± 15 | Lactation impact on maternal lipid level |
36 weeks pregnancy, n = 16, Postpartum no lactating | 188 ± 29 | 92 ± 71 | 121 ± 30 | 51 ± 8 | ||
6 weeks postpartum, n = 16, Antepartum lactating | 246 ± 44 | 221 ± 84 | 154 ± 39 | 68 ± 16 | ||
6 weeks postpartum, n = 16, Postpartum lactating | 188 ± 29 | 92 ± 71 | 129 ± 31 | 65 ± 15 | ||
Van Stiphout WA et al., 1987 [137] | Nonpregnant, n = 165 | 205 ± 3 | - | - | 57 ± 1 | Serum lipid levels in young women before, during gestation, and in postpartum |
1 year before pregnancy, n = 29 | ~210 | - | - | ~60 | ||
Trimester 1, n = 16 | ~180 | - | - | ~60 | ||
Trimester 2, n = 17 | ~240 | - | - | ~70 | ||
Trimester 3, n = 20 | ~285 | - | - | ~70 | ||
1 year postpartum, n = 29 | ~200 | - | - | ~45 | ||
Desoye G et al., 1987 [141] | Nonpregnant, n = 24 | 176 ± 40 | 87 ± 46 | 115 ± 41 | 44 ± 9 | Hormones impact on lipid levels during pregnancy and postpartum |
8 weeks pregnancy, n = 42 | 167 ± 26 | 77 ± 28 | 98 ± 23 | 53 ± 13 | ||
38 weeks pregnancy, n = 42 | 286 ± 46 | 247 ± 84 | 165 ± 49 | 70 ± 18 | ||
6–8 weeks postpartum, n = 23, follicular phase of cycle | 214 ± 32 | 123 ± 83 | 135 ± 30 | 52 ± 14 | ||
6–8 weeks postpartum, n = 23, luteal phase of cycle | 214 ± 53 | 111 ± 110 | 142 ± 35 | 52 ± 15 | ||
Jimenez D et al., 1988 [138] | 12 weeks pregnancy, n = 60 | 182 ± 28 | 77 ± 21 | 105 ± 26 | 63 ± 13 | Lipid changes during pregnancy and postpartum |
20 weeks pregnancy, n = 60 | 218 ± 42 | 106 ± 31 | 129 ± 36 | 69 ± 15 | ||
28 weeks pregnancy, n = 60 | 244 ± 47 | 143 ± 44 | 156 ± 43 | 66 ± 14 | ||
36 weeks pregnancy, n = 60 | 275 ± 44 | 180 ± 49 | 182 ± 42 | 65 ± 15 | ||
Delivery, n = 60 | 266 ± 68 | 192 ± 65 | 163 ± 64 | 64 ± 17 | ||
3 days postpartum, n = 60 | 225 ± 43 | 138 ± 43 | 142 ± 40 | 56 ± 13 | ||
40 days postpartum, n = 60 | 240 ± 46 | 80 ± 24 | 159 ± 42 | 64 ± 14 | ||
Deslypere J et al., 1990 [160] | 48 h postpartum, n = 209, parity 1 | 231 ± 45 | 175 ± 58 | 146 ± 43 | 54 ± 12 | Impact of parity on maternal lipid levels |
48 h postpartum, n = 179, parity 2 | 248 ± 50 | 176 ± 50 | 163 ± 52 | 55 ± 13 | ||
48 h postpartum, n = 83, parity 3 | 245 ± 54 | 172 ± 56 | 160 ± 52 | 54 ± 13 | ||
48 h postpartum, n = 24, parity 4 | 252 ± 47 | 197 ± 81 | 173 ± 43 | 50 ± 13 | ||
48 h postpartum, n = 15, parity >5 | 251 ± 81 | 201 ± 38 | 168 ± 76 | 54 ± 13 | ||
Loke D et al., 1991 [139] | Nonpregnant, n = 39 | 186 ± 29 | 74 ± 29 | 121 ± 29 | 56 ± 10 | Lipids in pregnancy and postpartum under normal gestation |
28 weeks pregnancy, n = 67 | 257 ± 42 | 198 ± 60 | 152 ± 42 | 77 ± 14 | ||
32 weeks pregnancy, n = 67 | 257 ± 42 | 226 ± 74 | 154 ± 46 | 73 ± 14 | ||
6 weeks postpartum, n = 67 | 223 ± 43 | 122 ± 60 | 156 ± 45 | 52 ± 12 | ||
Kallio M et al., 1992 [126] | 2 months postpartum, n = 34 | 239 ± 58 | 72 ± 19 | 147 ± 37 | 62 ± 12 | Lipids during and after prolonged lactation |
6 months postpartum, n = 28 | 201 ± 39 | 58 ± 13 | 120 ± 31 | 66 ± 13 | ||
9 months postpartum, n = 7 | 178 ± 15 | 50 ± 7 | 112 ± 16 | 58 ± 17 | ||
12 months postpartum, n = 8 | 182 ± 39 | 69 ± 25 | 112 ± 38 | 58 ± 13 | ||
Chiang A et al., 1995 [140] | Nonpregnant, n = 184 | ~160 | ~90 | ~115 | ~40 | Lipids during and after pregnancy |
Trimester 1, n = 62 | ~180 | ~100 | ~110 | ~50 | ||
Trimester 2, n = 62 | ~200 | ~110 | ~120 | ~50 | ||
Trimester 3, n = 62 | ~240 | ~230 | ~175 | ~55 | ||
Delivery, n = 62 | ~250 | ~220 | ~160 | ~55 | ||
6–12 weeks postpartum, n = 62 | ~180 | ~120 | ~130 | ~50 | ||
Koukkou E et al., 1996 [142] | Trimester 2, n = 22, Normal glucose tolerance | 260 ± 39 | 186 ± 189 | 155 ± 43 | 67 ± 12 | Glucose metabolism alterations |
6–12 months postpartum, n = 22, Normal glucose tolerance | 171 ± 31 | 83 ± 84 | 104 ± 23 | 67 ± 12 | ||
Trimester 2, n = 20, GDM | 241 ± 62 | 256 ± 257 | 119 ± 46 | 66 ± 16 | ||
6–12 months postpartum, n = 20, GDM | 179 ± 27 | 103 ± 106 | 105 ± 27 | 50 ± 12 | ||
Van Dam R et al., 1999 [143] | Trimester 3, n = 266 | ~255 | - | - | - | Women with or without depression |
4 weeks postpartum, n = 266 | ~232 | - | - | - | ||
10 weeks postpartum, n = 266 | ~209 | - | - | - | ||
16 weeks postpartum, n = 266 | ~201 | - | - | - | ||
22 weeks postpartum, n = 266 | ~195 | - | - | - | ||
28 weeks postpartum, n = 266 | ~193 | - | - | - | ||
34 weeks postpartum, n = 266 | ~190 | - | - | - | ||
Troisi et al., 2002 [144] | Trimester 3, n = 46 | 291 ± 44 | - | - | 71 ± 18 | Lipids levels and depression |
1–32 days postpartum, n = 45 | 235 ± 44 | - | - | 63 ± 14 | ||
Rymer J et al., 2002 [166] | Trimester 3, n = 29 | 282 ± 57 | 313 ± 86 | - | 61 ± 15 | Lipid levels in normal pregnancy |
12 weeks postpartum, n = 22 | 204 ± 34 | 144 ± 87 | - | 53 ± 19 | ||
Lin C et al., 2005 [151] | 6 weeks–2 years postpartum, n = 73, Normal glucose tolerance | 203 ± 34 | 121 ± 68 | - | 57 ± 13 | Glucose metabolism alteration |
6 weeks–2 years postpartum, n = 37, Abnormal glucose tolerance | 212 ± 34 | 162 ± 123 | - | 52 ± 10 | ||
6 weeks–2 years postpartum, n = 17, Diabetes mellitus | 213 ± 45 | 174 ± 185 | - | 56 ± 13 | ||
Gunderson E et al., 2007 [123] | 7 years postpartum, n = 48, No lactation | 175 ± 32 | 64 ± 32 | 107 ± 29 | 55 ± 14 | Lactation and weaning effect on maternal lipid levels |
10 years postpartum, n = 61, Post weaning | 173 ± 30 | 61 ± 30 | 104 ± 28 | 57 ± 13 | ||
Wiznitzer A et al., 2009 [145] | Nonpregnant 1 year, n = 3058 | ~170 | ~90 | ~100 | ~50 | Lipid levels during pregnancy with preeclampsia and GDM |
Delivery, n = 3983 | ~240 | ~240 | ~140 | ~55 | ||
12 months postpartum, n = 2870 | ~160 | ~100 | ~100 | ~50 | ||
Retnakaram R et al., 2010 [146] | Late trimester 2-early trimester 3, n = 87, normal glucose tolerance | ~249 | ~230 | ~188 | ~63 | Glucose metabolism alteration |
3 months postpartum, n = 87, normal glucose tolerance | ~187 | ~70 | ~128 | ~57 | ||
late trimester 2-early trimester 3, n = 170, abnormal glucose tolerance | ~244 | ~210 | ~181 | ~63 | ||
3 months postpartum, n = 170, abnormal glucose tolerance | ~191 | ~81 | ~135 | ~55 | ||
late trimester 2-early trimester 3, n = 89, gestational impaired tolerance glucose | ~239 | ~209 | ~174 | ~63 | ||
3 months postpartum, n = 89, gestational impaired tolerance glucose | ~191 | ~91 | ~139 | ~50 | ||
Late trimester 2-early trimester 3, n = 136, GDM | ~239 | ~220 | ~183 | ~59 | ||
3 months postpartum, n = 136, GDM | ~205 | ~101 | ~149 | ~52 | ||
Schwarz E et al., 2010 [163] | ≥3 months postpartum, n = 121, Consistent lactation | ~193 | - | - | - | Lactation effect on maternal lipid levels |
<3 months postpartum, n = 84, inconsistent lactation | ~192 | - | - | - | ||
postpartum, n = 92, no lactation | ~197 | - | - | - | ||
Prairie B et al., 2012 [147] | 1–14 weeks postpartum, n = 120 | 196 ± 39 | - | 125 ± 34 | 50 ± 14 | Maternal lipids levels and depression |
Mendieta-Zerón H et al., 2013 [150] | 3 days postpartum, n = 14, control | 162 ± 4 | 228 ± 66 | - | - | Preeclampsia impacto on maternal lipid levels |
3 days postpartum, n = 11, uncomplicated preeclampsia | 207 ± 81 | 304 ± 162 | - | - | ||
3 days postpartum, n = 22, complicated preeclampsia | 181 ± 54 | 244 ± 60 | - | - | ||
Puhkala J et al., 2013 [156] | 1 year postpartum, n = 464, B, Weight loss | 182 ± 23 | 104 ± 33 | 85 ± 19 | 65 ± 12 | Impact of weight on maternal lipid levels |
1 year postpartum, n = 464, FU, Weight loss | 174 ± 32 | 75 ± 26 | 88 ± 22 | 59 ± 16 | ||
1 year postpartum, n = 464, B, No changes | 178 ± 27 | 103 ± 53 | 85 ± 16 | 63 ± 12 | ||
1 year postpartum, n = 464, FU, No changes | 186 ± 31 | 85 ± 44 | 97 ± 23 | 58 ± 11 | ||
1 year postpartum, n = 464, B, Weight gain | 182 ± 27 | 109 ± 35 | 81 ± 19 | 67 ± 12 | ||
1 year postpartum, n = 464, FU, Weight gain | 177 ± 30 | 96 ± 40 | 91 ± 21 | 55 ± 12 | ||
Torris C et al., 2013 [164] | 0–54 months postpartum, n = 43, <10 months lactation | 185 ± 25 | 81± 43 | - | 58 ± 12 | Impact of lactation duration on maternal lipid levels |
0–54 months postpartum, n = 55, >10 months lactation | 167 ± 32 | 59 ± 20 | - | 57 ± 14 | ||
Gaillard M et al., 2014 [161] | 6 months postpartum, n = 4994, Parity 0 | 162 ± 23 | ~ | 93 ± 23 | 50 ± 12 | Impact of parity on maternal lipid levels |
6 months postpartum, n = 2721, Parity 1 | 162 ± 23 | ~ | 93 ± 23 | 54 ± 12 | ||
6 months postpartum, n = 939, Parity 2 | 162 ± 23 | ~ | 89 ± 19 | 54 ± 12 | ||
6 months postpartum, n = 377, Parity ≥3 | 159 ± 23 | ~ | 89 ± 19 | 54 ± 12 | ||
O’Higgins AC et al., 2017 [128] | 6 weeks postpartum, n = 195, general population | ~178 | ~92 | ~95 | ~64 | Impact of GDM on maternal lipid levels |
6 weeks postpartum, n = 98, GDM | ~198 | ~115 | ~117 | ~59 | ||
Nouhjah S et al., 2017 [148] | 6–12 weeks postpartum, n = 86, Control | 173 ± 32 | 93 ± 54 | 104 ± 28 | 50 ± 11 | Impact of GDM on maternal lipid levels |
6–12 weeks postpartum, n = 176, GDM | 192 ± 48 | 116 ± 74 | 115 ± 31 | 52 ± 10 | ||
Wahabi H et al., 2019 [157] | 1 year postpartum, n = 34, Weight retention <3 Kg | 166 ± 27 | - | 104 ± 23 | - | Impact of weight retention on maternal lipid levels |
1 year postpartum, n = 40, Weight retention 3–7 Kg | 162 ± 31 | - | 101 ± 27 | - | ||
1 year postpartum, n = 41, Weight retention ≥7 Kg | 170 ± 31 | - | 108 ± 31 | - | ||
Wen Ch et al., 2019 [149] | 4 years postpartum, n = 25,558, normotension | 172 ± 33 | - | 97 ± 29 | 57 ± 14 | Impact of tension disorders on maternal lipid levels |
4 years postpartum, n = 1413, gestational hypertension | 177 ± 36 | - | 103 ± 31 | 53 ± 14 | ||
4 years postpartum, n = 329, preeclampsia | 183 ± 40 | - | 106 ± 35 | 53 ± 14 | ||
Lim S et al., 2019 [167] | 0–104 weeks postpartum, n = 74, B, >2 Kg of weight loss | 201 ± 35 | 115 ± 62 | 124 ± 35 | 58 ± 12 | Effect of weight on maternal lipid levels |
0–104 weeks postpartum, n = 74, 12 months after intervention, >2 Kg of weight loss | 182 ± 35 | 97 ± 44 | 108 ± 31 | 54 ± 12 | ||
0–104 weeks postpartum, n = 74, B, weight stability ±2 Kg | 197 ± 35 | 115 ± 71 | 120 ± 31 | 54 ± 16 | ||
0–104 weeks postpartum, n = 74, 12 months after intervention, weight stability ±2 Kg | 186 ± 31 | 115 ± 53 | 112 ± 27 | 50 ± 16 | ||
0–104 weeks postpartum, n = 58, B, >2 Kg of weight gain | 201 ± 39 | 106 ± 53 | 116 ± 35 | 58 ± 12 | ||
0–104 weeks postpartum, n = 58, 12 months after intervention, >2 Kg of weight gain | 190 ± 31 | 124 ± 62 | 112 ± 31 | 50 ± 12 | ||
Shalowitz M et al., 2019 [168] | 6–12 months postpartum, n = 1029, race/ethnicity African | - | - | - | 43 ± 15 | Race/ethnicity on maternal lipid levels during postpartum |
6–12 months postpartum, n = 429, race/ethnicity Whites | - | - | - | 43 ± 14 | ||
6–12 months postpartum, n = 450, race/ethnicity Latinas | - | - | - | 45 ± 16 | ||
Yang Z et al., 2021 [169] | 30–330 days postpartum, n = 402 | ~175 | ~70 | ~130 | ~60 | Chinese population |
12–16 weeks postpartum, n = 227, dyslipidemia | ~259 | ~219 | ~145 | ~76 | ||
Tinius R et al., 2021 [170] | Trimester 3, n = 25 | - | 208 ± 73 | - | - | Metabolic changes from pregnancy to postpartum |
4–6 months postpartum, n = 25 | - | 65 ± 36 | - | - | ||
Niu Z et al., 2022 [165] | <6 months postpartum, n = 28 | 165 ± 23 | 131 ± 58 | 102 ± 20 | 37 ± 12 | Lipids levels and breastfeeding duration |
≥6–11 months postpartum, n = 24 | 170 ± 34 | 134 ± 81 | 103 ± 31 | 40 ± 10 | ||
12 months postpartum, n = 27 | 170 ± 32 | 90 ± 53 | 109 ± 24 | 44 ± 13 | ||
Kyle E et al., 2022 [154] | 4–6 weeks postpartum, n = 18, Physical activity and no lactation | 163 ± 7 | ~96 | 92 ± 6.3 | 51 ± 4 | Effect of physical activity and lactation on maternal lipid levels |
6 months postpartum, n = 18, Physical activity and no lactation | 186 ± 8 | ~103 | 103 ± 7 | 62 ± 5 | ||
12 months postpartum, n = 18, Physical activity and no lactation | 184 ± 8 | ~94 | 104 ± 9 | 59 ± 3 | ||
4–6 weeks postpartum, n = 18, Physical activity and lactation | 172 ± 8 | ~76 | 106 ± 7 | 47 ± 3 | ||
6 months postpartum, n = 18, Physical activity and lactation | 165 ± 6 | ~71 | 96 ± 5 | 54 ± 2 | ||
12 months postpartum, n = 18, Physical activity and lactation | 157 ± 6 | ~65 | 90 ± 4 | 52 ± 2 | ||
Hong K et al., 2023 [159] | Trimester 2, n = 869 | 243 ± 37 | - | - | - | Weight and maternal lipids in postpartum |
Trimester 3, n = 869 | 270 ± 45 | - | - | - | ||
6 weeks postpartum, n = 869 | 208 ± 34 | 101 ± 66 | 128 ± 31 | 60 ± 13 | ||
Zhang H et al., 2023 [158] | 3–4 years postpartum, n = 315, <0 BMI points of change | 178 ± 32 | 71 ± 126 | 101 ± 27 | 57 ± 12 | BMI and maternal lipids in postpartum |
3–4 years postpartum, n = 671, 0–1.7 BMI points of change | 176 ± 36 | 72 ± 66 | 101 ± 29 | 56 ± 12 | ||
3–4 years postpartum, n = 320, > 1.7 BMI points of change | 183±34 | 92 ± 83 | 110 ± 29 | 52 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas, G.; Barrera, M.J.; Contreras-Duarte, S. The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming. Nutrients 2025, 17, 387. https://doi.org/10.3390/nu17030387
Arenas G, Barrera MJ, Contreras-Duarte S. The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming. Nutrients. 2025; 17(3):387. https://doi.org/10.3390/nu17030387
Chicago/Turabian StyleArenas, Gabriela, María José Barrera, and Susana Contreras-Duarte. 2025. "The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming" Nutrients 17, no. 3: 387. https://doi.org/10.3390/nu17030387
APA StyleArenas, G., Barrera, M. J., & Contreras-Duarte, S. (2025). The Impact of Maternal Chronic Inflammatory Conditions on Breast Milk Composition: Possible Influence on Offspring Metabolic Programming. Nutrients, 17(3), 387. https://doi.org/10.3390/nu17030387