Astragalin Exerted Hypoglycemic Effect by Both Inhibiting α-Glucosidase and Modulating AMPK Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. α-Glucosidase Inhibitory Activity
2.3. Multi-Fluorescence Spectroscopy
2.4. FT-IR Measurements
2.5. Molecular Docking
2.5.1. Visual Docking
2.5.2. Molecule Dynamics Simulation
2.5.3. MMGBSA Binding Free Energy
2.6. Cell Experiment
2.6.1. HepG2 Cell Culture
2.6.2. HepG2 Cell Survival Rate
2.6.3. The Establishment of HepG2 High Glucose Model
2.6.4. Western Blotting
2.7. Statistical Analysis
3. Results and Discussion
3.1. The α-Glucosidase Inhibitory Effect of the Main Polyphenols in Mulberry Leaves
3.2. Binding Mechanism and Properties by Fluorescence Spectroscopy
3.3. FT-IR Analysis
3.4. Molecular Docking Results for Astragalin with α-Glucosidase
3.5. HepG2 Cell Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Kseniya, H.; Kraskouski, A.; Yang, Y.; Huang, Z.; Zhao, Z. Inhibition of α-glucosidase activity and intestinal glucose transport to assess the in vivo anti-hyperglycemic potential of dodecyl-acylated phlorizin and polydatin derivatives. Food Funct. 2024, 15, 4785–4804. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Zou, Y.; Shi, Y.; Liu, F.; Li, E.; Yang, Q.; Chen, R.; Li, Q. The synergistic lipogenesis inhibition and molecular mechanism of polyphenols and polysaccharides from mulberry leaf. Food Biosci. 2024, 57, 103522. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Liu, F.; Hu, T.; Shen, W.; Li, E.; Liao, S.; Zou, Y. Mulberry leaf polyphenols attenuated postprandial glucose absorption via inhibition of disaccharidases activity and glucose transport in Caco-2 cells. Food Funct. 2020, 11, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Dai, Y.; Shen, W.; Zou, Y. 1-Deoxynojirimycin modulates glucose homeostasis by regulating the combination of IR-GlUT4 and ADIPO-GLUT4 pathways in 3T3-L1 adipocytes. Mol. Biol. Rep. 2019, 46, 6277–6285. [Google Scholar] [CrossRef] [PubMed]
- Vongsak, B.; Mangmool, S.; Gritsanapan, W. Antioxidant activity and induction of mRNA expressions of antioxidant enzymes in HEK-293 Cells of Moringa oleifera leaf extract. Planta Medica 2015, 81, 1084–1089. [Google Scholar] [CrossRef]
- Krasteva, I.; Platikanov, S.; Nikolov, S.; Kaloga, M. Flavonoids from Astragalus hamosus. Nat. Prod. Res. 2007, 21, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, Z.; Fei, D.; Liu, Y.; Zhang, M.; Liu, S. Evaluation of the sedative and hypnotic effects of astragalin isolated from Eucommia ulmoides leaves in mice. Nat. Prod. Res. 2016, 31, 2072–2076. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Kim, S.H. Inhibitory effect of astragalin on expression of lipopolysaccharide-induced inflammatory mediators through NF-κB in macrophages. Arch. Pharmacal Res. 2011, 34, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.H.; Gong, J.H.; Kang, M.K.; Lee, E.-J. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling. BMC Pulm. Med. 2014, 14, 122. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, Y.J.; Kang, M.K.; Park, S.H.; Antika, L.D.; Lee, E.J.; Kim, D.Y.; Kang, Y.H. Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice. J. Agric. Food Chem. 2017, 65, 836–845. [Google Scholar] [CrossRef]
- Wei, M.; Mahady, G.B.; Liu, D.; Zheng, Z.S.; Lu, Y. Astragalin, a flavonoid from Morus alba (mulberry) increases endogenous estrogen and progesterone by inhibiting ovarian granulosa cell apoptosis in an aged rat model of menopause. Molecules 2016, 21, 675. [Google Scholar] [CrossRef]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, G.; Li, C. AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009, 9, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Qin, Y.; Pan, S.; Wang, G.; Jiang, Z.; Li, B.; Wang, Y.; Wang, Y.; Zhou, M.; Zhang, Y.; et al. AICAR-based exercise mimetic alleviates aging-induced memory impairment through activating AMPK and improving mitochondrial quality control. Food Sci. Hum. Wellness 2024, 15, 9250325. [Google Scholar] [CrossRef]
- Ozaki, Y.; Ohashi, K.; Otaka, N.; Kawanishi, H.; Takikawa, T.; Fang, L.; Takahara, K.; Tatsumi, M.; Ishihama, S.; Takefuji, M. Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway. Nat. Commun. 2023, 14, 4675. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Wang, Q.; Shailendra, G.; Ribnichy, D.; Burk, D.; Cefalu, W. An extract of Artemisia dracunculus L. stimulates insulin secretion from beta cells, activates AMPK and suppresses inflammation. J. Ethnopharmacol. 2015, 170, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zhang, T.; Karrar, E.; Zheng, L.; Xie, D.; Jin, J.; Chang, M.; Wang, X.; Jin, Q. Insights into an α-Glucosidase Inhibitory Profile of 4,4-Dimethylsterols by Multispectral Techniques and Molecular Docking. J. Agric. Food Chem. 2021, 69, 15252–15260. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Gallego, R.; Alves, R.G.; Rivas-Gonzalo, J.C.; Escribano-Bailon, M.T.; Freitas, V.D. Interaction of phenolic compounds with bovine serum albumin (BSA) and α-amylase and their relationship to astringency perception. Food Chem. 2012, 135, 651–658. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Zhai, Y.; Zhang, Y.; Xu, S.; Yu, S.; Wei, Y.; Xiao, H.; Song, Y. Inhibition of α-glucosidase by trilobatin and its mechanism: Kinetics, interaction mechanism and molecular docking. Food Funct. 2022, 13, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Mei, C.; Liu, F.; Xing, D.; Pang, D.; Li, Q. The lipase inhibitory effect of mulberry leaf phenolic glycosides: The structure-activity relationship and mechanism of action. Food Chem. 2024, 458, 140228. [Google Scholar] [CrossRef]
- Li, Q.; Liu, F.; Liao, S.; Zhou, D.; Xing, D.; Zou, Y. Targeted and non-targeted metabolic characteristics of 6,7-dihydroxy-2,4-dimethoxy-phenanthrene during simulated gastrointestinal digestion. Food Chem. 2024, 464, 141534. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, J.; Jiang, X.; Sun, Z.; Zhao, L.; Chen, G. Phenolic constituents from Black Quinoa alleviate insulin resistance in HepG2 cells via regulating IRS1/PI3K/Akt/GLUTs signaling pathways. J. Agric. Food Chem. 2023, 48, 71. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, F.; Gao, F.; Bian, J.; Shan, F. Comparative Evaluation of Quercetin, Isoquercetin and Rutin as Inhibitors of α-Glucosidase. J. Agric. Food Chem. 2009, 57, 11463–11468. [Google Scholar] [CrossRef] [PubMed]
- Songsong, Z.; Beibei, Q.; Jinhua, Z.; Khan, M.Z.H.; Xiuhua, L. Investigation of the interaction of 2,4-dimethoxy-6,7-dihydroxyphenanthrene with α-glucosidase using inhibition kinetics, CD, FT-IR and molecular docking methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 13–18. [Google Scholar]
- Hu, W.; Cao, G.; Zhu, J.; Li, J.; Liu, X. Naturally occurring Batatasins and their derivatives as alpha-glucosidase inhibitors. RSC Adv. 2015, 5, 82153–82158. [Google Scholar] [CrossRef]
- Ma, R.; Weng, H.; Liang, J. Screening of lipase inhibitors in Folium Mori with lipase-linked magnetic microspheres by high-performance liquid chromatography and evaluation in diabetic mice. J. Sep. Sci. 2016, 39, 4474–4483. [Google Scholar] [CrossRef] [PubMed]
- Ke, M.; Hu, X.Q.; Ouyang, J.; Dai, B.; Xu, Y. The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Bio-Med. Mater Eng. 2012, 22, 113–119. [Google Scholar] [CrossRef]
- Genovese, D.; Cingolani, M.; Rampazzo, E.; Prodi, L.; Zaccheroni, N. Static quenching upon adduct formation: A treatment without shortcuts and approximations. Chem. Soc. Rev. 2021, 50, 8414–8427. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Ruan, Y.; Li, Y.; Chen, J.; Yin, Z.; Zhang, Q. In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes. Int. J. Biol. Macromol. 2020, 150, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Richardson, S.J.; Brennan, C.S.; Kasapis, S. Mechanistic insights into α-amylase inhibition, binding affinity and structural changes upon interaction with gallic acid. Food Hydrocoll. 2024, 148, 109467. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, L.; Dong, Y.; Fang, Z.; Nisar, T.; Zhao, T.; Wang, Z.-C.; Guo, Y. Chemical compositions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits. Food Chem. 2019, 299, 125102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hu, Y.; Pan, J. Interaction between toddalolatone and human serum albumin. J. Solut. Chem. 2014, 43, 727–745. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Wang, K.; Xie, J.; Liu, Y.; Wang, T.; Liu, S.; Huang, Q.; Guo, Q.; Wang, H. Hyperoside inhibits pancreatic lipase activity in vitro and reduces fat accumulation in vivo. Food Funct. 2023, 14, 4763–4776. [Google Scholar] [CrossRef]
- Han, L.; Chun, F.; Zhu, R.; Qiang, P.; Li, D.; Wang, M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int. J. Biol. Macromol. 2017, 95, 520–527. [Google Scholar] [CrossRef]
- Ni, M.; Hu, X.; Gong, D.; Zhang, G. Inhibitory mechanism of vitexin on α-glucosidase and its synergy with acarbose. Food Hydrocoll. 2020, 105, 105824. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, C.; Ma, L.; Wei, T.; Zhao, Y.; Peng, X. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chem. 2021, 347, 129056. [Google Scholar] [CrossRef] [PubMed]
- Hongjin, T.; Huang, L.; Chunyong, S.; Dongsheng, Z. Exploring the structure–activity relationship and interaction mechanism of flavonoids and α-glucosidase based on experimental analysis and molecular docking studies. Food Funct. 2020, 11, 3332–3350. [Google Scholar]
- Santana, D.; Trindade, I.; Carvalho, Y.; Carvalho-Neto, A.; Silva, E.; Silva-Júnior, E.; Leite, R.; Quintans-Júnior, L.; Aquino, T.; Serafini, M.; et al. Analytical techniques to recognize inclusion complexes formation involving monoterpenes and cyclodextrins: A study case with (–) borneol, a food ingredient. Food Chem. 2021, 339, 127791. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Herrera, I.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol. Nutr. Food Res. 2013, 57, 974–985. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, C.J.; Lin, S.Y.; Chuang, Y.H.; Tung, K.C. Hyperglycemia is associated with enhanced gluconeogenesis in a rat model of permanent cerebral ischemia. Mol. Cell Endocrinol. 2013, 367, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Jarinyaporn, N.; Patchareewan, P.; Veerapol, K.; Auemduan, P.; Upa, K.; Arunporn, I. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am. J. Chin. Med. 2012, 40, 163–175. [Google Scholar]
- Gao, M.; Liu, D. Resveratrol suppresses T0901317-induced hepatic fat accumulation in mice. AAPS J. 2013, 15, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.A.; Kang, S.I.; Shin, H.S.; Kang, S.W.; Kim, S.J. P-Coumaric acid modulates glucose and lipid metabolism via AMP-activated protein kinase in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 2013, 432, 553–557. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Han, W.; Wu, J.; Li, S.; Qin, T.; Zhang, C.; Shi, M.; Han, S.; Gao, B. Glutamine suppresses senescence and promotes autophagy through glycolysis inhibition-mediated AMPKα lactylation in intervertebral disc degeneration. Commun. Biol. 2024, 7, 325. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, M.; Wang, Z.; Xiong, Y.; Fang, X.; Fang, H. Fingolimod alleviates type 2 diabetes associated cognitive decline by regulating autophagy and neuronal apoptosis via AMPK/mTOR pathway. Brain Res. 2025, 1846, 149241. [Google Scholar] [CrossRef] [PubMed]
T (K) | KSV (×103 Lmol−1) | R a | Kq (×1011 L mol−1) | Ka (×105 L mol−1) | n | R b |
---|---|---|---|---|---|---|
298 | 9.093 | 0.97 | 9.093 | 4.29 | 1.238 | 0.98 |
304 | 7.903 | 0.99 | 7.903 | 3.01 | 1.1905 | 0.96 |
310 | 7.061 | 0.97 | 7.061 | 2.56 | 0.8446 | 0.96 |
System Name | Alpha-Glucosidase/Astragalin |
---|---|
ΔEvdw | −29.99 ± 2.64 |
ΔEelec | −23.18 ± 2.81 |
ΔGGB | 35.65 ± 2.66 |
ΔGSA | −4.43 ± 0.44 |
ΔGbind | −21.95 ± 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Yang, Z.; Lu, H.; Liu, F.; Zhou, D.; Zou, Y. Astragalin Exerted Hypoglycemic Effect by Both Inhibiting α-Glucosidase and Modulating AMPK Signaling Pathway. Nutrients 2025, 17, 406. https://doi.org/10.3390/nu17030406
Li Q, Yang Z, Lu H, Liu F, Zhou D, Zou Y. Astragalin Exerted Hypoglycemic Effect by Both Inhibiting α-Glucosidase and Modulating AMPK Signaling Pathway. Nutrients. 2025; 17(3):406. https://doi.org/10.3390/nu17030406
Chicago/Turabian StyleLi, Qian, Zhangchang Yang, Huijie Lu, Fan Liu, Donglai Zhou, and Yuxiao Zou. 2025. "Astragalin Exerted Hypoglycemic Effect by Both Inhibiting α-Glucosidase and Modulating AMPK Signaling Pathway" Nutrients 17, no. 3: 406. https://doi.org/10.3390/nu17030406
APA StyleLi, Q., Yang, Z., Lu, H., Liu, F., Zhou, D., & Zou, Y. (2025). Astragalin Exerted Hypoglycemic Effect by Both Inhibiting α-Glucosidase and Modulating AMPK Signaling Pathway. Nutrients, 17(3), 406. https://doi.org/10.3390/nu17030406