Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Individuals Recruitment
2.3. Anthropometric Measurements
2.4. Body Composition Analysis
2.5. Biochemical Analysis
- Total Cholesterol (TC) < 190 mg/dL;
- High-density lipoprotein (HDL) > 50 mg/dL for women and 40 mg/dL for men;
- Low-density Lipoprotein (LDL) < 115 mg/dL;
- Triacylglycerols (TG) < 150 mg/dL.
2.5.1. Plasma Vitamin E Analysis
2.5.2. Plasma Fatty Acids Analysis as a Marker of Dietary Fat Intake
2.6. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Lipid Profile, CRP and Fatty Acids Composition
3.3. Vitamin E Status and Isoforms in Dependence of Body Fat Content
3.4. Association Between Plasma Ts and T3s Concentration and Anthropometrics, Plasma Fatty Acids, Lipid Profile, Enzymes Activity and Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niki, E.; Abe, K. CHAPTER 1. Vitamin E: Structure, Properties and Functions. In Food Chemistry, Function and Analysis; Royal Society of Chemistry: London, UK, 2019; pp. 1–11. ISBN 978-1-78801-621-6. [Google Scholar]
- Shahidi, F.; De Camargo, A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Wallert, M.; Börmel, L.; Lorkowski, S. Inflammatory Diseases and Vitamin E—What Do We Know and Where Do We Go? Mol. Nutr. Food Res. 2020, 65, 2000097. [Google Scholar] [CrossRef]
- Asbaghi, O.; Sadeghian, M.; Nazarian, B.; Sarreshtedari, M.; Mozaffari-Khosravi, H.; Maleki, V.; Alizadeh, M.; Shokri, A.; Sadeghi, O. The effect of vitamin E supplementation on selected inflammatory biomarkers in adults: A systematic review and meta-analysis of randomized clinical trials. Sci. Rep. 2020, 10, 17234. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, M.; Sánchez-Vera, I.; Sevillano, J.; Herrero, L.; Serra, D.; Ramos, M.P.; Viana, M. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity 2015, 23, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Waniek, S.; di Giuseppe, R.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Koch, M.; Borggrefe, J.; Both, M.; Müller, H.P.; Kassubek, J.; et al. Association of vitamin E levels with metabolic syndrome, and MRI-derived body fat volumes and liver fat content. Nutrients 2017, 9, 1143. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Górnicka, M. Dietary Vitamin E Isoforms Intake: Development of a New Tool to Assess Tocopherols and Tocotrienols Intake in Adults. Nutrients 2023, 15, 3759. [Google Scholar] [CrossRef]
- Galli, F.; Azzi, A.; Birringer, M.; Cook-Mills, J.M.; Eggersdorfer, M.; Frank, J.; Cruciani, G.; Lorkowski, S.; Özer, N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017, 102, 16–36. [Google Scholar] [CrossRef]
- Ahsan, H.; Ahad, A.; Iqbal, J.; Siddiqui, W.A. Pharmacological potential of tocotrienols: A review. Nutr. Metab. 2014, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Kashyap, D.; Sak, K.; Tuli, H.S.; Jain, A.; Chaudhary, A.; Garg, V.K.; Sethi, G.; Yerer, M.B. Molecular Mechanisms of Action of Tocotrienols in Cancer: Recent Trends and Advancements. Int. J. Mol. Sci. 2019, 20, 656. [Google Scholar] [CrossRef] [PubMed]
- Flory, S.; Birringer, M.; Frank, J. Bioavailability and Metabolism of Vitamin E. In Vitamin E in Human Health; Springer International Publishing: Cham, Switzerland, 2019; pp. 31–41. ISBN 978-3-030-05315-4. [Google Scholar]
- Schmölz, L.; Schubert, M.; Kluge, S.; Birringer, M.; Wallert, M.; Lorkowski, S. The Hepatic Fate of Vitamin E. In Vitamin E in Health and Disease; IntechOpen: London, UK, 2018; ISBN 978-1-78984-246-3. [Google Scholar]
- Traber, M.G.; Leonard, S.W.; Ebenuwa, I.; Violet, P.C.; Wang, Y.; Niyyati, M.; Padayatty, S.; Tu, H.; Courville, A.; Bernstein, S.; et al. Vitamin E absorption and kinetics in healthy women, as modulated by food and by fat, studied using 2 deuterium-labeled α-tocopherols in a 3-phase crossover design. Am. J. Clin. Nutr. 2019, 110, 1148–1167. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Wang, X.; Wang, X.; Ma, F.; Yu, L.; Mao, J.; Jiang, J.; Zhang, L.; Li, P. Contribution of Tocopherols in Commonly Consumed Foods to Estimated Tocopherol Intake in the Chinese Diet. Front. Nutr. 2022, 9, 829091. [Google Scholar] [CrossRef]
- Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of vitamin E metabolism. World J. Biol. Chem. 2016, 7, 14–43. [Google Scholar] [CrossRef]
- Meydani, S.N.; Lewis, E.D.; Wu, D. Perspective: Should vitamin E recommendations for older adults be increased? Adv. Nutr. 2018, 9, 533–543. [Google Scholar] [CrossRef]
- Cuerq, C.; Restier, L.; Drai, J.; Blond, E.; Roux, A.; Charriere, S.; Michalski, M.-C.; Di Filippo, M.; Levy, E.; Lachaux, A.; et al. Establishment of reference values of α-tocopherol in plasma, red blood cells and adipose tissue in healthy children to improve the management of chylomicron retention disease, a rare genetic hypocholesterolemia. Orphanet J. Rare Dis. 2016, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Vasilaki, A.T.; Leivaditi, D.; Talwar, D.; Kinsella, J.; Duncan, A.; O’Reilly, D.S.J.; McMillan, D.C. Assessment of vitamin E status in patients with systemic inflammatory response syndrome: Plasma, plasma corrected for lipids or red blood cell measurements? Clin. Chim. Acta 2009, 409, 41–45. [Google Scholar] [CrossRef]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and Tocotrienols—Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Zaaboul, F.; Liu, Y.F. Vitamin E in foodstuff: Nutritional, analytical, and food technology aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 964–998. [Google Scholar] [CrossRef] [PubMed]
- Raatz, S.K.; Bibus, D.; Thomas, W.; Kris-Etherton, P. Total Fat Intake Modifies Plasma Fatty Acid Composition in Humans. J. Nutr. 2001, 131, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Pawlik-Sobecka, L.; Płaczkowska, S.; Rorbach-Dolata, A.; Piwowar, A. Exogenous dietary factors as important modulator of human lipid profile. J. Pre-Clin. Clin. Res. 2019, 13, 83–91. [Google Scholar] [CrossRef]
- Tumova, J.; Andel, M.; Trnka, J. Excess of Free Fatty Acids as a Cause of Metabolic Dysfunction in Skeletal Muscle Obesity and circulating free fatty acids. Physiol. Res 2016, 65, 193–207. [Google Scholar] [CrossRef]
- Arruda, V.M.; Azevedo, G.T.; Granato, M.J.M.G.; Matos, A.C.P.; Araújo, T.G.; Guerra, J.F.d.C. Oxidative Stress and Annexin A2 Differential Expression in Free Fatty Acids-Induced Non-Alcoholic Fatty Liver Disease in HepG2 Cells. Int. J. Mol. Sci. 2024, 25, 9591. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.-T.; Chang, C.-Y.; Chang, L.F.; Nesaretnam, K. Modulation of obesity-induced inflammation by dietary fats: Mechanisms and clinical evidence. Nutr. J. 2014, 13, 12. [Google Scholar] [CrossRef]
- Ravaut, G.; Légiot, A.; Bergeron, K.-F.; Mounier, C. Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int. J. Mol. Sci. 2020, 22, 330. [Google Scholar] [CrossRef]
- Palomino, O.M.; Giordani, V.; Chowen, J.; Fernández-Alfonso, M.S.; Goya, L. Physiological Doses of Oleic and Palmitic Acids Protect Human Endothelial Cells from Oxidative Stress. Molecules 2022, 27, 5217. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef]
- Domínguez-López, I.; Arancibia-Riveros, C.; Tresserra-Rimbau, A.; Castro-Barquero, S.; Casas, R.; Vázquez-Ruiz, Z.; Ros, E.; Fitó, M.; Estruch, R.; López-Sabater, M.C.; et al. Relationship between estimated desaturase enzyme activity and metabolic syndrome in a longitudinal study. Front. Nutr. 2022, 9, 991277. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, K.; Olsen, T.; Nordstrand Rusvik, T.C.; Ulven, S.M.; Holven, K.B.; Retterstøl, K.; Telle-Hansen, V.H. Fatty acid profile and estimated desaturase activities in whole blood are associated with metabolic health. Lipids Health Dis. 2020, 19, 102. [Google Scholar] [CrossRef] [PubMed]
- Jäger, S.; Cuadrat, R.; Hoffmann, P.; Wittenbecher, C.; Schulze, M.B. Desaturase Activity and the Risk of Type 2 Diabetes and Coronary Artery Disease: A Mendelian Randomization Study. Nutrients 2020, 12, 2261. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B. Metabolic Health in Normal-Weight and Obese Individuals. Diabetologia 2019, 62, 558–566. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry (ISAK): Glasgow, UK, 2019; ISBN 0868037125/9780868037127. [Google Scholar]
- Górnicka, M.; Szewczyk, K.; Białkowska, A.; Jancichova, K.; Habanova, M.; Górnicki, K.; Hamulka, J. Anthropometric Indices as Predictive Screening Tools for Obesity in Adults; The Need to Define Sex-Specific Cut-Off Points for Anthropometric Indices. Appl. Sci. 2022, 12, 6165. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Severeyn, E.; Wong, S.; Herrera, H.; La Cruz, A.; Velasquez, J.; Huerta, M. Prediction of abnormal body fat percentage by anthropometrics parameters using receiver operating characteristic curve. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020; pp. 1–6. [Google Scholar]
- Galmés, S.; Serra, F.; Palou, A. Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018, 10, 1919. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.L. Tocol-derived minor constituents in selected plant seed oils. JAOCS J. Am. Oil Chem. Soc. 2003, 80, 327–333. [Google Scholar] [CrossRef]
- Péter, S.; Friedel, A.; Roos, F.F.; Wyss, A.; Eggersdorfer, M.; Hoffmann, K.; Weber, P. A Systematic Review of Global Alpha-Tocopherol Status as Assessed by Nutritional Intake Levels and Blood Serum Concentrations. Int. J. Vitam. Nutr. Res. 2015, 85, 261–281. [Google Scholar] [CrossRef] [PubMed]
- Baylin, A.; Kim, M.K.; Donovan-Palmer, A.; Siles, X.; Dougherty, L.; Tocco, P.; Campos, H. Fasting Whole Blood as a Biomarker of Essential Fatty Acid Intake in Epidemiologic Studies: Comparison with Adipose Tissue and Plasma. Am. J. Epidemiol. 2005, 162, 373–381. [Google Scholar] [CrossRef]
- Parry, S.A.; Rosqvist, F.; Peters, S.; Young, R.K.; Cornfield, T.; Dyson, P.; Hodson, L. The influence of nutritional state on the fatty acid composition of circulating lipid fractions: Implications for their use as biomarkers of dietary fat intake. Upsala J. Med. Sci. 2021, 126, 7649. [Google Scholar] [CrossRef] [PubMed]
- Hierons, S.J.; Abbas, K.; Sobczak, A.I.S.; Cerone, M.; Smith, T.K.; Ajjan, R.A.; Stewart, A.J. Changes in plasma free fatty acids in obese patients before and after bariatric surgery highlight alterations in lipid metabolism. Sci. Rep. 2022, 12, 15337. [Google Scholar] [CrossRef] [PubMed]
- Turnic, T.N.; Arsic, A.; Vucic, V.; Petrovic, S.; Ristic-Medic, D.; Zivkovic, V.; Srejovic, I.; Jeremic, J.; Radonjic, T.; Milosavljevic, I.; et al. Hydroxymethylglutaryl coenzyme a reductase inhibitors differentially modulate plasma fatty acids in rats with diet-induced-hyperhomocysteinemia: Is ω-3 fatty acids supplementation necessary? Front. Physiol. 2019, 10, 892. [Google Scholar]
- Bajerska, J.; Skoczek-Rubińska, A.; Małczak, L.; Vucic, V.; Arsic, A.; Kojadinovic, M.; Ristic-Medic, D. Plasma fatty acid composition and some markers of dietary habits are associated with cardiovascular disease risk determined by an atherogenic plasma index in postmenopausal women. Nutr. Res. 2023, 115, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Schleicher, R.L.; Mokdad, A.H.; Ajani, U.A.; Liu, S. Distribution of serum concentrations of alpha-tocopherol and gamma-tocopherol in the US population. Am. J. Clin. Nutr. 2006, 84, 375–383. [Google Scholar] [CrossRef]
- Stuetz, W.; Weber, D.; Dollé, M.E.T.; Jansen, E.; Grubeck-Loebenstein, B.; Fiegl, S.; Toussaint, O.; Bernhardt, J.; Gonos, E.S.; Franceschi, C.; et al. Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35–74 Years) General Population: A Cross-Sectional Study in Six European Countries. Nutrients 2016, 8, 614. [Google Scholar] [CrossRef] [PubMed]
- Waniek, S.; Di Giuseppe, R.; Esatbeyoglu, T.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Nöthlings, U.; Koch, M.; Schlesinger, S.; Rimbach, G.; et al. Vitamin E (α- and γ-Tocopherol) Levels in the Community: Distribution, Clinical and Biochemical Correlates, and Association with Dietary Patterns. Nutrients 2018, 10, 3. [Google Scholar] [CrossRef]
- Donnan, M.S.; Heath, D.D.; Flatt, S.W.; Pakiz, B.; Quintana, E.L.; Rana, B.K.; Natarajan, L.; Rock, C.L. Factors Associated with Tocopherol Status in Obese Women: Effects of Diet Composition and Weight Loss. Vitam. Miner. 2016, 5, 3. [Google Scholar]
- Zang, X.-D.; Hu, Q.-H.; Liu, X.-X.; Da, M.; Yang, Z.-C.; Qi, J.-R.; Mo, X.-M. Serum vitamin E concentration is negatively associated with body mass index change in girls not boys during adolescence. World J. Pediatr. 2021, 17, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Kabat, G.C.; Heo, M.; Ochs-Balcom, H.M.; Leboff, M.S.; Mossavar-Rahmani, Y.; Adams-Campbell, L.L.; Nassir, R.; Ard, J.; Zaslavsky, O.; Rohan, T.E. Longitudinal association of measures of adiposity with serum antioxidant concentrations in postmenopausal women. Eur. J. Clin. Nutr. 2016, 70, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Meulmeester, F.L.; Luo, J.; Martens, L.G.; Ashrafi, N.; de Mutsert, R.; Mook-Kanamori, D.O.; Lamb, H.J.; Rosendaal, F.R.; Willems van Dijk, K.; Mills, K.; et al. Association of measures of body fat with serum alpha-tocopherol and its metabolites in middle-aged individuals. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Lindsey, S.H. Metabolic Benefits Afforded by Estradiol and Testosterone in Both Sexes: Clinical Considerations. J. Clin. Investig. 2024, 134, e180073. [Google Scholar] [CrossRef] [PubMed]
- Seidemann, L.; Lippold, C.P.; Rohm, C.M.; Eckel, J.C.; Schicht, G.; Matz-Soja, M.; Berg, T.; Seehofer, D.; Damm, G. Sex Hormones Differently Regulate Lipid Metabolism Genes in Primary Human Hepatocytes. BMC Endocr. Disord. 2024, 24, 135. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A. Sex Differences in Requirements for Micronutrients across the Lifecourse. Proc. Nutr. Soc. 2021, 80, 356–364. [Google Scholar] [CrossRef]
- Jeong, H.; Oh, J.W.; Son, N.-H.; Lee, S. Age and Sex Differences in the Association between Serum Vitamin E Levels and Depressive Symptoms: Korea National Health and Nutrition Examination Survey. Nutrients 2023, 15, 1915. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Wallert, M.; Lorkowski, S.; Peter, K. Cardiovascular and Metabolic Protection by Vitamin E: A Matter of Treatment Strategy? Antioxidants 2020, 9, 935. [Google Scholar] [CrossRef]
- Barzegar-Amini, M.; Ghazizadeh, H.; Seyedi, S.M.R.; Sadeghnia, H.R.; Mohammadi, A.; Hassanzade-Daloee, M.; Barati, E.; Kharazmi-Khorassani, S.; Kharazmi-Khorassani, J.; Mohammadi-Bajgiran, M.; et al. Serum Vitamin E as a Significant Prognostic Factor in Patients with Dyslipidemia Disorders. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Zhang, Z.; Wu, F.; Liu, J.; Zhu, Z.; Xiang, H. The association between vitamin E intake and remnant cholesterol, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol in US adults: A cross-sectional study. Lipids Health Dis. 2024, 23, 325. [Google Scholar] [CrossRef]
- Barzegar-Amini, M.; Khorramruz, F.; Ghazizadeh, H.; Sahebi, R.; Mohammadi-Bajgiran, M.; Ardabili, H.M.; Tayefi, M.; Darroudi, S.; Moohebati, M.; Heidari-Bakavoli, A.; et al. Association between Serum Vitamin E Concentrations and the Presence of Metabolic Syndrome: A Population-Based Cohort Study. Acta Biomed. 2021, 92, e2021047. [Google Scholar] [CrossRef]
- Pacana, T.; Sanyal, A.J. Vitamin E and Non-alcoholic Fatty Liver Disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Piran, S.; Sarmasti, S.; Shabani, M.; Kakavandi, N.; Hosseni, B.; Khosravi, M.; Resaee, S.; Soltanmohammadi, E.; Naseri, F.; Mohammadi, A.; et al. Association Between Fat-soluble Vitamins and Lipid Profile in the Overweight Population. Recent Pat. Food. Nutr. Agric. 2019, 11, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Current evidence of the role of vitamin E in prolonging a healthy life. Redox Exp. Med. 2023, 2023, e230020. [Google Scholar] [CrossRef]
- Valk, E.E.; Hornstra, G. Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man: A review. Int. J. Vitam. Nutr. Res. 2000, 70, 31–42. [Google Scholar] [CrossRef]
- Monnard, C.R.; Dulloo, A.G. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes. Rev. 2021, 22, e13197. [Google Scholar] [CrossRef] [PubMed]
- Czumaj, A.; Śledziński, T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020, 12, 356. [Google Scholar] [CrossRef] [PubMed]
- Ntambi, J.M. Stearoyl-CoA desaturase-1 is a biological regulator of energy homeostasis. In Stearoyl-CoA Desaturase Genes in Lipid Metabolism; Springer: New York, NY, USA, 2013; pp. 27–35. [Google Scholar]
- Paton, C.M.; Ntambi, J.M. Biochemical and Physiological Function of Stearoyl-CoA Desaturase. Am. J. Physiol.-Endocrinol. Metab. 2009, 297, 28–37. [Google Scholar] [CrossRef]
- Galli, F. Nutrigenomics of vitamin E and fatty acid metabolism in lipotoxicity and oxidative stress-related diseases. RedoXplore 2024, 1, 1. [Google Scholar] [CrossRef]
- Mazidi, M.; Kengne, A.P.; Katsiki, N.; Mikhailidis, D.P.; Banach, M. Inverse association between serum antioxidant levels and inflammatory markers is moderated by adiposity: A report based on a large representative population sample of American adults. Br. J. Nutr. 2018, 120, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Liu, L.; Jian, Z.; Ma, Y.; Li, H.; Jin, X.; Liao, B.; Wang, K. Vitamin E and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses. Nutrients 2023, 15, 3301. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C. Genetic Variations Involved in Vitamin E Status. Int. J. Mol. Sci. 2016, 17, 2094. [Google Scholar] [CrossRef] [PubMed]
- Santos de Lima, K.; Schuch, F.B.; Camponogara Righi, N.; Chagas, P.; Hemann Lamberti, M.; Puntel, G.O.; Vargas da Silva, A.M.; Ulisses Signori, L. Effects of the Combination of Vitamins C and E Supplementation on Oxidative Stress, Inflammation, Muscle Soreness, and Muscle Strength Following Acute Physical Exercise: Meta-Analyses of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2023, 63, 7584–7597. [Google Scholar] [CrossRef]
- Marcadenti, A. Dietary Antioxidant and Oxidative Stress: Interaction between Vitamins and Genetics. J. Nutr. Health Food Sci. 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Matthaiou, A.M.; Tomos, I.; Chaniotaki, S.; Liakopoulos, D.; Sakellaropoulou, K.; Koukidou, S.; Gheorghe, L.-M.; Eskioglou, S.; Paspalli, A.; Hillas, G.; et al. Association of Broad-Spectrum Antibiotic Therapy and Vitamin E Supplementation with Vitamin K Deficiency-Induced Coagulopathy: A Case Report and Narrative Review of the Literature. J. Pers. Med. 2023, 13, 1349. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 127) | Body Fat Content (%) | p-Value | |
---|---|---|---|---|
Normal (n = 60) | Excess (n = 67) | |||
Sociodemographic (n, %) | ||||
Women | 77 (61) | 34 (57) 26 (43) | 43 (64) | NS |
Men | 50 (39) | 24 (36) | ||
Age in years (mean ± SD) | 49 ± 6 | 46 ± 5 | 52 ± 6 | <0.001 |
Education (n, %) | ||||
Primary and basic vocational | 15 (12) | 3 (5) | 12 (18) | <0.001 |
Secondary | 42 (33) | 7 (12) | 35 (52) | |
University | 70 (55) | 50 (83) | 20 (30) | |
Place of living (n, %) | ||||
Village | 10 (8) | 3 (5) | 7 (10) | NS |
City < 100,000 inhab. | 19 (15) | 5 (8) | 14 (21) | |
City > 100,000 inhab. | 98 (77) | 52 (87) | 46 (69) | |
Professional status (n, %) | ||||
Not working | 24 (19) | 6 (10) | 18 (27) | NS |
Work part-time | 18 (14) | 10 (17) | 8 (12) | |
Work full time | 85 (67) | 44 (73) | 41 (61) | |
Smoking (n, %) | ||||
Yes | 27 (21) | 13 (22) | 14 (21) | NS |
No | 100 (79) | 47 (78) | 53 (79) | |
Health status self-assessment (n, %) | ||||
Bad | 17 (13) | 1 (2) | 16 (24) | <0.001 |
Not bad not good | 48 (38) | 7 (12) | 41 (61) | |
Good or very good | 62 (49) | 52 (87) | 10 (15) |
Body Fat Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | Total (n = 127) | Normal (n = 60) | p-Value | Excess (n = 67) | p-Value | p-Value | ||
Women (n = 34) | Men (n = 26) | Women (n = 43) | Men (n = 24) | Normal vs. Excess | ||||
Lipid profile | ||||||||
TC (mg/dL) | 199.7 ± 33.4 | 197.3 ± 28.2 | 204.5 ± 37.1 | NS | 201.3 ± 34.7 | 194.8 ± 34.7 | NS | NS |
<190 mg/dL, n (%) | 13 (38) | 11 (42) | NS | 12 (28) | 12 (50) | NS | NS | |
≥190 mg/dL, n (%) | 21(62) | 15 (58) | 31 (43) | 12 (50) | ||||
HDL (mg/dL) | 53.2 ± 16.8 | 71.2 ± 10.1 | 54.8 ± 14.5 | <0.001 | 46.2 ± 11.0 | 38.6 ± 12.6 | 0.002 | <0.001 |
>50 mg/dL for women and 40 mg/dL for men, n (%) | 78 (61) | 33 (97) | 22 (85) | NS | 15 (35) | 8 (33) | NS | <0.001 |
≤50 mg/dL for women and 40 mg/dL for men, n (%) | 49 (39) | 1 (3) | 4 (15) | 28 (65) | 16 (67) | |||
LDL (mg/dL) | 118.2 ± 32.0 | 121.5 ± 28.5 | 132.2 ± 35.2 | NS | 113.1 ± 30.8 | 107.4 ± 31.0 | NS | <0.001 |
<115 mg/dL, n (%) | 61 (48) | 14 (41) | 10 (38) | NS | 22 (51) | 15 (63) | NS | NS |
≥115 mg/dL, n (%) | 66 (52) | 20 (59) | 16 (62) | 21 (49) | 9 (37) | |||
TG (mg/dL) | 139.3 ± 78.6 | 77.7 ± 35.0 | 118.0 ± 81.1 | NS | 168.5 ± 55.0 | 197.4 ± 91.2 | NS | <0.001 |
<150 mg/dL, n (%) | 74 (58) | 31 (91) | 19 (73) | NS | 16 (37) | 8 (33) | NS | <0.001 |
≥150 mg/dL, n (%) | 53 (42) | 3 (9) | 7 (27) | 27 (63) | 16 (67) | |||
Inflammation | ||||||||
CRP (mg/dL) | 1.5 ± 3.4 | 0.118 ± 0.055 | 0.805 ± 2.5 | 0.034 | 1.8 ± 2.6 | 3.401 ± 6.03 | NS | <0.001 |
Plasma fatty acids (results for selected FA) | ||||||||
Σ SFA (%) | 37.5 ± 7.5 | 39.6 ± 10.3 | 37.2 ± 5.5 | NS | 37.3 ± 7.1 | 35.1 ± 4.5 | NS | NS |
C 15:0 | 0.82 ± 3.7 | 1.04 ± 4.9 | 0.23 ± 0.1 | NS | 1.32 ± 4.7 | 0.26 ± 0.1 | NS | 0.024 |
C 16:0 | 21.8 ± 5.5 | 20.8 ± 5.3 | 22.8 ± 3.2 | NS | 21.5 ± 7.0 | 22.6 ± 4.8 | NS | NS |
C 17:0 | 0.26 ± 0.2 | 0.16 ± 0.2 | 0.21 ± 0.1 | NS | 0.33 ± 0.3 | 0.30 ± 0.2 | NS | <0.001 |
C 18:0 | 9.5 ± 2.8 | 9.75 ± 1.7 | 8.65 ± 1.5 | 0.011 | 10.3 ± 4.1 | 8.67 ± 1.8 | 0.028 | NS |
Σ MUFA (%) | 28.1 ± 6.6 | 22.7 ± 4.6 | 25.8 ± 5.7 | 0.025 | 30.5 ± 5.1 | 33.8 ± 5.4 | 0.015 | <0.001 |
C 16:1 | 1.89 ± 1.0 | 1.22 ± 0.75 | 1.65 ± 0.8 | 0.037 | 2.28 ± 1.0 | 2.39 ± 1.0 | NS | <0.001 |
C 18:1 n-9 | 25.8 ± 5.9 | 21.4 ± 4.25 | 24.1 ± 5.1 | 0.033 | 27.4 ± 5.2 | 31.0 ± 4.9 | 0.007 | <0.001 |
Σ PUFA (%) | 34.4 ± 7.3 | 37.6 ± 8.4 | 37.0 ± 6.4 | NS | 32.2 ± 6.5 | 31.1 ± 5.2 | NS | <0.001 |
Σ n-3 (%) | 4.43 ± 2.4 | 4.01 ± 2.4 | 3.71 ± 1.8 | NS | 5.18 ± 2.6 | 4.46 ± 2.0 | NS | 0.005 |
C 18:3 n-3 | 0.61 ± 0.4 | 0.482 ± 0.4 | 0.52 ± 0.3 | NS | 0.66 ± 0.3 | 0.82 ± 0.5 | NS | 0.0004 |
C 20:5 n-3 | 1.01 ± 1.0 | 0.958 ± 0.9 | 0.75 ± 0.7 | NS | 1.16 ± 1.0 | 1.14 ± 1.3 | NS | 0.029 |
C 22:6 n-3 | 2.80 ± 1.6 | 2.573 ± 1.7 | 2.44 ± 1.3 | NS | 3.37 ± 1.8 | 2.51 ± 1.1 | 0.039 | 0.039 |
Σ n-6 (%) | 30.0 ± 6.8 | 33.6 ± 7.7 | 33.3 ± 6.1 | NS | 27.1 ± 5.4 | 26.7 ± 4.3 | NS | <0.001 |
C 18:2 n-6 | 21.4 ± 7.1 | 25.7 ± 7.9 | 24.8 ± 6.6 | NS | 17.7 ± 4.8 | 18.4 ± 5.0 | NS | <0.001 |
C 18:3 n-6 | 0.49 ± 1.8 | 0.210 ± 0.2 | 0.29 ± 0.2 | NS | 0.49 ± 0.6 | 1.14 ± 4.0 | 0.016 | 0.006 |
C 20:3 n-6 | 2.32 ± 1.5 | 1.66 ± 1.1 | 2.31 ± 1.5 | NS | 2.99 ± 1.6 | 2.06 ± 1.4 | 0.021 | 0.009 |
C 20:4 n-6 | 5.76 ± 1.7 | 6.02 ± 1.9 | 5.84 ± 2.3 | NS | 5.89 ± 1.5 | 5.05 ± 1.0 | 0.005 | NS |
n-3/n-6 | 0.154 ± 0.09 | 0.121 ± 0.08 | 0.115 ± 0.06 | NS | 0.197 ± 0.1 | 0.168 ± 0.07 | NS | <0.001 |
Body Fat Content (%) | ||||
---|---|---|---|---|
Variables | Total (n = 127) | Normal (n = 60) | Excess (n = 67) | p-Value |
α—T (µmol/L) | 25.9 ± 17.6 | 32.9 ± 19.5 | 19.6 ± 12.9 | <0.001 |
Low, n (%) | 27 (21) | 7 (12) | 20 (30) | <0.001 |
Adequate, n (%) | 62 (49) | 23 (38) | 39 (58) | |
Pro-Healthy, n (%) | 38 (30) | 30 (50) | 8 (12) | |
γ—T (µmol/L) | 10.5 ± 9.1 | 12.6 ± 9.5 | 8.69 ± 8.3 | <0.001 |
α—T3 (µmol/L) | 6.0 ± 4.5 | 7.79 ± 4.1 | 4.41 ± 4.2 | <0.001 |
γ—T3 (µmol/L) | 9.0 ± 6.8 | 10.7 ± 5.7 | 7.47 ± 7.4 | <0.001 |
Sum of Ts and T3s (µmol/L) | 51.5 ± 31.4 | 64.0 ± 31.4 | 40.2 ± 26.9 | <0.001 |
Variables | α-T | α-T3 | γ-T | γ-T3 | Sum of Ts and T3s | α-T/TL |
---|---|---|---|---|---|---|
BW (kg) | −0.340 | −0.237 | −0.219 | - | −0.296 | - |
WC (cm) | −0.382 | −0.287 | −0.231 | −0.227 | −0.343 | −0.241 |
HC (cm) | −0.334 | −0.226 | - | - | −0.279 | −0.327 |
BF (%) | −0.359 | −0.333 | - | −0.276 | −0.348 | −0.584 |
FM (kg) | −0.387 | −0.333 | −0.230 | −0.261 | −0.365 | −0.416 |
BMI (kg/m2) | −0.346 | −0.288 | - | −0.228 | −0.321 | −0.289 |
WHR | −0.277 | −0.233 | −0.203 | −0.183 | −0.259 | - |
WHtR | −0.394 | −0.339 | −0.211 | −0.291 | −0.381 | −0.408 |
Σ SFA (%) | 0.192 | - | - | - | - | - |
Σ MUFA (%) | −0.376 | −0.294 | −0.227 | −0.238 | −0.339 | −0.384 |
Σ PUFA (%) | 0.184 | 0.247 | 0.294 | 0.276 | 0.242 | 0.254 |
TC (mg/dL) | - | - | - | - | - | −0.396 |
HDL (mg/dL) | 0.487 | 0.393 | 0.331 | 0.349 | 0.459 | 0.232 |
LDL (mg/dL) | 0.255 | - | - | - | - | - |
TG (mg/dL) | −0.295 | −0.337 | −0.192 | −0.268 | −0.307 | −0.625 |
CRP (mg/dL) | −0.464 | −0.453 | −0.270 | −0.355 | −0.454 | −0.373 |
D5D | - | - | - | - | - | - |
D6D | - | - | - | - | - | −0.234 |
SCD16 | −0.265 | −0.247 | −0.194 | - | −0.235 | −0.377 |
SCD18 | −0.237 | −0.197 | −0.182 | - | −0.236 | −0.232 |
Elongase | - | - | - | - | - | - |
Variables | α-T | α-T3 | γ-T | γ-T3 |
---|---|---|---|---|
β, p-Value | β, p-Value | β, p-Value | β, p-Value | |
BW (kg) | −0.258, 0.003 | −0.249, 0.005 | −0.242, 0.006 | −0.130, 0.144 |
WC (cm) | −0.318, <0.001 | −0.312, <0.001 | −0.243, 0.006 | −0.205, 0.021 |
HC (cm) | −0.292, 0.001 | −0.191, 0.031 | - | −0.106, 0.236 |
FM (kg) | −0.347, <0.001 | −0.303, <0.001 | −0.223, 0.012 | −0.192, 0.030 |
BF (%) | −0.336, <0.001 | −0.292, <0.001 | - | −0.202, 0.023 |
BMI (kg/m2) | −0.315, <0.001 | −0.290, <0.001 | −0.204, 0.022 | −0.176, 0.048 |
WHR | −0.223, 0.012 | −0.302, <0.001 | −0.203, 0.022 | −0.213, 0.016 |
WHtR | −0.339, 0.001 | −0.324, <0.001 | −0.211, 0.017 | −0.225, 0.011 |
Σ SFA (%) | 0.069, 0.442 | - | 0.0006, 0.99 | 0.011, 0.905 |
Σ MUFA (%) | −0.239, 0.007 | −0.322, <0.001 | −0.250, 0.005 | −0.234, 0.008 |
Σ PUFA (%) | 0.143, 0.108 | 0.179, 0.044 | 0.223, 0.012 | 0.199, 0.024 |
TC (mg/dL) | 0.283, <0.001 | −0.033, 0.712 | 0.071, 0.431 | −0.104, 0.245 |
HDL (mg/dL) | 0.381, <0.001 | 0.383, <0.001 | 0.331, <0.001 | 0.294, 0.001 |
LDL (mg/dL) | 0.320, <0.001 | - | 0.135, 0.129 | −0.086, 0.335 |
TG (mg/dL) | −0.114, 0.201 | −0.271, 0.002 | −0.153, 0.085 | −0.212, 0.017 |
CRP | −0.254, 0.004 | −0.230, 0.009 | −0.148, 0.097 | −0.113, 0.206 |
D5D | - | - | −0.084, 0.345 | −0.059, 0.513 |
D6D | - | - | 0.047, 0.602 | 0.036, 0.689 |
SCD16 | −0.127, 0.153 | −0.126, 0.157 | −0.143, 0.108 | −0.004, 0.964 |
SCD18 | −0.066, 0.463 | −0.186, 0.036 | −0.137, 0.124 | −0.154, 0.084 |
Elongase | - | - | −0.030, 0.734 | 0.077, 0.388 |
Variables | α-T | α-T3 | γ-T | γ-T3 |
---|---|---|---|---|
β (95% CI), p-Value | β (95% CI), p-Value | β (95% CI), p-Value | β (95% CI), p-Value | |
Σ SFA (%) | −0.068 (−0.298; 0.162), 0.560 | - | - | - |
Σ MUFA (%) | −0.476 (−0.933; −0.019), 0.041 | −0.333 (−0.744; 0.079), 0.112 | −0.383 (−0.800; 0.035), 0.072 | −0.097 (−0.367; 0.173), 0.476 |
Σ PUFA (%) | - | 0.053 (−0.178; 0.285), 0.648 | 0.138 (−0.088; 0.364), 0.230 | 0.109 (−0.109; 0.328), 0.324 |
SCD16 | 0.164 (−0.062; 0.389), 0.154 | 0.084 (−0.152; 0.320), 0.481 | 0.071 (−0.163; 0.305), 0.549 | - |
SCD18 | 0.318 (−0.035; 0.672), 0.077 | 0.226 (−0.142; 0.593), 0.226 | 0.227 (−0.142; 0.597), 0.225 | - |
BW (kg) | 1.182 (−1.996; 4.360), 0.462 | 1.316 (−1.999; 4.632), 0.433 | 0.460 (−0.418; 1.339), 0.301 | - |
WC (cm) | −0.887 (−7.656; 5.882), 0.796 | −0.422 (−7.451; 6.606), 0.905 | −1.367 (−3.037; 0.304), 0.108 | 0.629 (−0.997; 2.255), 0.445 |
HC (cm) | −0.742 (−2.595; 1.111), 0.429 | −0.696 (−2.629; 1.237), 0.477 | - | - |
FM (kg) | −0.390 (−1.872; 1.092), 0.603 | −0.523 (−2.069; 1.022), 0.504 | −0.148 (−0.883; 0.587), 0.691 | −0.509 (−2.057; 1.039), 0.516 |
BF (%) | 0.213 (−0.695; 1.121), 0.642 | 0.174 (−0.773; 1.122), 0.716 | - | 0.278 (−0.633; 1.189), 0.546 |
BMI (kg/m2) | −0.471 (−3.665; 2.724), 0.771 | −0.799 (−4.133; 2.534), 0.635 | - | 0.484 (−0.651; 1.619), 0.340 |
WHR | −0.618 (−2.757; 1.521), 0.568 | −0.959 (−3.188; 1.269), 0.395 | 0.185 (−0.259; 0.629), 0.410 | −0.122 (−0.565; 0.320), 0.583 |
WHtR | 1.511 (−3.802; 6.824), 0.574 | 1.717 (−3.808; 7.244), 0.539 | 1.058 (−0.106; 2.221), 0.074 | −0.613 (−2.249; 1.023), 0.459 |
CRP (mg/dL) | −0.110 (−0.305; 0.084), 0.263 | −0.131 (−0.333; 0.071), 0.201 | −0.059 (−0.264; 0.145), 0.565 | −0.071 (−0.272; 0.131), 0.487 |
TC (mg/dL) | 0.020 (−0.377; 0.417), 0.921 | −0.015 (−0.364; 0.070), 0.182 | −0.085 (−0.307; 0.136), 0.445 | −0.065 (−0.284; 0.154), 0.559 |
HDL (mg/dL) | 0.371 (0.071; 0.671), 0.016 | 0.347 (0.011; 0.684), 0.043 | 0.330 (0.014; 0.646), 0.041 | 0.364 (0.023; 0.705), 0.036 |
LDL (mg/dL) | 0.166 (−0.016; 0.347), 0.413 | - | - | - |
TG (mg/dL) | 0.181 (−0.063; 0.425), 0.144 | −0.071 (−0.319; 0.177), 0.571 | 0.141 (−0.107; 0.390), 0.263 | −0.055 (−0.307; 0.197), 0.666 |
R2, p-Value | 0.293, 0.003 | 0.221, 0.048 | 0.017, 0.118 | 0.172, 0.105 |
Model | Variable | Total (n = 127) | Women (n = 77) | Men (n = 50) | |||
---|---|---|---|---|---|---|---|
β (95% CI), p-Value | R2, p-Value | β (95% CI), p-Value | R2, p-Value | β (95% CI), p-Value | R2, p-Value | ||
α-tocopherol | |||||||
1 | BF (%) | −0.201 (−0.389; −0.012), 0.037 | 0.221, <0.001 | 0.170 (−0.397; 0.283), 0.739 | 0.257, <0.001 | −0.158 (−0.494; 0.179), 0.350 | 0.310, <0.001 |
TC (mg/dL) | 0.234 (0.073; 0.394), 0.005 | 0.002 (−0.201; 0.204), 0.988 | 0.462 (0.196; 0.727), 0.001 | ||||
HDL (mg/dL) | 0.230 (0.038; 0.421), 0.019 | 0.461 (0.120; 0.801), 0.009 | 0.081 (−0.275; 0.435), 0.652 | ||||
2 | HDL (mg/dL) | 0.389 (0.201; 0.578), <0.001 | 0.230, <0.001 | 0.443 (0.203; 0.684), <0.001 | 0.270, <0.001 | 0.209 (−0.096; 0.514), 0.174 | 0.288, 0.004 |
LDL (mg/dL) | 0.231 (0.068; 0.395), 0.006 | 0.085 (−0.118; 0.290), 0.407 | 0.429 (0.148; 0.800), 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk, K.; Bryś, J.; Brzezińska, R.; Górnicka, M. Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults. Nutrients 2025, 17, 408. https://doi.org/10.3390/nu17030408
Szewczyk K, Bryś J, Brzezińska R, Górnicka M. Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults. Nutrients. 2025; 17(3):408. https://doi.org/10.3390/nu17030408
Chicago/Turabian StyleSzewczyk, Kacper, Joanna Bryś, Rita Brzezińska, and Magdalena Górnicka. 2025. "Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults" Nutrients 17, no. 3: 408. https://doi.org/10.3390/nu17030408
APA StyleSzewczyk, K., Bryś, J., Brzezińska, R., & Górnicka, M. (2025). Nutritional Status of Vitamin E and Its Association with Metabolic Health in Adults. Nutrients, 17(3), 408. https://doi.org/10.3390/nu17030408